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Dual function
The general mathematical programming problem with functional constraints:

f0(x) → min
x∈Rn

s.t. fi(x) ≤ 0, i = 1, . . . , m

hi(x) = 0, i = 1, . . . , p

And the Lagrangian, associated with this problem:

L(x, λ, ν) = f0(x) +
m∑

i=1

λifi(x) +
p∑

i=1

νihi(x) = f0(x) + λ⊤f(x) + ν⊤h(x)

We assume D =
m⋂

i=0
dom fi ∩

p⋂
i=1

dom hi is nonempty. We define the Lagrange dual function (or just dual

function) g : Rm × Rp → R as the minimum value of the Lagrangian over x: for λ ∈ Rm, ν ∈ Rp

g(λ, ν) = inf
x∈D

L(x, λ, ν) = inf
x∈D

(
f0(x) +

m∑
i=1

λifi(x) +
p∑

i=1

νihi(x)

)
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Dual function. Summary

� Primal

Function:
f0(x)

Variables:
x ∈ S ⊆ R⋉

Constraints:

fi(x) ≤ 0, i = 1, . . . , m

hi(x) = 0, i = 1, . . . , p

� Dual

Function:

g(λ, ν) = min
x∈D

L(x, λ, ν)

Variables
λ ∈ Rm

+ , ν ∈ Rp

Constraints:
λi ≥ 0, ∀i ∈ 1, m
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Strong Duality
It is common to name this relation between optimals of primal and dual problems as weak duality. For problem, we
have:

d∗ ≤ p∗

While the difference between them is often called duality gap:

0 ≤ p∗ − d∗

Strong duality happens if duality gap is zero:

p∗ = d∗

ñ Slater’s condition

If for a convex optimization problem (i.e., assuming minimization, f0, fi are convex and hi are affine), there
exists a point x such that h(x) = 0 and fi(x) < 0 (existance of a strictly feasible point), then we have a
zero duality gap and KKT conditions become necessary and sufficient.
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Reminder of KKT statements
Suppose we have a general optimization problem

f0(x) → min
x∈Rn

s.t. fi(x) ≤ 0, i = 1, . . . , m

hi(x) = 0, i = 1, . . . , p

(1)

and convex optimization problem, where all equality constraints are affine:

hi(x) = aT
i x − bi, i ∈ 1, . . . p.

The KKT system is:

∇xL(x∗, λ∗, ν∗) = 0
∇νL(x∗, λ∗, ν∗) = 0
λ∗

i ≥ 0, i = 1, . . . , m

λ∗
i fi(x∗) = 0, i = 1, . . . , m

fi(x∗) ≤ 0, i = 1, . . . , m

(2)
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ñ KKT becomes necessary

If x∗ is a solution of the original problem Equation 1, then if any of the following regularity conditions is
satisfied:

• Strong duality If f1, . . . fm, h1, . . . hp are differentiable functions and we have a problem Equation 1 with
zero duality gap, then Equation 2 are necessary (i.e. any optimal set x∗, λ∗, ν∗ should satisfy Equation 2)

• LCQ (Linearity constraint qualification). If f1, . . . fm, h1, . . . hp are affine functions, then no other
condition is needed.

• LICQ (Linear independence constraint qualification). The gradients of the active inequality constraints
and the gradients of the equality constraints are linearly independent at x∗

• SC (Slater’s condition) For a convex optimization problem (i.e., assuming minimization, fi are convex
and hj is affine), there exists a point x such that hj(x) = 0 and gi(x) < 0.

Than it should satisfy Equation 2

ñ KKT in convex case

If a convex optimization problem with differentiable objective and constraint functions satisfies Slater’s
condition, then the KKT conditions provide necessary and sufficient conditions for optimality: Slater’s
condition implies that the optimal duality gap is zero and the dual optimum is attained, so x∗ is optimal if
and only if there are (λ∗, ν∗) that, together with x∗, satisfy the KKT conditions.
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Problem 1. Dual LP

ñ Question

Ensure, that the following standard form Linear Programming (LP):

min
x∈Rn

c⊤x

s.t. Ax = b

xi ≥ 0, i = 1, . . . , n

Has the following dual:
max
y∈Rn

b⊤y

s.t. AT y ⪯ c

Find the dual problem to the problem above (it should be the original LP).
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Problem 2. Lagrange matrix multiplier

