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Dual function
The general mathematical programming problem with functional constraints:

fo(z) — min

st. fi(z) <0,i=1,...,m
hi(z) =0,i=1,...,p

And the Lagrangian, associated with this problem:

p

L(z, A\, v) = fo(z) + Z Xifi(x) + Z vihi(z) = fo(z) + X\ f(z) + v h(z)

=1

m p

We assume D = (] dom f; N (] dom h; is nonempty. We define the Lagrange dual function (or just dual
i=0 i=1

function) g : R™ X R? — R as the minimum value of the Lagrangian over z: for A € R™, v € RP

g\ v) = Ii&f)L(x,)\,y) = 1nf < Z)\ fi(z Z v 1($)>

i=1
lf%?“}‘i Motivation @0
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Dual function. Summary

@ Primal
Function:
fo(z)
Variables:
xr e S CR"

Constraints:
filz) <0,i=1,...,m

hi(x)=0,i=1,...,p

‘f — min Motivation

@ Dual
Function:
= 1 L
g\ v) min (z,\,v)
Variables

AeRT,veER?

Constraints:
Ai>0,Viel,m
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Strong Duality

It is common to name this relation between optimals of primal and dual problems as weak duality. For problem, we

have:
d <p"

While the difference between them is often called duality gap:
0<p"—d"

Strong duality happens if duality gap is zero:

Slater’s condition

If for a convex optimization problem (i.e., assuming minimization, fo, f; are convex and h; are affine), there
exists a point x such that h(z) = 0 and f;(z) < 0 (existance of a strictly feasible point), then we have a

zero duality gap and KKT conditions become necessary and sufficient.

‘f - 5“;‘; Strong Duality
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Reminder of KKT statements
Suppose we have a general optimization problem

fo(z) — min
TER™

st. fi(z) <0,i=1,....,m
hi(z) =0,i=1,...,p

and convex optimization problem, where all equality constraints are affine:

hi(x) zagpac—bi7i€ 1,...p.

The KKT system is:

VoL(z" X, v") =0

Vo L(z", X", v") =0

A >0i=1,...,m

A filz")=0,i=1,...,m
fi(z")<0,i=1,...,m

R Somin

(1)
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KKT becomes necessary

If * is a solution of the original problem Equation 1, then if any of the following regularity conditions is
satisfied:
® Strong duality If f1,... fm, h1,...hy are differentiable functions and we have a problem Equation 1 with
zero duality gap, then Equation 2 are necessary (i.e. any optimal set 2™, \*, v* should satisfy Equation 2)
® LCQ (Linearity constraint qualification). If f1,... fm,h1,...hy are affine functions, then no other
condition is needed.
® LICQ (Linear independence constraint qualification). The gradients of the active inequality constraints
and the gradients of the equality constraints are linearly independent at z*
® SC (Slater's condition) For a convex optimization problem (i.e., assuming minimization, f; are convex
and hj; is affine), there exists a point = such that h;(z) = 0 and g;(z) < 0.
Than it should satisfy Equation 2

KKT in convex case

If a convex optimization problem with differentiable objective and constraint functions satisfies Slater’s
condition, then the KKT conditions provide necessary and sufficient conditions for optimality: Slater's
condition implies that the optimal duality gap is zero and the dual optimum is attained, so z* is optimal if
and only if there are (A\*, ™) that, together with z™, satisfy the KKT conditions.

R Somin 0 0
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Problem 1. Dual LP

i Question

Ensure, that the following standard form Linear Programming (LP):

. T
minc x
zER™

st. Ax =10
r; >0,1=1,...,n
Has the following dual: -
sty

st. ATy =<e¢
Find the dual problem to the problem above (it should be the original LP).

— min
B /omin oo ems
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Problem 2. Lagrange matrix multiplier

i Question
Let matrices X € R™*™ C € R"*™ A € R**" B e R¥*™_ Setting the task:
f(X)=(CX) — m}}n

st AX <B

Find the dual problem to the problem above.

‘f - ;nylr; Problems
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Problem 3. Projection onto probability simplex I§

i Question

Find the Euclidean projection of z € R™ onto probability simplex

A={z€R"|2>0,1"2=1},

i.e. solve the following problem:
* 1
2" = Pa(y) = argmin <1z — y|
weRi

st. 1'z=1

‘f - ;nylr; Problems
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Problem 3 solution: using duality problem I§

The “partial” Lagrangian, considering only equality constraints:

1
L(z,v) = §||a: —yl5+v (lTx - 1)

‘f - ;nylr; Problems
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Problem 3 solution: using duality problem I§

The “partial” Lagrangian, considering only equality constraints:
1
L(z,v) = §||x —yl5+v (lTx — 1)
To find a solution (z*,v"), let's set a saddle point problem:

(z*,v") = argmin max L(z, v)
z=0 v

‘f - ;nylr; Problems
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Problem 3 solution: using duality problem I§

The “partial” Lagrangian, considering only equality constraints:

1
L(z,v) = §||a: —yl5+v (lTx - 1)

To find a solution (z*,v"), let's set a saddle point problem:

