Gradient Descent. Convergence rates

Seminar

Optimization for ML. Faculty of Computer Science. HSE University
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Gradient Descent

Suppose, we have a problem of minimization of a smooth function f(z) : R™ — R:

f(z) — min
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Gradient Descent

Suppose, we have a problem of minimization of a smooth function f(z) : R™ — R:
f(xz) — min
zER

One of the methods to solve this is gradient descent:

Tht1 = Tk — NeV f(xk)
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Gradient Descent

Suppose, we have a problem of minimization of a smooth function f(z) : R™ — R:

f(z) — min

One of the methods to solve this is gradient descent:
Try1 = Tk — MV f(Tr)

The bottleneck (for almost all gradient methods) is choosing step-size, which can lead to the dramatic difference in
method’s behavior.
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How to choose step sizes

® One of the theoretical suggestions: choosing stepsize inversly proportional to the gradient Lipschitz constant

_1
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How to choose step sizes

® One of the theoretical suggestions: choosing stepsize inversly proportional to the gradient Lipschitz constant

® Backtracking line search. Fix two parameters: 0 < 8 < 1 and 0 < a < 0.5. At each iteration, start with
t = 1, and while
flox =tV f (@) > flx) — at]|V f(x)|3,

shrink ¢ = j3t. Else perform Gradient Descent update xpt1 = zr — tV f(zk).
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How to choose step sizes

® One of the theoretical suggestions: choosing stepsize inversly proportional to the gradient Lipschitz constant

® Backtracking line search. Fix two parameters: 0 < 8 < 1 and 0 < a < 0.5. At each iteration, start with
t = 1, and while
flox =tV f (@) > flx) — at]|V f(x)|3,

shrink ¢ = j3t. Else perform Gradient Descent update xpt1 = zr — tV f(zk).
® Exact line search.

n = argminf(zx — 0V f(xx))
n=0
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Direction of local steepest descent

Let’s consider a linear approximation of the
differentiable function f along some direction
hy |||z = 1:
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Direction of local steepest descent

Let’s consider a linear approximation of the
differentiable function f along some direction
hy |||z = 1:

flz+ah) = f(z) + a(f'(z), h) + o(a)
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Direction of local steepest descent

Let’s consider a linear approximation of the
differentiable function f along some direction
hy |||z = 1:

flz+ah) = f(z) + a(f'(z), h) + o(a)

We want h to be a decreasing direction:

flz+ah) < f(z)

f(@) +alf'(x),h) + ola) < f(z)
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Direction of local steepest descent

Let’s consider a linear approximation of the
differentiable function f along some direction
hy |||z = 1:

flz+ah) = f(z) + a(f'(z), h) + o(a)

We want h to be a decreasing direction:

flz+ah) < f(z)

f(@) +alf'(x),h) + ola) < f(z)

and going to the limit at o — O:

(f'(x),h) <0
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Direction of local steepest descent

Let’s consider a linear approximation of the  Also from Cauchy—Bunyakovsky—Schwarz inequality:
differentiable function f along some direction

e = 1 7). )

W < (1 @) 2Rl
(f'(z),h)

1£' @)ll2lRll2 = =1 (@)]l2

<
> —
flz+ah) = f(z) + a(f'(z), h) + o(a)

We want h to be a decreasing direction:

flz+ah) < f(z)

f(@) +alf'(x),h) + ola) < f(z)

and going to the limit at o — O:

(f'(x),h) <0
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Direction of local steepest descent

Let’s consider a linear approximation of the  Also from Cauchy—Bunyakovsky—Schwarz inequality:
differentiable function f along some direction

B [11llz = 1: 7 (@), )] < (1 @)llalIAl2
(@) k) = 17 @) oIkl = — 1 @)

Thus, the direction of the antigradient

L @)
fw+ah) < f(x) Tl

gives the direction of the steepest local decreasing of the function f.

flz+ah) = f(z) + a(f'(z), h) + o(a)

We want h to be a decreasing direction:

f(@) +alf'(x),h) + ola) < f(z)

and going to the limit at o — O:

(f'(x),h) <0
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Direction of local steepest descent

Let’s consider a linear approximation of the  Also from Cauchy—Bunyakovsky—Schwarz inequality:
differentiable function f along some direction

