Discover acceleration of gradient descent
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GD. Convergence rates

min f(z) e = o - Vf(e) K= %
smooth & convex smooth & strongly convex (or PL)
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Three update schemes

® Normal gradient
T — aka(:l?k)

Move the point xj, in the direction —V f(xx) for ax||V f(z)|| amount.
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Three update schemes

® Normal gradient
T — aka(mk)
Move the point @) in the direction —V f(xx) for ai||V f(zk)| amount.

® Polyak’s Heavy Ball Method
xp — apVf(zy) + Br(Tr — Tr—1)

Perform a GD, move the updated-z in the direction of the previous step for By ||xr — r—1| amount.
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Three update schemes

® Normal gradient
T — aka(:l?k)

Move the point xj, in the direction —V f(xx) for ax||V f(z)|| amount.

® Polyak’s Heavy Ball Method
xp — apVf(zy) + Br(Tr — Tr—1)

Perform a GD, move the updated-z in the direction of the previous step for ||, — xr—1| amount.

® Nesterov’s acceleration
Ty — aka(a:k + Bk(wk — :Ek_1))+ (T — Tr—1)

Move the not-yet-updated- in the direction of the previous step for Si||zr — x—1|| amount,
perform a GD on the shifted-x, then move the updated-x in the direction of the previous step for
)'/, H:I’/‘ — k-1 H
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Black box iteration

The iteration of gradient descent:
"= 2b — oV f(ah)

_ l’k71 _ ak*lvf(xkfl) _ aka(xk)

k
— 1'0 _ Z akfzvf(xkfl)
=0
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Black box iteration

The iteration of gradient descent:

_ l’k71 _ ak*lvf(xkfl) _ akvf(l'k)

k
— m0 _ Z akfzvf(xkfl)
i=0
Consider a family of first-order methods, where

2" e 2% + span {Vf(mo),Vf(xl), e ,Vf(xk)} f - smooth
2" e 2% + span{go,g1,..., 9%}, where g; € df(z')  f - non-smooth
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Black box iteration

The iteration of gradient descent:

_ $k71 _ ak*lvf(xkfl) _ akvf(l'k)

k
— m0 _ Z akfzvf(xkfl)
=0

Consider a family of first-order methods, where

2" e 2% + span {Vf(aco),Vf(xl), e ,Vf(ask)} f - smooth
2" e 2% + span{go,g1,..., 9%}, where g; € df(z')  f - non-smooth

1)

In order to construct a lower bound, we need to find a function f from corresponding class such that any method
from the family 1 will work at least as slow as the lower bound.
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Smooth case

i Theorem

There exists a function f that is L-smooth and convex such that any method 1 satisfies forany k: 1 < k < ”Tfl:

k « o 3L[z° —a*|3
2 T 12
1) =1 2 =y
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Smooth case

Theorem

There exists a function f that is L-smooth and convex such that any method 1 satisfies forany k: 1 < k < "Tfl:

k « o 3L[z° —a*|3
oy 27 T 12
L e A STUESE

® No matter what gradient method you provide, there is always a function f that, when you apply your gradient
method on minimizing such f, the convergence rate is lower bounded as O (,712)

® The key to the proof is to explicitly build a special function f.

® Note, that this bound O (k%) does not match the rate of gradient descent O (%) Two options possible:

a. The lower bound is not tight.
b. The gradient method is not optimal for this problem.
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HBM for a quadratic problem

i Question

Which step size
strategy is used
for GD?
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Figure 1: GD vs. HBM with fixed 3.

Observation: for nice f (with spherical level sets), GD is already good enough and HBM adds a little effect.
However, for bad f (with elliptic level sets), HBM is better in some cases.
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HBM for a quadratic problem

Figure 2: GD with a =

vs. HBM with fixed 5.

Observation: same. If nice f (spherical Iv. sets), GD is already good enough. If bad f (with elliptic Iv. sets), HBM is
better in some cases.
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NAG as a Momentum Method

® Start by setting k = 0,a0 = 1,2_1 = y,, Y, to an arbitrary parameter setting, iterates

Gradient update i = y,, — oV f(y,,) (2)
] ] 14 4/1+4a2
Extrapolation weight ax+1 = — (3)
ar — 1

Extrapolation ¥, = xx + (Tr — Tr—1) (4)

Ap+1

Note that here fix step-size is used: aj = 1 Vk.
® Theorem. If f is L-smooth and convex, the sequence {f(x)}r produced by NAG convergences to the optimal
1
value f* as the rate O(?) as
w _ AL||xp — ™2

® The above representation is difficult to understand, so we will rewrite these equations in a more intuitive
manner.

