
Automatic Differentiation.

Seminar

Optimization for ML. Faculty of Computer Science. HSE University

v § } 1

https://fmin.xyz
https://hse25.fmin.xyz
https://github.com/MerkulovDaniil/hse25
https://t.me/fminxyz

Forward mode

Figure 1: Illustration of forward chain rule to calculate the derivative of the function vi with respect to wk.

• Uses the forward chain rule

• Has complexity d × O(T) operations

Automatic Differentiation v § } 2

https://fmin.xyz
https://hse25.fmin.xyz
https://github.com/MerkulovDaniil/hse25
https://t.me/fminxyz

Forward mode

Figure 1: Illustration of forward chain rule to calculate the derivative of the function vi with respect to wk.

• Uses the forward chain rule
• Has complexity d × O(T) operations

Automatic Differentiation v § } 2

https://fmin.xyz
https://hse25.fmin.xyz
https://github.com/MerkulovDaniil/hse25
https://t.me/fminxyz

Reverse mode

Figure 2: Illustration of reverse chain rule to calculate the derivative of the function L with respect to the node vi.

• Uses the backward chain rule

• Stores the information from the forward pass
• Has complexity O(T) operations

Automatic Differentiation v § } 3

https://fmin.xyz
https://hse25.fmin.xyz
https://github.com/MerkulovDaniil/hse25
https://t.me/fminxyz

Reverse mode

Figure 2: Illustration of reverse chain rule to calculate the derivative of the function L with respect to the node vi.

• Uses the backward chain rule
• Stores the information from the forward pass

• Has complexity O(T) operations

Automatic Differentiation v § } 3

https://fmin.xyz
https://hse25.fmin.xyz
https://github.com/MerkulovDaniil/hse25
https://t.me/fminxyz

Reverse mode

Figure 2: Illustration of reverse chain rule to calculate the derivative of the function L with respect to the node vi.

• Uses the backward chain rule
• Stores the information from the forward pass
• Has complexity O(T) operations

Automatic Differentiation v § } 3

https://fmin.xyz
https://hse25.fmin.xyz
https://github.com/MerkulovDaniil/hse25
https://t.me/fminxyz

Toy example
ñ Example

f(x1, x2) = x1 ∗ x2 + sin x1

Let’s calculate the derivatives ∂f

∂xi
using forward and reverse modes.

Figure 3: Illustration of computation graph of f(x1, x2).

Automatic Differentiation Problems v § } 4

https://fmin.xyz
https://hse25.fmin.xyz
https://github.com/MerkulovDaniil/hse25
https://t.me/fminxyz

Toy example
ñ Example

f(x1, x2) = x1 ∗ x2 + sin x1

Let’s calculate the derivatives ∂f

∂xi
using forward and reverse modes.

Figure 3: Illustration of computation graph of f(x1, x2).

Automatic Differentiation Problems v § } 4

https://fmin.xyz
https://hse25.fmin.xyz
https://github.com/MerkulovDaniil/hse25
https://t.me/fminxyz

Automatic Differentiation with JAX

Example №1

f(X) = tr(AX−1B)

∇f = −X−T AT BT X−T

Example №2

g(x) = 1/3 · ||x||32

∇2g = ||x||−1
2 xxT + ||x||2In

Let’s calculate the gradients and hessians of f and g in python 3

Automatic Differentiation Problems v § } 5

https://colab.research.google.com/drive/14FXSFirBR7OI76p1z72n353Ve9LmwL90#scrollTo=61Ryf-1eWeZP&line=1&uniqifier=1
https://fmin.xyz
https://hse25.fmin.xyz
https://github.com/MerkulovDaniil/hse25
https://t.me/fminxyz

Automatic Differentiation with JAX

Example №1

f(X) = tr(AX−1B)