B [11llz = 1: 7 (@), )] < (1 @)llalIAl2
(@) k) = 17 @) oIkl = — 1 @)

Thus, the direction of the antigradient

flz+ah) = f(z) + a(f'(z), h) + o(a)

We want h to be a decreasing direction:

L @)
flz+ah) < f(z) @
gives the direction of the steepest local decreasing of the function f.
f(@) + alf (z), h) + o(a) < f(z) The result of this method is
and going to the limit at « — 0: Tep1 = 2k — oof (zk)

(f'(x),h) <0
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Minimizer of Lipschitz parabola
If a function f : R™ — R is continuously differentiable and

its gradient satisfies Lipschitz conditions with constant L,
then Vz,y € R™:

1F) ~ F@) ~ (Vi @)y — )| < Sy —
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Minimizer of Lipschitz parabola
If a function f : R™ — R is continuously differentiable and

its gradient satisfies Lipschitz conditions with constant L,
then Vz,y € R™:

1F) ~ F@) ~ (Vi @)y — )| < Sy —

which geometrically means, that if we'll fix some point
zo € R™ and define two parabolas:

61(2) = f(z0) + (Vf(z0), 2 = 20) = 2w — o,

Balz) = f(20) + (V f(z0), 7 — 70) + = |}z — ol
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Minimizer of Lipschitz parabola
If a function f : R™ — R is continuously differentiable and

its gradient satisfies Lipschitz conditions with constant L,
then Vz,y € R™:

1F) ~ F@) ~ (Vi @)y — )| < Sy —

which geometrically means, that if we'll fix some point
zo € R™ and define two parabolas:

61(2) = f(z0) + (Vf(z0), 2 = 20) = 2w — o,
Balz) = f(20) + (V f(z0), 7 — 70) + = |}z — ol
Then

$1(z) < f(x) < ¢o2(z) Vo eR™
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Minimizer of Lipschitz parabola
If a function f : R™ — R is continuously differentiable and

its gradient satisfies Lipschitz conditions with constant L,
then Vz,y € R™:
L 2
[f(y) = f2) = (Vf(2),y )| < S lly — =l

which geometrically means, that if we'll fix some point
zo € R™ and define two parabolas:

61(2) = f(z0) + (Vf(z0), 2 = 20) = 2w — o,
Balz) = f(20) + (V f(z0), 7 — 70) + = |}z — ol
Then

$1(z) < f(x) < ¢o2(z) Vo eR™

Now, if we have global upper bound on the function, in a
form of parabola, we can try to go directly to its
minimum.
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Minimizer of Lipschitz parabola
If a function f : R™ — R is continuously differentiable and

its gradient satisfies Lipschitz conditions with constant L,
then Vz,y € R™:
L 2
[f(y) = f2) = (Vf(2),y )| < S lly — =l

which geometrically means, that if we'll fix some point
zo € R™ and define two parabolas:

61(2) = f(z0) + (Vf(z0), 2 = 20) = 2w — o,
Balz) = f(20) + (V f(z0), 7 — 70) + = |}z — ol
Then

$1(z) < f(x) < ¢o2(z) Vo eR™

Now, if we have global upper bound on the function, in a
form of parabola, we can try to go directly to its
minimum.
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Minimizer of Lipschitz parabola
If a function f : R™ — R is continuously differentiable and

its gradient satisfies Lipschitz conditions with constant L,
then Vz,y € R™:

f(z)

1F) ~ F@) ~ (Vi @)y — )| < Sy —

which geometrically means, that if we'll fix some point
zo € R™ and define two parabolas:

Figure 1: lllustration

61(2) = f(z0) + (Vf(z0), 2 = 20) = 2w — o,

Balz) = f(20) + (V f(z0), 7 — 70) + = |}z — ol V() = 0
Vf(zo) + L(z* —x0) =0

Then )
" =x0 — ZVf(azo)

$1(z) < f(x) < ¢o2(z) Vo eR™

1
Now, if we have global upper bound on the function, in a Tht1 = Tk — va(xk)
form of parabola, we can try to go directly to its
minimum. This way leads to the % stepsize choosing. However

often the L constant is not known.
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Any u-strongly convex differentiable function is a PL-function
i Theorem

If a function f(z) is differentiable and p-strongly convex, then it is a PL function.