R /= min NAGfor DL ©0 0
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NAG as a Momentum Method

If we define
Ve, =T — k-1

_ ag — 1
= ———
Ak+1
then the combination of Equation 4 and Equation 6 implies:
Yy = Th—1 + Pr—1Vk—1
which can be used to rewrite Equation 2 as follows using ar = ak—_1:

T = Th—1 + Pr—1Vk-1 — Ap—1Vf(Xr—1 + Br—1Vr—1)

Vi = Pr—1Vp—1 — @k—1V [ (Tr—1 + Br—1Vk—1)

where Equation 8 is a consequence of Equation 5. Alternatively:

Vi1 = Prvr — axVf(zp+Lrvr)

Th+1 = Tk + Vi1

where a, > 0 is the learning rate, §j is the momentum coefficient. Compare HBM with NAG.

R /= min NAGfor DL

(5)
(6)

(7)
(8)
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NAG for DL !

task Osgp) || 0.9N | 0.99N | 0.995N | 0.999N || 0.9M | 0.99M | 0.995M | 0.999M | SGDc
Curves 0.48 0.16 | 0.096 | 0.091 0.074 0.15 0.10 0.10 0.10 0.16
Mnist 2.1 1.0 0.73 0.75 0.80 1.0 0.77 0.84 0.90 0.9
Faces 36.4 14.2 8.5 7.8 7.7 15.3 8.7 8.3 9.3 NA

Figure 3: The table reports the squared errors on the problems for each combination of 8y,42 and a momentum type
(NAG=N, HB=M). When Bpqz is 0 the choice of NAG vs HB is of no consequence so the training errors are presented in a
single column. For each choice of 842, the highest-performing learning rate is used. The column SGD¢ lists the results of

Chapelle & Erhan (2011) who used 1.7M SGD steps and tanh networks.

Link
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Heavy Ball Global Convergence 2
i Theorem

Assume that f is smooth and convex and that

8el0,1), ac (0,2(1;6))

Then, the sequence {z\} generated by Heavy-ball iteration satisfies
llzo—a*|I> [ LB 1-8 . 1-p8
2‘2T+1)<16+o¢)7 IfozE(O,T]:

lzo—a*|> -2\ 1-8 2(1-5)
ST A= =aT) <L/5' +— >, if o€ [T’ T)’

where T is the Cesaro average of the iterates, i.e.,

T
_ 1

f@r) - f" <

2Global convergence of the Heavy-ball method for convex optimization, Euhanna Ghadimi et.al.

— min
‘f Tz Convergence rates


https://arxiv.org/abs/1412.7457
https://fmin.xyz
https://hse25.fmin.xyz
https://github.com/MerkulovDaniil/hse25
https://t.me/fminxyz

Heavy Ball Global Convergence 3

i Theorem
Assume that f is smooth and strongly convex and that
ae(0,2), 0<p<i “O‘+\/“20‘2+4(1—6“L)
L7 - 2\ 2 4 2 )

Then, the sequence {x1} generated by Heavy-ball iteration converges linearly to a unique optimizer z*. In
particular,

flaw) = 5 < " (f(zo) — ),
where g € [0,1).

3Global convergence of the Heavy-ball method for convex optimization, Euhanna Ghadimi et.al.
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NAG Global Convergence

i Theorem

Let f: R™ — R is convex and L-smooth. The Nesterov Accelerated Gradient Descent (NAG) algorithm is
designed to solve the minimization problem starting with an initial point zo = yo € R™ and Ao = 0. The
algorithm iterates the following steps:

Gradient update: Ykl = Th — %Vf(xk)
Extrapolation: Tet1 = (1 — &) Yr+1 + Yuyk
Extrapolation weight: \r;1 = 1-%-7 ';+4>\'2“
Extrapolation weight: Y = 1)\;:;k

The sequences {f(yx)}ken produced by the algorithm will converge to the optimal value f* at the rate of
o (,}2) specifically:

« _ 2L||zo — z*|?

