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Optimality Conditions. Important notions recap

f(x) → min
x∈S

A set S is usually called a budget set.
• A point x∗ is a global minimizer if f(x∗) ≤ f(x) for all x.
• A point x∗ is a local minimizer if there exists a neighborhood N of x∗ such that f(x∗) ≤ f(x) for all x ∈ N .
• A point x∗ is a strict local minimizer (also called a strong local minimizer) if there exists a neighborhood N of

x∗ such that f(x∗) < f(x) for all x ∈ N with x ̸= x∗.
• We call x∗ a stationary point (or critical) if ∇f(x∗) = 0. Any local minimizer must be a stationary point.

Figure 1: Illustration of different stationary (critical) points
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Unconstrained optimization recap

� First-Order Necessary Conditions

If x∗ is a local minimizer and f is continuously differentiable in an open neighborhood, then

∇f(x∗) = 0 (1)

� Second-Order Sufficient Conditions

Suppose that ∇2f is continuous in an open neighborhood of x∗ and that

∇f(x∗) = 0 ∇2f(x∗) ≻ 0. (2)

Then x∗ is a strict local minimizer of f .
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Optimization with equality conditions

Consider simple yet practical case of equality constraints:

f(x) → min
x∈Rn

s.t. hi(x) = 0, i = 1, . . . , p
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Lagrange multipliers recap

The basic idea of Lagrange method implies the switch from conditional to unconditional optimization through
increasing the dimensionality of the problem:

L(x, ν) = f(x) +
p∑

i=1

νihi(x) = f(x) + νT h(x) → min
x∈Rn,ν∈Rp

Necessery conditions:

∇xL(x∗, ν∗) = 0

∇νL(x∗, ν∗) = 0

Sufficient conditions:

⟨y, ∇2
xxL(x∗, ν∗)y⟩ > 0,

∀y ̸= 0 ∈ Rn : ∇hi(x∗)T y = 0
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Optimization with inequality conditions

Consider simple yet practical case of inequality constraints:

f(x) → min
x∈Rn

s.t. g(x) ≤ 0

g(x) ≤ 0 is inactive. g(x∗) < 0:

g(x∗) < 0

∇f(x∗) = 0

∇2f(x∗) > 0

g(x) ≤ 0 is active. g(x∗) = 0:

g(x∗) = 0

−∇f(x∗) = λ∇g(x∗), λ > 0

⟨y, ∇2
xxL(x∗, λ∗)y⟩ > 0,

∀y ̸= 0 ∈ Rn : ∇g(x∗)⊤y = 0
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General formulation

General problem of mathematical programming:

f0(x) → min
x∈Rn

s.t. fi(x) ≤ 0, i = 1, . . . , m

hi(x) = 0, i = 1, . . . , p

The solution involves constructing a Lagrange function:

L(x, λ, ν) = f0(x) +
m∑

i=1

λifi(x) +
p∑

i=1

νihi(x)

Karush-Kuhn-Tucker conditions v § } 7
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KKT Necessary conditions

Let x∗, (λ∗, ν∗) be a solution to a mathematical programming problem with zero duality gap (the optimal value for
the primal problem p∗ is equal to the optimal value for the dual problem d∗). Let also the functions f0, fi, hi be
differentiable.

(1)∇xL(x∗, λ∗, ν∗) = 0
(2)∇νL(x∗, λ∗, ν∗) = 0
(3)λ∗

i ≥ 0, i = 1, . . . , m

(4)λ∗
i fi(x∗) = 0, i = 1, . . . , m

(5)fi(x∗) ≤ 0, i = 1, . . . , m
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KKT Some regularity conditions

These conditions are needed in order to make KKT solutions the necessary conditions. Some of them even turn
necessary conditions into sufficient. For example, Slater’s condition:

If for a convex problem (i.e., assuming minimization, f0, fi are convex and hi are affine), there exists a point
x such that h(x) = 0 and fi(x) < 0 (existance of a strictly feasible point), then we have a zero duality gap
and KKT conditions become necessary and sufficient.
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KKT Sufficient conditions

For smooth, non-linear optimization problems, a second order sufficient condition is given as follows. The solution
x∗, λ∗, ν∗, which satisfies the KKT conditions (above) is a constrained local minimum if for the Lagrangian,