Proof
By first order strong convexity criterion:

1) = f(@) + V@) (y =) + Gy - o]}

Putting y = z™:
f@) 2 f@) + Vi@ (@ —2)+ Glle” — ol
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Any u-strongly convex differentiable function is a PL-function

i Theorem

If a function f(z) is differentiable and p-strongly convex, then it is a PL function.

Proof
By first order strong convexity criterion:

1) = f(@) + V@) (y =) + Gy - o]}

Putting y = z™:
f@) 2 f@) + Vi@ (@ —2)+ Glle” — ol

f@) = f(@) < V@) (@ - a) = Sl — o} =
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Any u-strongly convex differentiable function is a PL-function

i Theorem

If a function f(z) is differentiable and p-strongly convex, then it is a PL function.

Proof
By first order strong convexity criterion:
fw) 2 f@) + Vi@ (v —2) + Gy — 3
Putting y = z™:
f@) 2 f@) + Vi@ (@ —2)+ Glle” — ol

f@) = f(@) < V@) (@ - a) = Sl — o} =
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Any u-strongly convex differentiable function is a PL-function

i Theorem

If a function f(z) is differentiable and p-strongly convex, then it is a PL function.

Proof
By first order strong convexity criterion:

J) > @) + Vi@ (y = 2) + Syl
Putting y = z™:
f@) 2 f@) + Vi@ (@ —2)+ Glle” — ol

f@) = f(@) < V@) (@ - a) = Sl — o} =
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Any u-strongly convex differentiable function is a PL-function

i Theorem

If a function f(z) is differentiable and p-strongly convex, then it is a PL function.

Proof
By first order strong convexity criterion:

J) > @) + Vi@ (y = 2) + Syl
Putting y = z™:
f@) 2 f@) + Vi@ (@ —2)+ Glle” — ol

f@) = f(@) < V@) (@ - a) = Sl — o} =
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Any u-strongly convex differentiable function is a PL-function

i Theorem
If a function f(z) is differentiable and p-strongly convex, then it is a PL function.

Proof

By first order strong convexity criterion: Let @ = ﬁVf(ay) and

Tw) 2 f@) + V@) (-2 + Sy - ol b= VR = V)
Putting y = z™:
f@) 2 f@) + Vi@ (@ —2)+ Glle” — ol

f@) = f(@) < V@) (@ - a) = Sl — o} =
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Any u-strongly convex differentiable function is a PL-function

i Theorem

If a function f(z) is differentiable and p-strongly convex, then it is a PL function.

Proof

By first order strong convexity criterion: Let @ = ﬁVf(ay) and

T b= VR — %) - L V()
fly) = f@) + V@) (y—2) + Sy —=ll2 Then o+ b= \/ﬁ(xf_ ) and
Putting y = z*: a*b:%v‘f(x)f\/ﬁ(:cfx*)

f@) 2 f@) + Vi@ (@ —2)+ Glle” — ol

f@) = f(@) < V@) (@ - a) = Sl — o} =
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Any u-strongly convex differentiable function is a PL-function

1

\/ﬁvf (z)

f@) - fa) < 5 (invmn% - H\/ﬁ(x —a%)

)
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Any u-strongly convex differentiable function is a PL-function

1

\/ﬁVf (z)

f@) - fa) < 5 (invmn% - H\/ﬁ(x—w*) )

* 1 2
fl@) = f(@7) < Ellvf(-’v)llz,
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Any u-strongly convex differentiable function is a PL-function

1

\/ﬁVf (z)

f@) - fa) < 5 (invmn% - H\/ﬁ(x—w*) )

* 1 2
fl@) = f(@7) < Ellvf(-’v)llz,
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Any u-strongly convex differentiable function is a PL-function

1
I

53— x—z" L x
IV f ()2 H\/ﬁ( ) \/ﬁvf()

o1 :
f(m)—f<w><2< )

* 1 2
fl@) = f(@7) < ﬂ”vf(x)”m

which is exactly the PL condition. It means, that we already have linear convergence proof for any strongly convex
function.
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Exact line search aka steepest descent
ay = arg min f(zr+1) = arg min f(zr — aV f(zk))
aeRt acRt
More theoretical than practical approach. It also allows you to analyze the convergence, but

often exact line search can be difficult if the function calculation takes too long or costs a lot.
Interesting theoretical property of this method is that each following iteration is orthogonal

to the previous one:

o = arg min f(zr — oV f(x))
acRt

Optimality conditions:

Vf(@rer) V(@k) =0

Figure 2: Steepest
Descent

Open In Colab &
0 O 8
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Convergence analysis. Backtracking line search
Assume that f is convex, differentiable and Lipschitz gradient with constant L > 0.