∇f = −X−T AT BT X−T

Example №2

g(x) = 1/3 · ||x||32

∇2g = ||x||−1
2 xxT + ||x||2In

Let’s calculate the gradients and hessians of f and g in python 3

Automatic Differentiation Problems v § } 5

https://colab.research.google.com/drive/14FXSFirBR7OI76p1z72n353Ve9LmwL90#scrollTo=61Ryf-1eWeZP&line=1&uniqifier=1
https://fmin.xyz
https://hse25.fmin.xyz
https://github.com/MerkulovDaniil/hse25
https://t.me/fminxyz

Automatic Differentiation with JAX

Example №1

f(X) = tr(AX−1B)

∇f = −X−T AT BT X−T

Example №2

g(x) = 1/3 · ||x||32

∇2g = ||x||−1
2 xxT + ||x||2In

Let’s calculate the gradients and hessians of f and g in python 3

Automatic Differentiation Problems v § } 5

https://colab.research.google.com/drive/14FXSFirBR7OI76p1z72n353Ve9LmwL90#scrollTo=61Ryf-1eWeZP&line=1&uniqifier=1
https://fmin.xyz
https://hse25.fmin.xyz
https://github.com/MerkulovDaniil/hse25
https://t.me/fminxyz

Problem 1
ñ Question

Which of the AD modes would you choose (forward/ reverse) for the following computational graph of primitive
arithmetic operations?

Figure 4: Which mode would you choose for calculating gradients there?

Automatic Differentiation Problems v § } 6

https://fmin.xyz
https://hse25.fmin.xyz
https://github.com/MerkulovDaniil/hse25
https://t.me/fminxyz

Problem 2

Suppose, we have an invertible matrix A and a vector b,
the vector x is the solution of the linear system Ax = b,
namely one can write down an analytical solution
x = A−1b.

ñ Question

Find the derivatives ∂L

∂A
,

∂L

∂b
.

Figure 5: x could be found as a solution of linear system

Automatic Differentiation Problems v § } 7

https://fmin.xyz
https://hse25.fmin.xyz
https://github.com/MerkulovDaniil/hse25
https://t.me/fminxyz

Gradient propagation through the linear least squares

Figure 6: x could be found as a solution of linear
system

Suppose, we have an invertible matrix A and a vector b, the vector x
is the solution of the linear system Ax = b, namely one can write
down an analytical solution x = A−1b, in this example we will show,
that computing all derivatives ∂L

∂A
,

∂L

∂b
,

∂L

∂x
, i.e. the backward pass,

costs approximately the same as the forward pass.

It is known, that the differential of the function does not depend on
the parametrization:

dL =
〈

∂L

∂x
, dx

〉
=

〈
∂L

∂A
, dA

〉
+

〈
∂L

∂b
, db

〉
Given the linear system, we have:

Ax = b

dAx + Adx = db → dx = A−1(db − dAx)

Automatic Differentiation Problems v § } 8

https://fmin.xyz
https://hse25.fmin.xyz
https://github.com/MerkulovDaniil/hse25
https://t.me/fminxyz

Gradient propagation through the linear least squares

Figure 6: x could be found as a solution of linear
system

Suppose, we have an invertible matrix A and a vector b, the vector x
is the solution of the linear system Ax = b, namely one can write
down an analytical solution x = A−1b, in this example we will show,
that computing all derivatives ∂L

∂A
,

∂L

∂b
,

∂L

∂x
, i.e. the backward pass,

costs approximately the same as the forward pass.
It is known, that the differential of the function does not depend on
the parametrization:

dL =
〈

∂L

∂x
, dx

〉
=

〈
∂L

∂A
, dA

〉
+

〈
∂L

∂b
, db

〉

Given the linear system, we have:

Ax = b

dAx + Adx = db → dx = A−1(db − dAx)

Automatic Differentiation Problems v § } 8

https://fmin.xyz
https://hse25.fmin.xyz
https://github.com/MerkulovDaniil/hse25
https://t.me/fminxyz

