Optimality conditions. Optimization with equality / inequality conditions. KKT.

Seminar

Optimization for ML. Faculty of Computer Science. HSE University

Optimality Conditions. Important notions recap

 $f(x) \to \min_{x \in S}$

A set S is usually called a budget set.

- A point x^* is a global minimizer if $f(x^*) \leq f(x)$ for all x.
- A point x^* is a local minimizer if there exists a neighborhood N of x^* such that $f(x^*) \leq f(x)$ for all $x \in N$.
- A point x^* is a strict local minimizer (also called a strong local minimizer) if there exists a neighborhood N of x^* such that $f(x^*) < f(x)$ for all $x \in N$ with $x \neq x^*$.
- We call x^* a stationary point (or critical) if $\nabla f(x^*) = 0$. Any local minimizer must be a stationary point.

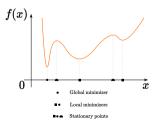


Figure 1: Illustration of different stationary (critical) points

 $f \rightarrow \min_{x,y,z}$ Optimality Conditions

💎 🗘 🖉 🛛 2

Unconstrained optimization recap

? First-Order Necessary Conditions

If x^* is a local minimizer and f is continuously differentiable in an open neighborhood, then

$$\nabla f(x^*) = 0 \tag{1}$$

Second-Order Sufficient Conditions

Suppose that $\nabla^2 f$ is continuous in an open neighborhood of x^\ast and that

$$\nabla f(x^*) = 0 \quad \nabla^2 f(x^*) \succ 0.$$
⁽²⁾

Then x^* is a strict local minimizer of f.

Optimization with equality conditions

Consider simple yet practical case of equality constraints:

$$f(x) o \min_{x \in \mathbb{R}^n}$$
s.t. $h_i(x) = 0, i = 1, \dots, p$

Lagrange multipliers recap

The basic idea of Lagrange method implies the switch from conditional to unconditional optimization through increasing the dimensionality of the problem:

$$L(x,\nu) = f(x) + \sum_{i=1}^{p} \nu_{i} h_{i}(x) = f(x) + \nu^{T} h(x) \to \min_{x \in \mathbb{R}^{n}, \nu \in \mathbb{R}^{p}}$$

Lagrange multipliers recap

The basic idea of Lagrange method implies the switch from conditional to unconditional optimization through increasing the dimensionality of the problem:

$$L(x,\nu) = f(x) + \sum_{i=1}^{p} \nu_i h_i(x) = f(x) + \nu^T h(x) \to \min_{x \in \mathbb{R}^n, \nu \in \mathbb{R}^p}$$

Necessery conditions:Sufficient conditions: $\nabla_x L(x^*, \nu^*) = 0$ $\langle y, \nabla^2_{xx} L(x^*, \nu^*) y \rangle > 0,$ $\nabla_\nu L(x^*, \nu^*) = 0$ $\forall y \neq 0 \in \mathbb{R}^n : \nabla h_i(x^*)^T y = 0$

Optimization with inequality conditions

Consider simple yet practical case of inequality constraints:

 $f(x) \to \min_{x \in \mathbb{R}^n}$ s.t. $g(x) \leq 0$

Optimization with inequality conditions

Consider simple yet practical case of inequality constraints:

 $f(x) \to \min_{x \in \mathbb{R}^n}$ s.t. $g(x) \leq 0$

 $\begin{array}{ll} g(x) \leq 0 \text{ is inactive. } g(x^*) < 0: \\ g(x^*) < 0 \\ \nabla f(x^*) = 0 \\ \nabla^2 f(x^*) > 0 \end{array} \qquad \begin{array}{ll} g(x) \leq 0 \text{ is active. } g(x^*) = 0: \\ g(x^*) = 0 \\ -\nabla f(x^*) = \lambda \nabla g(x^*), \lambda > 0 \\ \langle y, \nabla^2_{xx} L(x^*, \lambda^*) y \rangle > 0, \\ \forall y \neq 0 \in \mathbb{R}^n : \nabla g(x^*)^\top y = 0 \end{array}$