Theorem

Gradient descent with fixed step size t < 1/L satisfies
(0 _ .x[|?
T,

(k) e =
F™) = < T
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Convergence analysis. Backtracking line search
Assume that f is convex, differentiable and Lipschitz gradient with constant L > 0.

Theorem

Gradient descent with fixed step size t < 1/L satisfies
(0 _ .x[|?
T,

(k) e =
F™) = < T

Let's show that the convergence rate for the Backtracking line search is no worse than O(1/k)
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Convergence analysis. Backtracking line search
Assume that f is convex, differentiable and Lipschitz gradient with constant L > 0.

Theorem

Gradient descent with fixed step size t < 1/L satisfies
(0 _ .x[|?
T,

(k) e =
F™) = < T

Let's show that the convergence rate for the Backtracking line search is no worse than O(1/k)

Since V f is Lipschitz continuous with constant L > 0, we have

F) < @)+ VI@) - 2) + 2y - ol Ve y
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Convergence analysis. Backtracking line search
Assume that f is convex, differentiable and Lipschitz gradient with constant L > 0.

Theorem

Gradient descent with fixed step size t < 1/L satisfies
(0 _ .x[|?
T,

(k) e =
F™) = < T

Let's show that the convergence rate for the Backtracking line search is no worse than O(1/k)

Since V f is Lipschitz continuous with constant L > 0, we have
L
F) < f@) + V@) (v =)+ 5y = 2ll3, Yo,y
Let y = 27 =z — tVf(x), then:

Lt
Pt <@ - (1-5

VUVI@IE < 5@) - 5195 @B
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Convergence analysis. Backtracking line search
Assume that f is convex, differentiable and Lipschitz gradient with constant L > 0.

Theorem

Gradient descent with fixed step size t < 1/L satisfies
(0 _ .x[|?
T,

(k) e =
F™) = < T

Let's show that the convergence rate for the Backtracking line search is no worse than O(1/k)

Since V f is Lipschitz continuous with constant L > 0, we have
L
F) < f@) + V@) (v =)+ 5y = 2ll3, Yo,y
Let y = 27 =z — tVf(x), then:

Lt 1
1) < s@ - (1= ) V@IS < f@) - 5L 19/ @I3
This recalls us the stopping condition in Backtracking line search when a« = 0.5,¢ = % Hence, Backtracking line
search with a = 0.5 plus condition of Lipschitz gradient will guarantee us the convergence rate of O(1/k).
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Problem

Consider the problem

min f(z),

where f(z) is convex and L-smooth. Find convergence rate of gradient descent with optimal theoretical step size
N = % for the mean point and for the best point. In other words get upper bounds on
_ _ N-1
° f(zn)— f*, where Zy = %> @i,

*

® ming<i<n—1 f(xi) — f.

1 Gradient descent step

Tp+1 = arg min {\Ilk(:c) = flox) +(Vf(@r), 2 — x) + gHm - xkﬂg}

xER™
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Problem

Consider the problem

min f(z),

zER™

where f(z) is convex and L-smooth. Find convergence rate of gradient descent with optimal theoretical step size

N = % for the mean point and for the best point. In other words get upper bounds on

- r N7
o f(an) = f*, where iy = £ SN,
® ming<i<n-—1 flas) = f*.

1 Gradient descent step

Tp+1 = arg min {\Ilk(:c) = flox) +(Vf(@r), 2 — x) + gHm - xkﬂg}

xER™

@ Tip

Use the fact that Wy (x) is L-strongly convex due to quadratic regularizer.

‘f - fﬂyll} Practice!
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Code

Examples: ®@code snippet.

‘f - §ny1r; Practice!
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