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Line Segment
Suppose x1, x2 are two points in R⋉. Then the line segment between them is defined as follows:

x = θx1 + (1 − θ)x2, θ ∈ [0, 1]

Figure 1: Illustration of a line segment between points x1, x2
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Convex Set

The set S is called convex if for any x1, x2 from S the line segment between them also lies in S, i.e.

∀θ ∈ [0, 1], ∀x1, x2 ∈ S : θx1 + (1 − θ)x2 ∈ S

ñ Example

Any affine set, a ray, a line segment - they all are convex sets.

Figure 2: Top: examples of convex sets. Bottom: examples of non-convex sets.
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Problem 1

ñ Question

Prove, that ball in Rn (i.e. the following set {x | ∥x − xc∥ ≤ r}) - is convex.
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Problem 2

ñ Question

Is stripe - {x ∈ Rn | α ≤ a⊤x ≤ β} - convex?
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Problem 3

ñ Question

Let S be such that ∀x, y ∈ S → 1
2 (x + y) ∈ S. Is this set convex?
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Problem 4

ñ Question

The set S = {x | x + S2 ⊆ S1}, where S1, S2 ⊆ Rn with S1 convex. Is this set convex?
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Convex Function
The function f(x), which is defined on the convex set S ⊆ Rn, is called convex on S, if:

f(λx1 + (1 − λ)x2) ≤ λf(x1) + (1 − λ)f(x2)

for any x1, x2 ∈ S and 0 ≤ λ ≤ 1.
If the above inequality holds as strict inequality x1 ̸= x2 and 0 < λ < 1, then the function is called strictly convex
on S.

Figure 3: Difference between convex and non-convex function
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Strong Convexity

f(x), defined on the convex set S ⊆ Rn, is called µ-strongly convex (strongly convex) on S, if:

f(λx1 + (1 − λ)x2) ≤ λf(x1) + (1 − λ)f(x2) − µ

2 λ(1 − λ)∥x1 − x2∥2

for any x1, x2 ∈ S and 0 ≤ λ ≤ 1 for some µ > 0.

Function
Global quadratic lower bound

Figure 4: Strongly convex function is greater or equal than Taylor quadratic approximation at any point
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First-order differential criterion of convexity
The differentiable function f(x) defined on the convex set S ⊆ Rn is convex if and only if ∀x, y ∈ S:

f(y) ≥ f(x) + ∇fT (x)(y − x)

Let y = x + ∆x, then the criterion will become more tractable:

f(x + ∆x) ≥ f(x) + ∇fT (x)∆x

Figure 5: Convex function is greater or equal than Taylor linear approximation at any point
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Second-order differential criterion of strong convexity

Twice differentiable function f(x) defined on the convex set S ⊆ Rn is called µ-strongly convex if and only if
∀x ∈ int(S) ̸= ∅:

∇2f(x) ⪰ µI

In other words:

⟨y, ∇2f(x)y⟩ ≥ µ∥y∥2
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Motivational Experiment with JAX

Why convexity and strong convexity is important? Check the simple 3code snippet.
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Problem 5

ñ Question

Show, that f(x) = ∥x∥ is convex on Rn.

ñ Question

Show, that f(x) = x⊤Ax, where A ⪰ 0 - is convex on Rn.
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Problem 6

ñ Question

Show, that if f(x) is convex on Rn, then exp(f(x)) is convex on Rn.
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Problem 7

ñ Question

If f(x) is convex nonnegative function and p ≥ 1. Show that g(x) = f(x)p is convex.
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Problem 8

ñ Question

Show that, if f(x) is concave positive function over convex S, then g(x) = 1
f(x) is convex.

ñ Question

Show, that the following function is convex on the set of all positive denominators

f(x) = 1

x1 − 1

x2 − 1

x3 − 1
. . .

, x ∈ Rn
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Problem 9

ñ Question

Let S = {x ∈ Rn | x ≻ 0, ∥x∥∞ ≤ M}. Show that f(x) =
∑n

i=1 xi log xi is 1
M

-strongly convex.
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Polyak-Lojasiewicz (PL) Condition

PL inequality holds if the following condition is satisfied for some µ > 0,

∥∇f(x)∥2 ≥ µ(f(x) − f∗)∀x

The example of a function, that satisfies the PL-condition, but is not convex.

f(x, y) = (y − sin x)2

2

Example of Pl non-convex function 3Open in Colab.
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Logistic regression

ñ Given

Data: X ∈ Rm×n, y ∈ {0, 1}n.

, To find

Find function, that translates object x to probability p(y = 1|x):
p : Rm → (0, 1), p(x) ≡ σ(xT w) = 1

1+exp(−xT w)

� Criterion

Binary cross-entropy (logistic loss):
L(p, X, y) = −

∑n

i=1 yi log p (Xi) + (1 − yi) log (1 − p (Xi)) ,
that is minimized with respect to w.

Figure 6: Logistic Loss in Parameter Space for
x=(1,1), y=1

We can make this problem µ-strongly convex if we consider regularized logistic loss as criterion: L(p, X, y) + µ
2 ∥w∥2

2.

Check the 3 logistic regression experiments.
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Support Vector Machine (SVM)

ñ Given

Data: X ∈ Rm×n, y ∈ {−1, 1}n.

, To find

Find a hyperplane that maximizes the margin between two
classes:
f : Rm → {−1, 1}, f(x) = sign(wT x + b).

� Criterion

Hinge loss:
L(w, X, y) = 1

2 ∥w∥2
2 + C

∑n

i=1 max(0, 1 − yi(XT
i w + b)), that

is minimized with respect to w and b.

This problem is strongly-convex due to squared Euclidean norm.
Check the 3 SVM experiments in the same notebook.

Figure 7: Support Vector Machine

Figure 8: L2-Regularized Hinge Loss in
Parameter Space for x=(1,1), y=1
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Some other curious examples

• Low-rank matrix approximation

min
X

∥A − X∥2
F s.t. rank(X) ≤ k.

ñ Question

Is it convex?

By Eckart-Young theorem this can be solved using SVD: X∗ = UkΣkV T
k , where A = UΣV T .

• Convex relaxation via nuclear norm

min
X

rank(X), s.t. Xij = Mij , (i, j) ∈ I.

NP-hard problem, but ∥A∥∗ = trace(
√

AT A) =
∑rank(A)

i=1 σi(A) is a convex envelope of the matrix rank.
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