General formulation

General problem of mathematical programming:

$$f_0(x)
ightarrow \min_{x \in \mathbb{R}^n}$$

s.t. $f_i(x) \le 0, \ i = 1, \dots, m$
 $h_i(x) = 0, \ i = 1, \dots, p$

General formulation

General problem of mathematical programming:

$$f_0(x) \rightarrow \min_{x \in \mathbb{R}^n}$$

s.t. $f_i(x) \le 0, \ i = 1, \dots, m$
 $h_i(x) = 0, \ i = 1, \dots, p$

The solution involves constructing a Lagrange function:

$$L(x, \lambda, \nu) = f_0(x) + \sum_{i=1}^{m} \lambda_i f_i(x) + \sum_{i=1}^{p} \nu_i h_i(x)$$

KKT Necessary conditions

Let x^* , (λ^*, ν^*) be a solution to a mathematical programming problem with zero duality gap (the optimal value for the primal problem p^* is equal to the optimal value for the dual problem d^*). Let also the functions f_0, f_i, h_i be differentiable.

KKT Necessary conditions

Let x^* , (λ^*, ν^*) be a solution to a mathematical programming problem with zero duality gap (the optimal value for the primal problem p^* is equal to the optimal value for the dual problem d^*). Let also the functions f_0, f_i, h_i be differentiable.

 $(1)\nabla_{x}L(x^{*},\lambda^{*},\nu^{*}) = 0$ $(2)\nabla_{\nu}L(x^{*},\lambda^{*},\nu^{*}) = 0$ $(3)\lambda_{i}^{*} \ge 0, i = 1,...,m$ $(4)\lambda_{i}^{*}f_{i}(x^{*}) = 0, i = 1,...,m$ $(5)f_{i}(x^{*}) \le 0, i = 1,...,m$

KKT Some regularity conditions

These conditions are needed in order to make KKT solutions the necessary conditions. Some of them even turn necessary conditions into sufficient. For example, Slater's condition:

KKT Some regularity conditions

These conditions are needed in order to make KKT solutions the necessary conditions. Some of them even turn necessary conditions into sufficient. For example, Slater's condition:

If for a convex problem (i.e., assuming minimization, f_0 , f_i are convex and h_i are affine), there exists a point x such that h(x) = 0 and $f_i(x) < 0$ (existance of a strictly feasible point), then we have a zero duality gap and KKT conditions become necessary and sufficient.

KKT Sufficient conditions

For smooth, non-linear optimization problems, a second order sufficient condition is given as follows. The solution x^*, λ^*, ν^* , which satisfies the KKT conditions (above) is a constrained local minimum if for the Lagrangian,

$$L(x, \lambda, \nu) = f_0(x) + \sum_{i=1}^{m} \lambda_i f_i(x) + \sum_{i=1}^{p} \nu_i h_i(x)$$

the following conditions hold:

$$\langle y, \nabla^2_{xx} L(x^*, \lambda^*, \nu^*) y \rangle > 0 \forall y \neq 0 \in \mathbb{R}^n : \nabla h_i(x^*)^\top y = 0, \nabla f_0(x^*)^\top y \le 0, \nabla f_j(x^*)^\top y = 0 i = 1, \dots, p \quad \forall j : f_j(x^*) = 0$$

i Question

Function $f: E \to \mathbb{R}$ is defined as

$$f(x) = \ln\left(-Q(x)\right)$$

where $E = \{x \in \mathbb{R}^n : Q(x) < 0\}$ and

$$Q(x) = \frac{1}{2}x^{\top}Ax + b^{\top}x + c$$

with $A \in \mathbb{S}^{n}_{++}, b \in \mathbb{R}^{n}, c \in \mathbb{R}$. Find the maximizer x^{*} of the function f.

