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Linear Programming Recap. Common Forms
For some vectors c ∈ Rn, b ∈ Rm and matrix A ∈ Rm×n

• Basic form of Linear Programming Problem is:

min
x∈Rn

c⊤x (LP.Basic)

s.t. Ax ≤ b

• Standard Form of Linear Programming Problem is:

min
x∈Rn

c⊤x (LP.Standard)

s.t. Ax = b

xi ≥ 0, i = 1, . . . , n

Figure 1: Illustration of the LP Problem.
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Linear Programming Recap. Primal and Dual Problems

There are four possibilities:

1. Both the primal and the dual are infeasible.
2. The primal is infeasible and the dual is unbounded.
3. The primal is unbounded and the dual is infeasible.
4. Both the primal and the dual are feasible and their optimal values are equal.
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Simplex Algorithm Foundations

Figure 2: Simplex Algorithm main notions. Figure 3: Simplex Algorithm basis change.

ñ Simplex Algorithm main notions

• A basis B is a subset of n (integer) numbers between 1 and m, so that rankAB = n. Note, that we can
associate submatrix AB and corresponding right-hand side bB with the basis B. Also, we can derive a
point of intersection of all these hyperplanes from basis: xB = A−1

B bB .
• If AxB ≤ b, then basis B is feasible.
• A basis B is optimal if xB is an optimum of the LP.Basic.
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Simplex Algorithm Foundations

Figure 4: Simplex Algorithm main notions. Figure 5: Simplex Algorithm basis change.

ñ Simplex Algorithm Intuition

• The Simplex Algorithm walks along the edges of the polytope, at every corner choosing the edge that
decreases c⊤x most

• This either terminates at a corner, or leads to an unconstrained edge (−∞ optimum)
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Simplex Algorithm Foundations

Figure 6: Simplex Algorithm main notions. Figure 7: Simplex Algorithm basis change.

� Existence of the Standard LP Problem Solution

1. If Standard LP has a nonempty feasible region, then there is at least one basic feasible point
2. If Standard LP has solutions, then at least one such solution is a basic optimal point.
3. If Standard LP is feasible and bounded, then it has an optimal solution.
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Simplex Algorithm Foundations

Figure 8: Simplex Algorithm main notions. Figure 9: Simplex Algorithm basis change.

� Corner Optimality Theorem

Let λB be the coordinates of our objective vector c in the basis B:

λ⊤
BAB = c⊤ ↔ λ⊤

B = c⊤A−1
B

If all components of λB are non-positive and B is feasible, then B is optimal.
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LP Problems Examples. Production Plans

Suppose you are thinking about starting up a business to produce a Product X.

Let’s find the maximum weekly profit for your business in the 3Production Plan Problem.

LP Problems Examples v § } 8

https://colab.research.google.com/github/MerkulovDaniil/optim/blob/master/assets/Notebooks/LP.ipynb#scrollTo=-VNwdz5RDiYu
https://fmin.xyz
https://hse25.fmin.xyz
https://github.com/MerkulovDaniil/hse25
https://t.me/fminxyz


Max-flow problem example

6

1

2
3

4

5

6

2

2

56

2
7

3

2

The nodes are routers, the edges are
communications links; associated with each
node is a capacity — node 1 can communicate
to node 2 at as much as 6 Mbps, node 2 can
communicate to node 4 at up to 2 Mbps, etc.

Question:
• A network of nodes and edges represents communication links,

each with a specified capacity.
• Example: Can node 1 (source) communicate with node 6 (sink)

at 6 Mbps? 12 Mbps? What is the maximum rate?
Capacity Matrix:

C =


0 6 0 0 6 0
0 0 2 2 0 0
0 0 0 2 0 7
0 0 0 0 0 3
0 0 0 5 0 2
0 0 0 0 0 0


Flow Matrix: X[i, j] represents flow from node i to node j.
Constraints:

0 ≤ X X ≤ C

Flow Conservation:
N∑

j=2

X(i, j) =
N−1∑
k=1

X(k, i), i = 2, . . . , N − 1
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Given the setup, when everything, that is
produced by the source will go to the sink.
The flow of the network is simply the sum of
everything coming out of the source:

N∑
i=2

X(1, i) (Flow)

maximize ⟨X, S⟩
s.t. − X ≤ 0

X ≤ C

⟨X, Ln⟩ = 0, n = 2, . . . , N − 1,

(Max-Flow Problem)

Ln consists of a single column (n) of ones (except for the last row)
minus a single row (also n) of ones (except for the first column).