Gradient propagation through the linear least squares

Figure 6: x could be found as a solution of linear
system

Suppose, we have an invertible matrix A and a vector b, the vector x
is the solution of the linear system Ax = b, namely one can write
down an analytical solution x = A−1b, in this example we will show,
that computing all derivatives ∂L

∂A
,

∂L

∂b
,

∂L

∂x
, i.e. the backward pass,

costs approximately the same as the forward pass.
It is known, that the differential of the function does not depend on
the parametrization:

dL =
〈

∂L

∂x
, dx

〉
=

〈
∂L

∂A
, dA

〉
+

〈
∂L

∂b
, db

〉
Given the linear system, we have:

Ax = b

dAx + Adx = db → dx = A−1(db − dAx)

Automatic Differentiation Problems v § } 8

https://fmin.xyz
https://hse25.fmin.xyz
https://github.com/MerkulovDaniil/hse25
https://t.me/fminxyz

Gradient propagation through the linear least squares

Figure 7: x could be found as a solution of linear
system

The straightforward substitution gives us:〈
∂L

∂x
, A−1(db − dAx)

〉
=

〈
∂L

∂A
, dA

〉
+

〈
∂L

∂b
, db

〉

〈
−A−T ∂L

∂x
xT , dA

〉
+

〈
A−T ∂L

∂x
, db

〉
=

〈
∂L

∂A
, dA

〉
+

〈
∂L

∂b
, db

〉
Therefore:

∂L

∂A
= −A−T ∂L

∂x
xT ∂L

∂b
= A−T ∂L

∂x

It is interesting, that the most computationally intensive part here is
the matrix inverse, which is the same as for the forward pass.
Sometimes it is even possible to store the result itself, which makes
the backward pass even cheaper.

Automatic Differentiation Problems v § } 9

https://fmin.xyz
https://hse25.fmin.xyz
https://github.com/MerkulovDaniil/hse25
https://t.me/fminxyz

Gradient propagation through the linear least squares

Figure 7: x could be found as a solution of linear
system

The straightforward substitution gives us:〈
∂L

∂x
, A−1(db − dAx)

〉
=

〈
∂L

∂A
, dA

〉
+

〈
∂L

∂b
, db

〉
〈

−A−T ∂L

∂x
xT , dA

〉
+

〈
A−T ∂L

∂x
, db

〉
=

〈
∂L

∂A
, dA

〉
+

〈
∂L

∂b
, db

〉

Therefore:

∂L

∂A
= −A−T ∂L

∂x
xT ∂L

∂b
= A−T ∂L

∂x

It is interesting, that the most computationally intensive part here is
the matrix inverse, which is the same as for the forward pass.
Sometimes it is even possible to store the result itself, which makes
the backward pass even cheaper.

Automatic Differentiation Problems v § } 9

https://fmin.xyz
https://hse25.fmin.xyz
https://github.com/MerkulovDaniil/hse25
https://t.me/fminxyz

Gradient propagation through the linear least squares

Figure 7: x could be found as a solution of linear
system

The straightforward substitution gives us:〈
∂L

∂x
, A−1(db − dAx)

〉
=

〈
∂L

∂A
, dA

〉
+

〈
∂L

∂b
, db

〉
〈

−A−T ∂L

∂x
xT , dA

〉
+

〈
A−T ∂L

∂x
, db

〉
=

〈
∂L

∂A
, dA

〉
+

〈
∂L

∂b
, db

〉
Therefore:

∂L

∂A
= −A−T ∂L

∂x
xT ∂L

∂b
= A−T ∂L

∂x

It is interesting, that the most computationally intensive part here is
the matrix inverse, which is the same as for the forward pass.
Sometimes it is even possible to store the result itself, which makes
the backward pass even cheaper.