(z*,v") = argmin max L(z, v)
x>0 v
We will solve this problem in two stages:

® We first solve argminL(z, v) to get z*
x>0

® Then we use z* to get v* by solving argmaxL(z",v)
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Problem 3 solution: using duality problem

1. Let's solve argminL(z, v):
x>0

. .1 2 T _ (1 2 T)
min Lz, v) = min (5l =93 +v (172 = 1)) = min (5lle = yl3 + 1172

‘f - fﬂyll} Problems
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Problem 3 solution: using duality problem

1. Let's solve argminL(z, v):
x>0

. .1 2 T _ (1 2 T)
mlnL(x,y)—rxntlg(2Hw ylz+v (17 1))—21;51(2”;10 ylls +v1'x

x>0

(1 (-1 (<
min (§||$ —ylz+ l/lTac) = min (ZE 5@ - vi)® + V:ci) = min (Z li(ﬂ?i))
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Problem 3 solution: using duality problem

1. Let's solve argminL(z, v):
x>0

. .1 2 T _ (1 2 T )

min Lz, v) = min (5l =93 +v (172 = 1)) = min (5lle = yl3 + 1172
1 n 1 n

min (§||$ —ylz+ VlTac) = min (ZE 5@ - vi)® + V:ci) = min (Z li(ﬂ?i))

L is minimized if all I; are minimized, so we have scalar problem

1 .
li(z:) = §(x, — y,-)2 +vr; — in;%
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Problem 3 solution: using duality problem

1. Let's solve argminL(z, v):
x>0

. .1 2 T _ (1 2 T)
min Lz, v) = min (5l =93 +v (172 = 1)) = min (5lle = yl3 + 1172

n n

At . 1 .

min (§||$ —yl3 + ulTac) = min (E 1 5(331' — i)’ + V:ti> = min <E li(ﬂ?i))
L is minimized if all I; are minimized, so we have scalar problem

1 .
li(z:) = 5(33, — y,-)2 +vr; — arcn;%

And the solution to this problem is
® i =(yi—v)ify;—v =0
o i =0ify, —v<0
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Problem 3 solution: using duality problem I§

So, solution of the first subtask is
a” = [y —vi]4

2. Now we must find v. To do this, let's use the constraint:

‘f - ;nylr; Problems
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Problem 3 solution: using duality problem I§

So, solution of the first subtask is
a” = [y —vi]4

2. Now we must find v. To do this, let's use the constraint:

Zx::Z[yi—y]Jr:Zmax{O,yi—V}: Z (yj—v)=1

Jiy;>v

‘fﬁ};ny”; Problems 0 O 12
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Problem 3 solution: using duality problem I§

So, solution of the first subtask is
a” = [y —vi]4

2. Now we must find v. To do this, let's use the constraint:

Zx::Z[yi—y]Jr:Zmax{O,yi—V}: Z (yj—v)=1

Jiyj>v

In other words, in this sum, we discard those components of the y that are less than v. To find v, using the
expression above, let's sort the components of the vector and present a set

J={iyi>vh |Jl=K,

where elemets of y already sorted: y1 = y2 > ... > yn

B /omin oo ems ® o
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Problem 3 solution: using duality problem I§

So we have

Zjejyjf
D =

Jiy;>v JjeET

The final probability simplex projection algorithm includes 3 steps:
® Sort y

® Find K, which is the last integer in {1,2,...,n} that yx —

Zjej yi — 1

K

K

® Qutput v = for x = Pa(y) = [y — v1]+

R /omin oo ems

1

Zjey Y5 —

>0

1


https://angms.science/doc/CVX/Proj_simplex.pdf
https://fmin.xyz
https://hse25.fmin.xyz
https://github.com/MerkulovDaniil/hse25
https://t.me/fminxyz

Problem 3 solution: using duality problem I§

So we have

Zjejyjfl
S = K== st

Jiy;>v jeT

The final probability simplex projection algorithm includes 3 steps:
® Sort y

Zjey y; — 1

% >0

® Find K, which is the last integer in {1,2,...,n} that yx —

Dies¥i—1
K
The most expensive part here is step-1, using quick sort, the worst computational complexity is O(nlogn)

® Qutput v = for x = Pa(y) = [y — v1]+

R /omin oo ems ® o
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Problem 3 solution: another algorithm O(n) (?) B

Here is the formulation of the algorithm:

‘f — min
Tz

Problems

INPUT A vector v € R™ and a scalar z > 0
INITIALIZEU = [n] s=0 p=0
WHILE U # ¢
Pick k € U at random
PARTITION U:
G={jeUlu; = v}
L={jeU|v; <w}
CALCULATE Ap=|G| ; As=) v

IF (s + As) — (p+ Ap)ur < 2 je@
s=s+As ; p=p+Ap ; UL
ELSE
U —G\{o}
ENDIF
SET O = (s—2)/p
OUTPUT w s.t. v; = max{v; — 60, 0}

Figure 1: Linear time projection algorithm pseudo-code
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Problem 3 solution: another algorithm O(n) (?) B

In short, what is the difference between this algorithm and the first one? In the step 1.