Fle) - 7 < Mz 2o
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NAG Global Convergence

i Theorem

Let f : R™ — R is u-strongly convex and L-smooth. The Nesterov Accelerated Gradient Descent (NAG)
algorithm is designed to solve the minimization problem starting with an initial point xo = yo € R" and
Ao = 0. The algorithm iterates the following steps:

Gradient update: Ykt1 = Tk — %Vf(mk)
Extrapolation: Trr1 = (1 4+ ) Yht1 — VeV
Extrapolation weight: Ve = M
VL+ i
The sequences {f(yx)}ren produced by the algorithm will converge to the optimal value f* linearly:
o) = 17 < B o o o (- )
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Hobbits

Let's code! ®@Colab
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Logistic Regression

Let's code! ®@Colab
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References and Python Examples

® Figures for HBM was taken from the presentation. Visit site for more tutorials.

® Why Momentum Really Works. Link.
Run code in ®Colab. The code taken from €).

® On the importance of initialization and momentum in deep learning. Link.
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NAG for a quadratic problem

Consider the following quadratic optimization problem:

1
min ¢(z) = min =z Az — bz, where A € S% .
z€R z€eR4

Every symmetric matrix A has an eigenvalue decomposition
A:Qdiag()‘la"'7)‘n)QT:QAQT7 Q:[qla"~7qn]'

and, as per convention, we will assume that the \;'s are sorted, from smallest A; to biggest \,. It is clear, that \;
correspond to the curvature along the associated eigenvector directions.

We can reparameterize q(z) by the matrix transform @ and optimize y = Qx using the objective
p(y) =q(x) =@ y) =y QQAQQ y/2-b"QTy =y Ay/2—c"y,
where ¢ = Qb.

We can further rewrite p as

p(y) = > [Pl

where [p];(t) = A\it?/2 — [c]st.
‘f%w‘; Extra 0 O 18


https://fmin.xyz
https://hse25.fmin.xyz
https://github.com/MerkulovDaniil/hse25
https://t.me/fminxyz

NAG for a quadratic problem

@ Theorem 2.1 from [1].

Let p(y) = Y, [pli([yl:) such that [p]i(t) = Xit?/2 — [c]it. Let o be arbitrary and fixed. Denote by
HBM. (8, p,y,v) and HBM, (8, p, y,v) the parameter vector and the velocity vector respectively, obtained
by applying one step of HBM (i.e., Eq. 1 and then Eq. 2) to the function p at point y, with velocity v,
momentum coefficient 3, and learning rate «. Define NAG, and NAG, analogously. Then the following holds
for z € {z,v}:

HBM. (3, [pl1. [y)1. [v]2)

HBM..(8,p,y,v) = :
HBM. (8, [pln, [Yln, [v]n)
HBM. (B(1 — aAv), [ply, [yl [v]1)
NAG.(8,p,y,v) = :
HBM. (B(1 — aAn), [pln; [y]n, [v]n)
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NAG for a quadratic problem. Proof (1/2)

Proof:

It's easy to show that if
xip1 = HBM. (B, [qli, []4, [v]4)
vit1 = HBM, (8i, [q]:, [2]4, [v]:)
then for y; = Qx;, wi = Qu;
Yi+1 = HBM.(8s, [pls, [y]:, [w]:)

wi+1 = HBMy (8, [pli, [y]:, [w]:)
. Then, consider one step of HBM,:
HBM. (8, p,y,v) = Bv — aVp(y)
= (Bl — aVip(y), -, B — aViy, p(y))
= (B[] — aVpli([y]1), ..., Blv]ln — aV(p]n([y]n))
= (HBM,(B1, [pl1, [, [v]1), - - -, HBMu(Bi, [pls, []i, [v]:))

This shows that one step of HBM,, on p is precisely equivalent to n simultaneous applications of HBM,, to the
one-dimensional quadratics [p];, all with the same 8 and «. Similarly, for HBM,.
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NAG for a quadratic problem. Proof (2/2)

Next we show that NAG, applied to a one-dimensional quadratic with a momentum coefficient 3, is equivalent to
HBM applied to the same quadratic and with the same learning rate, but with a momentum coefficient (1 — a\).
We show this by expanding NAG, (8, [p]:,y,v) (where y and v are scalars):

NAG. (B, [pli, y,v) = Bv — aV[pli(y + Bv)
= pv—a(\i(y + Bv) — )
= pv — aXiffv — a(Ny — ¢)
=B —aXi)v—aV[pli(y)
= HBM, (8(1 — aXi), [pli, y, v).

QED.

Observations:

® HBM and NAG become equivalent when « is small (when aX < 1 for every eigenvalue \ of A), so NAG and
HBM are distinct only when « is reasonably large.

® When « is relatively large, NAG uses smaller effective momentum for the high-curvature eigen-directions, which
prevents oscillations (or divergence) and thus allows the use of a larger 3 than is possible with CM for a given
o.
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