Automatic Differentiation Problems v § } 9

https://fmin.xyz
https://hse25.fmin.xyz
https://github.com/MerkulovDaniil/hse25
https://t.me/fminxyz

Gradient propagation through the linear least squares

Figure 7: x could be found as a solution of linear
system

The straightforward substitution gives us:〈
∂L

∂x
, A−1(db − dAx)

〉
=

〈
∂L

∂A
, dA

〉
+

〈
∂L

∂b
, db

〉
〈

−A−T ∂L

∂x
xT , dA

〉
+

〈
A−T ∂L

∂x
, db

〉
=

〈
∂L

∂A
, dA

〉
+

〈
∂L

∂b
, db

〉
Therefore:

∂L

∂A
= −A−T ∂L

∂x
xT ∂L

∂b
= A−T ∂L

∂x

It is interesting, that the most computationally intensive part here is
the matrix inverse, which is the same as for the forward pass.
Sometimes it is even possible to store the result itself, which makes
the backward pass even cheaper.

Automatic Differentiation Problems v § } 9

https://fmin.xyz
https://hse25.fmin.xyz
https://github.com/MerkulovDaniil/hse25
https://t.me/fminxyz

Problem 3
Suppose, we have the rectangular matrix W ∈ Rm×n,
which has a singular value decomposition:

W = UΣV T , UT U = I, V T V = I,

Σ = diag(σ1, . . . , σmin(m,n))

The regularizer R(W) = tr(Σ) in any loss function
encourages low rank solutions.

ñ Question

Find the derivative ∂R

∂W
.

Figure 8: Computation graph for singular regularizer

Automatic Differentiation Problems v § } 10

https://fmin.xyz
https://hse25.fmin.xyz
https://github.com/MerkulovDaniil/hse25
https://t.me/fminxyz

Gradient propagation through the SVD

Suppose, we have the rectangular matrix W ∈ Rm×n, which has a singular value
decomposition:

W = UΣV T , UT U = I, V T V = I, Σ = diag(σ1, . . . , σmin(m,n))

1. Similarly to the previous example:

W = UΣV T

dW = dUΣV T + UdΣV T + UΣdV T

UT dW V = UT dUΣV T V + UT UdΣV T V + UT UΣdV T V

UT dW V = UT dUΣ + dΣ + ΣdV T V

Automatic Differentiation Problems v § } 11

https://fmin.xyz
https://hse25.fmin.xyz
https://github.com/MerkulovDaniil/hse25
https://t.me/fminxyz

Gradient propagation through the SVD

2. Note, that UT U = I → dUT U + UT dU = 0. But also dUT U = (UT dU)T ,
which actually involves, that the matrix UT dU is antisymmetric:

(UT dU)T + UT dU = 0 → diag(UT dU) = (0, . . . , 0)

The same logic could be applied to the matrix V and

diag(dV T V) = (0, . . . , 0)

3. At the same time, the matrix dΣ is diagonal, which means (look at the 1.)
that

diag(UT dW V) = dΣ

Here on both sides, we have diagonal matrices.

Automatic Differentiation Problems v § } 12

https://fmin.xyz
https://hse25.fmin.xyz
https://github.com/MerkulovDaniil/hse25
https://t.me/fminxyz

Gradient propagation through the SVD

2. Note, that UT U = I → dUT U + UT dU = 0. But also dUT U = (UT dU)T ,
which actually involves, that the matrix UT dU is antisymmetric:

(UT dU)T + UT dU = 0 → diag(UT dU) = (0, . . . , 0)

The same logic could be applied to the matrix V and

diag(dV T V) = (0, . . . , 0)

3. At the same time, the matrix dΣ is diagonal, which means (look at the 1.)
that

diag(UT dW V) = dΣ

Here on both sides, we have diagonal matrices.