ñ Question

Let matrices X ∈ Rn×m, C ∈ Rn×m, A ∈ Rk×n, B ∈ Rk×m. Setting the task:

f(X) = ⟨C, X⟩ −→ min
X

s.t AX ⩽ B

Find the dual problem to the problem above.
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Problem 3. Projection onto probability simplex P

ñ Question

Find the Euclidean projection of x ∈ Rn onto probability simplex

∆ = {z ∈ Rn | z ⪰ 0, 1⊤z = 1},

i.e. solve the following problem:
x∗ = P∆(y) = argmin

x∈Rn
+

1
2∥x − y∥2

2

s.t. 1⊤x = 1

Problems v § } 9

https://angms.science/doc/CVX/Proj_simplex.pdf
https://fmin.xyz
https://hse25.fmin.xyz
https://github.com/MerkulovDaniil/hse25
https://t.me/fminxyz


Problem 3 solution: using duality problem P

The “partial” Lagrangian, considering only equality constraints:

L(x, ν) = 1
2∥x − y∥2

2 + ν
(
1T x − 1

)

To find a solution (x∗, ν∗), let’s set a saddle point problem:

(x∗, ν∗) = argmin
x⪰0

max
ν

L(x, ν)

We will solve this problem in two stages:
• We first solve argmin

x⪰0
L(x, ν) to get x∗

• Then we use x∗ to get ν∗ by solving argmax
ν

L(x∗, ν)

Problems v § } 10

https://angms.science/doc/CVX/Proj_simplex.pdf
https://fmin.xyz
https://hse25.fmin.xyz
https://github.com/MerkulovDaniil/hse25
https://t.me/fminxyz


Problem 3 solution: using duality problem P

The “partial” Lagrangian, considering only equality constraints:

L(x, ν) = 1
2∥x − y∥2

2 + ν
(
1T x − 1

)
To find a solution (x∗, ν∗), let’s set a saddle point problem:

(x∗, ν∗) = argmin
x⪰0

max
ν

L(x, ν)

We will solve this problem in two stages:
• We first solve argmin

x⪰0
L(x, ν) to get x∗

• Then we use x∗ to get ν∗ by solving argmax
ν

L(x∗, ν)

Problems v § } 10

https://angms.science/doc/CVX/Proj_simplex.pdf
https://fmin.xyz
https://hse25.fmin.xyz
https://github.com/MerkulovDaniil/hse25
https://t.me/fminxyz


Problem 3 solution: using duality problem P

The “partial” Lagrangian, considering only equality constraints:

L(x, ν) = 1
2∥x − y∥2

2 + ν
(
1T x − 1

)
To find a solution (x∗, ν∗), let’s set a saddle point problem:

(x∗, ν∗) = argmin
x⪰0

max
ν

L(x, ν)

We will solve this problem in two stages:
• We first solve argmin

x⪰0
L(x, ν) to get x∗

• Then we use x∗ to get ν∗ by solving argmax
ν

L(x∗, ν)

Problems v § } 10

https://angms.science/doc/CVX/Proj_simplex.pdf
https://fmin.xyz
https://hse25.fmin.xyz
https://github.com/MerkulovDaniil/hse25
https://t.me/fminxyz


Problem 3 solution: using duality problem

1. Let’s solve argmin
x⪰0

L(x, ν):

min
x⪰0

L(x, ν) = min
x⪰0

(1
2∥x − y∥2

2 + ν
(
1T x − 1

))
= min

x⪰0

(1
2∥x − y∥2

2 + ν1T x
)

min
x⪰0

(1
2∥x − y∥2

2 + ν1T x
)

= min
x⪰0

(
n∑

i=1

1
2(xi − yi)2 + νxi

)
= min

x⪰0

(
n∑

i=1

li(xi)

)

L is minimized if all li are minimized, so we have scalar problem

li(xi) = 1
2(xi − yi)2 + νxi −→ min

xi⩾0

And the solution to this problem is
• x∗

i = (yi − ν) if yi − ν ⩾ 0
• x∗

i = 0 if yi − ν ≤ 0
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Problem 3 solution: using duality problem P