L(x, λ, ν) = f0(x) +
m∑

i=1

λifi(x) +
p∑

i=1

νihi(x)

the following conditions hold:

⟨y, ∇2
xxL(x∗, λ∗, ν∗)y⟩ > 0

∀y ̸= 0 ∈ Rn : ∇hi(x∗)⊤y = 0, ∇f0(x∗)⊤y ≤ 0, ∇fj(x∗)⊤y = 0
i = 1, . . . , p ∀j : fj(x∗) = 0
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Problem 1

ñ Question

Function f : E → R is defined as
f(x) = ln (−Q(x))

where E = {x ∈ Rn : Q(x) < 0} and

Q(x) = 1
2x⊤Ax + b⊤x + c

with A ∈ Sn
++, b ∈ Rn, c ∈ R.

Find the maximizer x∗ of the function f .
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Problem 2

ñ Question

Give an explicit solution of the following task.

f(x, y) = x + y → min
s.t. x2 + y2 = 1

where x, y ∈ R.
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Problem 3

ñ Question

Give an explicit solution of the following task.

⟨c, x⟩ +
n∑

i=1

xi log xi → min
x∈Rn

s.t.
n∑

i=1

xi = 1,

where x ∈ Rn
++, c ̸= 0.
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Problem 4

ñ Question

Let A ∈ Sn
++, b > 0 show that:

det(X) → max
X∈Sn

++

s.t.⟨A, X⟩ ≤ b

Has a unique solution and find it.
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Problem 5

ñ Question

Given y ∈ {−1, 1}, and X ∈ Rn×p, the Support Vector Machine problem is:

1
2 ||w||22 + C

n∑
i=1

ξi → min
w,w0,ξi

s.t. ξi ≥ 0, i = 1, . . . , n

yi(xT
i w + w0) ≥ 1 − ξi, i = 1, . . . , n

find the KKT stationarity condition.
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Problem 6

ñ Question

Show that the following constrained optimization task has unique solution and find it.

⟨C−1, X⟩ − log det(X) → min
X∈Sn

++

s.t. aT Xa ≤ 1

C ∈ Sn
++, a ̸= 0

You should avoid explicit inverse of matrix C in the answer.
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Problem 7 (BONUS)

For some Σ, Σ0 ∈ Sn
++ define a KL Divergence between two Gaussian distributions as:

D(Σ, Σ0) = 1
2(⟨Σ−1

0 , Σ⟩ − log det(Σ−1
0 Σ) − n)

Now let H ∈ Sn
++ and y, x ∈ Rn : ⟨y, s⟩ > 0

We would like to solve the following constrained minimization task.

min
X∈Sn

++

{D(X−1, H−1)|Xy = s}

Prove that it hass a unique sollution and it is equal to:

(In − syT

yT s
)H(In − ysT

yT s
) + ssT

yT s
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Problem 8 (BONUS)

ñ Question

Let e1, . . . , en be a standart basis in Rn. Show that:

max
X∈Sn

++

det(X) : ||Xei|| ≤ 1∀i ∈ 1, . . . , n

Has a unique solution In, and derive the Hadamard inequality:

det(X) ≤
n∏

i=1

||Xei||∀X ∈ Sn
++

Problems v § } 18

https://fmin.xyz
https://hse25.fmin.xyz
https://github.com/MerkulovDaniil/hse25
https://t.me/fminxyz


Adversarial Attacks
Definition: Adversarial attacks are techniques used to fool DL models by adding small perturbations to the input
data. We can frame adversarial attacks as a constrained optimization problem where the goal is to
minimize/maximize the loss function while keeping the perturbation within a certain limit (norm constraint).

The Fast Gradient Sign Method (FGSM) is the most simple such technique, that generates adversarial examples by
applying a small perturbation in the direction of the gradient of the loss function. Formally:

x′ = x + ε · sgn(∇xL(x, y)), s.t. ||x − x′|| ≤ ε

So in a nutshell we perfrom a gradient ascent on an image (== maximizing loss w.r.t to that image).

Figure 2: Illustration of different stationary (critical) points

Here is the code to try it out yourself! 3
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