Automatic Differentiation Problems v § } 12

https://fmin.xyz
https://hse25.fmin.xyz
https://github.com/MerkulovDaniil/hse25
https://t.me/fminxyz

Gradient propagation through the SVD

4. Now, we can decompose the differential of the loss function as a function of
Σ - such problems arise in ML problems, where we need to restrict the
matrix rank:

dL =
〈

∂L

∂Σ , dΣ
〉

=
〈

∂L

∂Σ , diag(UT dW V)
〉

= tr
(

∂L

∂Σ

T

diag(UT dW V)
)

Automatic Differentiation Problems v § } 13

https://fmin.xyz
https://hse25.fmin.xyz
https://github.com/MerkulovDaniil/hse25
https://t.me/fminxyz

Gradient propagation through the SVD

5. As soon as we have diagonal matrices inside the product, the trace of the
diagonal part of the matrix will be equal to the trace of the whole matrix:

dL = tr
(

∂L

∂Σ

T

diag(UT dW V)
)

= tr
(

∂L

∂Σ

T

UT dW V

)
=

〈
∂L

∂Σ , UT dW V
〉

=
〈

U
∂L

∂ΣV T , dW
〉

Automatic Differentiation Problems v § } 14

https://fmin.xyz
https://hse25.fmin.xyz
https://github.com/MerkulovDaniil/hse25
https://t.me/fminxyz

Gradient propagation through the SVD

6. Finally, using another parametrization of the differential〈
U

∂L

∂ΣV T , dW
〉

=
〈

∂L

∂W
, dW

〉
∂L

∂W
= U

∂L

∂ΣV T ,

This nice result allows us to connect the gradients ∂L

∂W
and ∂L

∂Σ .

Automatic Differentiation Problems v § } 15

https://fmin.xyz
https://hse25.fmin.xyz
https://github.com/MerkulovDaniil/hse25
https://t.me/fminxyz

Computation experiment with JAX

Let’s make sure numerically that we have correctly calculated the derivatives in problems 2-3 3

Automatic Differentiation Problems v § } 16

https://colab.research.google.com/drive/14FXSFirBR7OI76p1z72n353Ve9LmwL90#scrollTo=LlqwKMaPR0Sf
https://fmin.xyz
https://hse25.fmin.xyz
https://github.com/MerkulovDaniil/hse25
https://t.me/fminxyz

Feedforward Architecture

Forward pass

Backward pass

Figure 9: Computation graph for obtaining gradients for a simple feed-forward neural network with n layers. The activations
marked with an f . The gradient of the loss with respect to the activations and parameters marked with b.

, Important

The results obtained for the f nodes are needed to compute the b nodes.

Gradient checkpointing v § } 17

https://fmin.xyz
https://hse25.fmin.xyz
https://github.com/MerkulovDaniil/hse25
https://t.me/fminxyz

Feedforward Architecture

Forward pass

Backward pass

Figure 9: Computation graph for obtaining gradients for a simple feed-forward neural network with n layers. The activations
marked with an f . The gradient of the loss with respect to the activations and parameters marked with b.

, Important

The results obtained for the f nodes are needed to compute the b nodes.

Gradient checkpointing v § } 17

https://fmin.xyz
https://hse25.fmin.xyz
https://github.com/MerkulovDaniil/hse25
https://t.me/fminxyz

Vanilla backpropagation

Figure 10: Computation graph for obtaining gradients for a simple feed-forward neural network with n layers. The purple color
indicates nodes that are stored in memory.

• All activations f are kept in memory after the forward pass.

• Optimal in terms of computation: it only computes each node once.

• High memory usage. The memory usage grows linearly with the number of layers in the neural network.

Gradient checkpointing v § } 18

https://fmin.xyz
https://hse25.fmin.xyz
https://github.com/MerkulovDaniil/hse25
https://t.me/fminxyz

Vanilla backpropagation

Figure 10: Computation graph for obtaining gradients for a simple feed-forward neural network with n layers. The purple color
indicates nodes that are stored in memory.

• All activations f are kept in memory after the forward pass.

• Optimal in terms of computation: it only computes each node once.

• High memory usage. The memory usage grows linearly with the number of layers in the neural network.

Gradient checkpointing v § } 18

https://fmin.xyz
https://hse25.fmin.xyz
https://github.com/MerkulovDaniil/hse25
https://t.me/fminxyz

Vanilla backpropagation

Figure 10: Computation graph for obtaining gradients for a simple feed-forward neural network with n layers. The purple color
indicates nodes that are stored in memory.