i Question

Give an explicit solution of the following task.

$$f(x,y) = x + y \to \min$$
 s.t. $x^2 + y^2 = 1$

where $x, y \in \mathbb{R}$.

i Question

Give an explicit solution of the following task.

$$\langle c, x \rangle + \sum_{i=1}^{n} x_i \log x_i \to \min_{x \in \mathbb{R}^n}$$

s.t. $\sum_{i=1}^{n} x_i = 1,$

where $x \in \mathbb{R}^{n}_{++}, c \neq 0$.

i Question

Let $A \in \mathbb{S}^{n}_{++}, b > 0$ show that:

$$\det(X) \to \max_{X \in \mathbb{S}_{++}^n} \text{s.t.} \langle A, X \rangle \le b$$

Has a unique solution and find it.

i Question

Given $y \in \{-1, 1\}$, and $X \in \mathbb{R}^{n \times p}$, the Support Vector Machine problem is: $\frac{1}{2} ||w||_2^2 + C \sum_{i=1}^n \xi_i \to \min_{w, w_0, \xi_i}$ s.t. $\xi_i \ge 0, i = 1, \dots, n$ $y_i(x_i^T w + w_0) \ge 1 - \xi_i, i = 1, \dots, n$

find the KKT stationarity condition.

i Question

Show that the following constrained optimization task has unique solution and find it.

$$\langle C^{-1}, X \rangle - \log \det(X) \to \min_{X \in \mathbb{S}^n_{++}} \text{s.t. } a^T X a \le 1$$

 $C\in\mathbb{S}^n_{++}, a\neq 0$ You should avoid explicit inverse of matrix C in the answer.

Problem 7 (BONUS)

For some $\Sigma, \Sigma_0 \in \mathbb{S}^n_{++}$ define a KL Divergence between two Gaussian distributions as:

$$D(\Sigma, \Sigma_0) = \frac{1}{2} (\langle \Sigma_0^{-1}, \Sigma \rangle - \log \det(\Sigma_0^{-1}\Sigma) - n)$$

Now let $H \in \mathbb{S}^n_{++}$ and $y, x \in \mathbb{R}^n : \langle y, s \rangle > 0$

We would like to solve the following constrained minimization task.

$$\min_{X \in \mathbb{S}^n_{++}} \{ D(X^{-1}, H^{-1}) | Xy = s \}$$

Prove that it hass a unique sollution and it is equal to:

$$(I_n - \frac{sy^T}{y^Ts})H(I_n - \frac{ys^T}{y^Ts}) + \frac{ss^T}{y^Ts}$$

Problem 8 (BONUS)

1 QuestionLet e_1, \ldots, e_n be a standart basis in \mathbb{R}^n . Show that: $\underset{X \in \mathbb{S}^n_{++}}{\max} \det(X) : ||Xe_i|| \le 1 \forall i \in 1, \ldots, n$ Has a unique solution I_n , and derive the Hadamard inequality: $\det(X) \le \prod_{i=1}^n ||Xe_i|| \forall X \in \mathbb{S}^n_{++}$

Adversarial Attacks

Definition: Adversarial attacks are techniques used to fool DL models by adding small perturbations to the input data. We can frame adversarial attacks as a constrained optimization problem where the goal is to minimize/maximize the loss function while keeping the perturbation within a certain limit (norm constraint).

The Fast Gradient Sign Method (FGSM) is the most simple such technique, that generates adversarial examples by applying a small perturbation in the direction of the gradient of the loss function. Formally:

$$x' = x + \varepsilon \cdot \operatorname{sgn}(\nabla_x L(x, y)), \text{s.t. } ||x - x'|| \le \varepsilon$$

So in a nutshell we perfrom a gradient ascent on an image (== maximizing loss w.r.t to that image).

Figure 2: Illustration of different stationary (critical) points

Here is the code to try it out yourself! 🏟