So, solution of the first subtask is
x∗ = [y − ν1]+

2. Now we must find ν. To do this, let’s use the constraint:

n∑
i=1

x∗
i =

n∑
i=1

[yi − ν]+ =
n∑

i=1

max{0, yi − ν} =
∑

j:yj >ν

(yj − ν) = 1

In other words, in this sum, we discard those components of the y that are less than ν. To find ν, using the
expression above, let’s sort the components of the vector and present a set

J = {j : yj > ν}, |J | = K,

where elemets of y already sorted: y1 ⩾ y2 ⩾ ... ⩾ yn
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Problem 3 solution: using duality problem P

So we have ∑
j:yj >ν

(yj − ν) =
∑
j∈J

yj − Kν = 1 ⇒ ν =
∑

j∈J yj − 1
K

The final probability simplex projection algorithm includes 3 steps:
• Sort y

• Find K, which is the last integer in {1, 2, ..., n} that yK −
∑

j∈J yj − 1
K

> 0

• Output ν =
∑

j∈J yj − 1
K

for x = P∆(y) = [y − ν1]+

The most expensive part here is step-1, using quick sort, the worst computational complexity is O(n log n)
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Problem 3 solution: another algorithm O(n) (?) P

Here is the formulation of the algorithm:

Figure 1: Linear time projection algorithm pseudo-code
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Problem 3 solution: another algorithm O(n) (?) P

In short, what is the difference between this algorithm and the first one? In the step 1.
• Algorithm 2 (pivot-algorithm) does not sort the entire array, but randomly selects a “pivot” and “slices” the list,

similar to Quickselect (quick median search).
• On average, it gives O(n), but in the worst case (unsuccessful pivots), theoretically it can “fail” to O(n2) (!)
• So, the statement about the difficulty of O(n) in the original article was a mistake. Article P provides an

attempt to fix this and an overview of the mistake.
• The code for comparing this algorithm with the previous one is here 3
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Problem 4. Projection onto the unit simplex VS projection onto the l1 ball

� Projection onto the l1 ball

The same article P mentions the connection between searching for a projection on the unit simplex and on
the l1 ball. Previous problem:

x∗
1 = argmin

x∈Rn

1
2∥x − y∥2

2

s.t. 1⊤x = 1, x ⪰ 0

New problem:
x∗

2 = argmin
x∈Rn

1
2∥x − y∥2

2

s.t. ∥x∥1 ⩽ 1

Let’s show idea how to reduce the second to the first.
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Problem 4. Projection onto the unit simplex VS projection onto the l1 ball

1. If ∥y∥1 ⩽ 1 then you don’t need to do anything: it’s already inside (or on the border) l1-ball, therefore, the
desired projection is equal to the y

2. If ∥y∥1 > 1 then the optimum will be exactly on the border, that is, it must be fulfilled ∥y∥1 = 1

3. The following lemma is proved in the paper:

ñ Lemma

In the optimal solution, each non-zero coordinate xi must have the same sign as the yi. Formally,

xi ̸= 0 ⇒ sign(xi) = sign(yi)
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Problem 4. Projection onto the unit simplex VS projection onto the l1 ball

4. Thanks to the previous paragraph, it is sufficient to consider the “modules” of coordinates. An auxiliary vector
is introduced

u ∈ Rn, ui = |yi|

Then the constraint ∥x∥1 ⩽ 1 and the condition “sign xi coincides with sign yi” are equivalent to the problem

min
u⪰0

∥u − |y|∥2
2 s.t. ∥u∥1 = 1

But this is the problem of projection onto a probability simplex with a sum of coordinates equals to 1.

Let’s denote the found solution to the problem above for u∗. Then we return to the original x∗, restoring the signs:

x∗
i = sign(yi) · u∗

i

This x∗
i solution that is the desired projection onto the l1 ball.
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Let’s denote the found solution to the problem above for u∗. Then we return to the original x∗, restoring the signs:

x∗
i = sign(yi) · u∗

i

This x∗
i solution that is the desired projection onto the l1 ball.
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Problem 5. Dual to SVM

ñ Question

Given yi ∈ {−1, 1}, and X ∈ Rn×p, the classic (without regularization) Support Vector Machine problem is:

1
2 ||w||22 → min

w,w0

s.t. yi(xT
i w + w0) ≥ 1, i = 1, . . . , n

Find the dual problem to the problem above. How can solving a dual problem help solve the original one?

Hint: After finding the dual problem, write down the KKT conditions for the primal one
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