• All activations f are kept in memory after the forward pass.

• Optimal in terms of computation: it only computes each node once.

• High memory usage. The memory usage grows linearly with the number of layers in the neural network.

Gradient checkpointing v § } 18

https://fmin.xyz
https://hse25.fmin.xyz
https://github.com/MerkulovDaniil/hse25
https://t.me/fminxyz

Vanilla backpropagation

Figure 10: Computation graph for obtaining gradients for a simple feed-forward neural network with n layers. The purple color
indicates nodes that are stored in memory.

• All activations f are kept in memory after the forward pass.

• Optimal in terms of computation: it only computes each node once.

• High memory usage. The memory usage grows linearly with the number of layers in the neural network.

Gradient checkpointing v § } 18

https://fmin.xyz
https://hse25.fmin.xyz
https://github.com/MerkulovDaniil/hse25
https://t.me/fminxyz

Vanilla backpropagation

Figure 10: Computation graph for obtaining gradients for a simple feed-forward neural network with n layers. The purple color
indicates nodes that are stored in memory.

• All activations f are kept in memory after the forward pass.

• Optimal in terms of computation: it only computes each node once.

• High memory usage. The memory usage grows linearly with the number of layers in the neural network.

Gradient checkpointing v § } 18

https://fmin.xyz
https://hse25.fmin.xyz
https://github.com/MerkulovDaniil/hse25
https://t.me/fminxyz

Vanilla backpropagation

Figure 10: Computation graph for obtaining gradients for a simple feed-forward neural network with n layers. The purple color
indicates nodes that are stored in memory.

• All activations f are kept in memory after the forward pass.

• Optimal in terms of computation: it only computes each node once.

• High memory usage. The memory usage grows linearly with the number of layers in the neural network.

Gradient checkpointing v § } 18

https://fmin.xyz
https://hse25.fmin.xyz
https://github.com/MerkulovDaniil/hse25
https://t.me/fminxyz

Memory poor backpropagation

Figure 11: Computation graph for obtaining gradients for a simple feed-forward neural network with n layers. The purple color
indicates nodes that are stored in memory.

• Each activation f is recalculated as needed.

• Optimal in terms of memory: there is no need to store all activations in memory.

• Computationally inefficient. The number of node evaluations scales with n2, whereas it vanilla backprop
scaled as n: each of the n nodes is recomputed on the order of n times.

Gradient checkpointing v § } 19

https://fmin.xyz
https://hse25.fmin.xyz
https://github.com/MerkulovDaniil/hse25
https://t.me/fminxyz

Memory poor backpropagation

Figure 11: Computation graph for obtaining gradients for a simple feed-forward neural network with n layers. The purple color
indicates nodes that are stored in memory.

• Each activation f is recalculated as needed.

• Optimal in terms of memory: there is no need to store all activations in memory.

• Computationally inefficient. The number of node evaluations scales with n2, whereas it vanilla backprop
scaled as n: each of the n nodes is recomputed on the order of n times.

Gradient checkpointing v § } 19

https://fmin.xyz
https://hse25.fmin.xyz
https://github.com/MerkulovDaniil/hse25
https://t.me/fminxyz

Memory poor backpropagation

Figure 11: Computation graph for obtaining gradients for a simple feed-forward neural network with n layers. The purple color
indicates nodes that are stored in memory.

• Each activation f is recalculated as needed.

• Optimal in terms of memory: there is no need to store all activations in memory.

• Computationally inefficient. The number of node evaluations scales with n2, whereas it vanilla backprop
scaled as n: each of the n nodes is recomputed on the order of n times.

Gradient checkpointing v § } 19

https://fmin.xyz
https://hse25.fmin.xyz
https://github.com/MerkulovDaniil/hse25
https://t.me/fminxyz

Memory poor backpropagation

Figure 11: Computation graph for obtaining gradients for a simple feed-forward neural network with n layers. The purple color
indicates nodes that are stored in memory.