S =


0 1 · · · 1
0 0 · · · 0
...

...
. . .

...
0 0 · · · 0

 , L2 =



0 1 0 · · · 0
0 0 −1 · · · −1
0 1 0 · · · 0
...

...
...

. . .
...

0 1 0 · · · 0
0 0 0 · · · 0

 .
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Deriving dual to the Max-flow

minimize ⟨Λ, C⟩
Λ, ν

s.t. Λ + Q ≥ S

Λ ≥ 0

(Max-Flow Dual Problem)

where

Q =



0 ν2 ν3 · · · νN−1 0
0 0 ν3 − ν2 · · · νN−1 − ν2 −ν2
0 ν2 − ν3 0 · · · νN−1 − ν3 −ν3
...

...
...

. . .
...

...
0 ν2 − νN−1 ν3 − νN−1 · · · 0 −νN−1
0 0 0 · · · 0 0

 .
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Min-cut problem example
A cut of the network separates the vertices into two sets: one containing the source (we call this set S, and one
containing the sink. The capacity of the cut is the total value of the edges coming out of S — we are separating the
sets by “cutting off the flow” along these edges.
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The edges in the cut are 1 → 2, 4 → 6, and 5 → 6 the
capacity of this cut is 6 + 3 + 2 = 11.
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The edges in the cut are 2 → 3, 4 → 6, and 5 → 6 the
capacity of this cut is 2 + 3 + 2 = 7.
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Min-cut is the dual to max-flow

What is the minimum value of the smallest cut? We will argue that it is the same as the optimal value of the
solution d∗ of the dual program (Max-Flow Dual Problem).

First, suppose that S is a valid cut. From S, we can easily find a dual feasible point that matches its capacity: for
n = 1, . . . , N , take

νn =
{

1, n ∈ S,

0, n /∈ S,
and λi,j =


max(νi − νj , 0), i ̸= 1, j ̸= N,

1 − νj , i = 1,

νi, j = N.

Notice that these choices obey the constraints in the dual and that λi,j will be 1 if i → j is cut, and 0 otherwise, so

capacity(S) =
∑
i,j

λi,jCi,j .

Every cut is feasible, so
d⋆ ≤ MINCUT.
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Min-cut is the dual to max-flow
Now we show that for every solution ν∗, λ∗ of the dual, there is a cut that has a capacity at most d∗. We generate a
cut at random, and then show that the expected value of the capacity of the cut is less than d∗ — this means there
must be at least one with a capacity of d∗ or less.

Let Z be a uniform random variable on [0, 1]. Along with λ∗, ν∗
2 , . . . , ν∗

N−1 generated by solving (Max-Flow Dual
Problem), take ν1 = 1 and νN = 0. Create a cut S with the rule:

if ν∗
n > Z, then take n ∈ S.

. . . The probability that a particular edge i → j is in this cut is

P (i ∈ S, j /∈ S) = P
(
ν⋆

j ≤ Z ≤ ν⋆
i

)
≤


max(ν⋆

i − ν⋆
j , 0), 2 ≤ i, j ≤ N − 1,

1 − ν⋆
j , i = 1; j = 2, . . . , N − 1,

ν⋆
i , i = 2, . . . , N − 1; j = N,

1, i = 1; j = N.

≤ λ⋆
i,j ,
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Min-cut is the dual to max-flow
The last inequality follows simply from the constraints in the dual program (Max-Flow Dual Problem). This cut is
random, so its capacity is a random variable, and its expectation is

E[capacity(S)] =
∑
i,j

Ci,jP (i ∈ S, j /∈ S)

≤
∑
i,j

Ci,jλ⋆
i,j = d⋆.

Thus there must be a cut whose capacity is at most d⋆. This establishes that

MINCUT ≤ d⋆.

Combining these two facts of course means that

d⋆ = MINCUT = MAXFLOW = p⋆,

where p⋆ is the solution of the primal, and equality follows from strong duality for linear programming.

ñ Max-flow min-cut theorem.

The maximum value of an s-t flow is equal to the minimum capacity over all s-t cuts.
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LP Problems Examples. Different Applications

Look at different practical applications of LP Problems and Simplex Algorithm in the 3Related Collab Notebook.
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