® Algorithm 2 (pivot-algorithm) does not sort the entire array, but randomly selects a “pivot” and “slices” the list,
similar to Quickselect (quick median search).

® On average, it gives O(n), but in the worst case (unsuccessful pivots), theoretically it can “fail” to O(n?) (!)

® So, the statement about the difficulty of O(n) in the original article was a mistake. Article l§ provides an
attempt to fix this and an overview of the mistake.

® The code for comparing this algorithm with the previous one is here @

‘fﬁ}fnﬂ Problems 0 O 15
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Problem 4. Projection onto the unit simplex VS projection onto the /; ball

@ Projection onto the I; ball

The same article l§ mentions the connection between searching for a projection on the unit simplex and on
the [1 ball. Previous problem:

* . 1 2
i = argmin Ll — yl3
TER™

st.1'z=1, 2>0
New problem:
5 = argain 3o — yl}
stt. ||z <1

Let's show idea how to reduce the second to the first.

‘f%g)yi.l} Problems 0 O
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Problem 4. Projection onto the unit simplex VS projection onto the /; ball

1. If |ly|l1 < 1 then you don’t need to do anything: it's already inside (or on the border) I;-ball, therefore, the
desired projection is equal to the y

‘f%;nylr; Problems D0 O
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Problem 4. Projection onto the unit simplex VS projection onto the /; ball

1. If |ly|l1 < 1 then you don’t need to do anything: it's already inside (or on the border) I;-ball, therefore, the
desired projection is equal to the y

2. If ||lylls > 1 then the optimum will be exactly on the border, that is, it must be fulfilled ||y||; =1

‘fﬁ};ny”; Problems D0 O
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Problem 4. Projection onto the unit simplex VS projection onto the /; ball

1. If |ly|l1 < 1 then you don’t need to do anything: it's already inside (or on the border) I;-ball, therefore, the
desired projection is equal to the y
2. If ||lylls > 1 then the optimum will be exactly on the border, that is, it must be fulfilled ||y||; =1

3. The following lemma is proved in the paper:

(]
1 Lemma

In the optimal solution, each non-zero coordinate x; must have the same sign as the y;. Formally,

z; # 0= sign(z;) = sign(y;)

‘f - ;nylr; Problems
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Problem 4. Projection onto the unit simplex VS projection onto the /; ball

4. Thanks to the previous paragraph, it is sufficient to consider the “modules” of coordinates. An auxiliary vector
is introduced

ueR" u = Iyzl

‘f%;nylr; Problems 0 O 18
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Problem 4. Projection onto the unit simplex VS projection onto the /; ball

4. Thanks to the previous paragraph, it is sufficient to consider the “modules” of coordinates. An auxiliary vector
is introduced

u e R”,ui = Iyzl
Then the constraint ||z||1 < 1 and the condition “sign x; coincides with sign y;" are equivalent to the problem

. 2
- t. =1
min llu = [ylllz st [Jullx
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Problem 4. Projection onto the unit simplex VS projection onto the /; ball

4. Thanks to the previous paragraph, it is sufficient to consider the “modules” of coordinates. An auxiliary vector
is introduced

u e R”,ui = Iyzl
Then the constraint ||z||1 < 1 and the condition “sign x; coincides with sign y;" are equivalent to the problem

. 2
- t. =1
min llu = [ylllz st [Jullx

But this is the problem of projection onto a probability simplex with a sum of coordinates equals to 1.
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Problem 4. Projection onto the unit simplex VS projection onto the /; ball

4. Thanks to the previous paragraph, it is sufficient to consider the “modules” of coordinates. An auxiliary vector
is introduced

u e R”,ui = Iyzl
Then the constraint ||z||1 < 1 and the condition “sign x; coincides with sign y;" are equivalent to the problem

. 2
- t. =1
min llu = [ylllz st [Jullx

But this is the problem of projection onto a probability simplex with a sum of coordinates equals to 1.

Let's denote the found solution to the problem above for ©*. Then we return to the original =™, restoring the signs:

*

| = sign(y:) - ui

This z] solution that is the desired projection onto the /7 ball.

lf%ﬁ}‘i Problems 0 O 18
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Problem 5. Dual to SVM

i Question

Given y; € {—1,1}, and X € R"*P, the classic (without regularization) Support Vector Machine problem is:

1 2 .
—||lw||z — min
2 w,wo
s.t. yi(x?w—l—wo) >1,i=1,...,n

Find the dual problem to the problem above. How can solving a dual problem help solve the original one?
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Problem 5. Dual to SVM

i Question

Given y; € {—1,1}, and X € R"*P, the classic (without regularization) Support Vector Machine problem is:

1 2 .
—||lw||z — min
2 w,wo
s.t. yi(x?w—i—wo) >1,i=1,...,n

Find the dual problem to the problem above. How can solving a dual problem help solve the original one?

Hint: After finding the dual problem, write down the KKT conditions for the primal one
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