• Each activation f is recalculated as needed.

• Optimal in terms of memory: there is no need to store all activations in memory.

• Computationally inefficient. The number of node evaluations scales with n2, whereas it vanilla backprop
scaled as n: each of the n nodes is recomputed on the order of n times.

Gradient checkpointing v § } 19

https://fmin.xyz
https://hse25.fmin.xyz
https://github.com/MerkulovDaniil/hse25
https://t.me/fminxyz

Memory poor backpropagation

Figure 11: Computation graph for obtaining gradients for a simple feed-forward neural network with n layers. The purple color
indicates nodes that are stored in memory.

• Each activation f is recalculated as needed.

• Optimal in terms of memory: there is no need to store all activations in memory.

• Computationally inefficient. The number of node evaluations scales with n2, whereas it vanilla backprop
scaled as n: each of the n nodes is recomputed on the order of n times.

Gradient checkpointing v § } 19

https://fmin.xyz
https://hse25.fmin.xyz
https://github.com/MerkulovDaniil/hse25
https://t.me/fminxyz

Memory poor backpropagation

Figure 11: Computation graph for obtaining gradients for a simple feed-forward neural network with n layers. The purple color
indicates nodes that are stored in memory.

• Each activation f is recalculated as needed.

• Optimal in terms of memory: there is no need to store all activations in memory.

• Computationally inefficient. The number of node evaluations scales with n2, whereas it vanilla backprop
scaled as n: each of the n nodes is recomputed on the order of n times.

Gradient checkpointing v § } 19

https://fmin.xyz
https://hse25.fmin.xyz
https://github.com/MerkulovDaniil/hse25
https://t.me/fminxyz

Checkpointed backpropagation
checkpoint

Figure 12: Computation graph for obtaining gradients for a simple feed-forward neural network with n layers. The purple color
indicates nodes that are stored in memory.

• Trade-off between the vanilla and memory poor approaches. The strategy is to mark a subset of the neural net
activations as checkpoint nodes, that will be stored in memory.

• Faster recalculation of activations f . We only need to recompute the nodes between a b node and the
last checkpoint preceding it when computing that b node during backprop.

• Memory consumption depends on the number of checkpoints. More effective then vanilla approach.

Gradient checkpointing v § } 20

https://fmin.xyz
https://hse25.fmin.xyz
https://github.com/MerkulovDaniil/hse25
https://t.me/fminxyz

Checkpointed backpropagation
checkpoint

Figure 12: Computation graph for obtaining gradients for a simple feed-forward neural network with n layers. The purple color
indicates nodes that are stored in memory.

• Trade-off between the vanilla and memory poor approaches. The strategy is to mark a subset of the neural net
activations as checkpoint nodes, that will be stored in memory.

• Faster recalculation of activations f . We only need to recompute the nodes between a b node and the
last checkpoint preceding it when computing that b node during backprop.

• Memory consumption depends on the number of checkpoints. More effective then vanilla approach.

Gradient checkpointing v § } 20

https://fmin.xyz
https://hse25.fmin.xyz
https://github.com/MerkulovDaniil/hse25
https://t.me/fminxyz

Checkpointed backpropagation
checkpoint

Figure 12: Computation graph for obtaining gradients for a simple feed-forward neural network with n layers. The purple color
indicates nodes that are stored in memory.

• Trade-off between the vanilla and memory poor approaches. The strategy is to mark a subset of the neural net
activations as checkpoint nodes, that will be stored in memory.

• Faster recalculation of activations f . We only need to recompute the nodes between a b node and the
last checkpoint preceding it when computing that b node during backprop.

• Memory consumption depends on the number of checkpoints. More effective then vanilla approach.

Gradient checkpointing v § } 20

https://fmin.xyz
https://hse25.fmin.xyz
https://github.com/MerkulovDaniil/hse25
https://t.me/fminxyz

Checkpointed backpropagation
checkpoint

Figure 12: Computation graph for obtaining gradients for a simple feed-forward neural network with n layers. The purple color
indicates nodes that are stored in memory.

• Trade-off between the vanilla and memory poor approaches. The strategy is to mark a subset of the neural net
activations as checkpoint nodes, that will be stored in memory.

• Faster recalculation of activations f . We only need to recompute the nodes between a b node and the
last checkpoint preceding it when computing that b node during backprop.

• Memory consumption depends on the number of checkpoints. More effective then vanilla approach.

Gradient checkpointing v § } 20

https://fmin.xyz
https://hse25.fmin.xyz
https://github.com/MerkulovDaniil/hse25
https://t.me/fminxyz

Checkpointed backpropagation
checkpoint

Figure 12: Computation graph for obtaining gradients for a simple feed-forward neural network with n layers. The purple color
indicates nodes that are stored in memory.

• Trade-off between the vanilla and memory poor approaches. The strategy is to mark a subset of the neural net
activations as checkpoint nodes, that will be stored in memory.

• Faster recalculation of activations f . We only need to recompute the nodes between a b node and the
last checkpoint preceding it when computing that b node during backprop.

• Memory consumption depends on the number of checkpoints. More effective then vanilla approach.

Gradient checkpointing v § } 20

https://fmin.xyz
https://hse25.fmin.xyz
https://github.com/MerkulovDaniil/hse25
https://t.me/fminxyz

Checkpointed backpropagation
checkpoint

Figure 12: Computation graph for obtaining gradients for a simple feed-forward neural network with n layers. The purple color
indicates nodes that are stored in memory.

• Trade-off between the vanilla and memory poor approaches. The strategy is to mark a subset of the neural net
activations as checkpoint nodes, that will be stored in memory.

• Faster recalculation of activations f . We only need to recompute the nodes between a b node and the
last checkpoint preceding it when computing that b node during backprop.

• Memory consumption depends on the number of checkpoints. More effective then vanilla approach.

Gradient checkpointing v § } 20

https://fmin.xyz
https://hse25.fmin.xyz
https://github.com/MerkulovDaniil/hse25
https://t.me/fminxyz

Gradient checkpointing visualization

The animated visualization of the above approaches §

An example of using a gradient checkpointing §

Gradient checkpointing v § } 21

https://github.com/cybertronai/gradient-checkpointing
https://github.com/rasbt/deeplearning-models/blob/master/pytorch_ipynb/mechanics/gradient-checkpointing-nin.ipynb
https://fmin.xyz
https://hse25.fmin.xyz
https://github.com/MerkulovDaniil/hse25
https://t.me/fminxyz

Hutchinson Trace Estimation 1

This example illustrates the estimation the Hessian trace of a neural network using Hutchinson’s method, which is an
algorithm to obtain such an estimate from matrix-vector products:
Let X ∈ Rd×d and v ∈ Rd be a random vector such that E[vvT] = I. Then,

Tr(X) = E[vT Xv] = 1
V

V∑
i=1

vT
i Xvi.

An example of using Hutchinson Trace
Estimation §

Figure 13: Multiple runs of the Hutchinson trace estimate, initialized at
different random seeds.

1A stochastic estimator of the trace of the influence matrix for Laplacian smoothing splines - M.F. Hutchinson, 1990
Gradient checkpointing v § } 22

https://colab.research.google.com/drive/1aLx_-Sv2tTTKz0NCEFcedqQyopBUczJH#scrollTo=DZTgqcHoa8O3
https://www.tandfonline.com/doi/abs/10.1080/03610919008812866
https://fmin.xyz
https://hse25.fmin.xyz
https://github.com/MerkulovDaniil/hse25
https://t.me/fminxyz

	Lecture reminder
	Automatic Differentiation
	Automatic Differentiation Problems
	Gradient checkpointing

