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Figure 1: lllustration of forward chain rule to calculate the derivative of the function v; with respect to wy,.

® Uses the forward chain rule
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Figure 1: lllustration of forward chain rule to calculate the derivative of the function v; with respect to wy,.

® Uses the forward chain rule
® Has complexity d x O(T') operations
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Reverse mode
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Figure 2: lllustration of reverse chain rule to calculate the derivative of the function L with respect to the node v;.

® Uses the backward chain rule
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Figure 2: lllustration of reverse chain rule to calculate the derivative of the function L with respect to the node v;.

® Uses the backward chain rule
® Stores the information from the forward pass
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Figure 2: lllustration of reverse chain rule to calculate the derivative of the function L with respect to the node v;.
® Uses the backward chain rule

® Stores the information from the forward pass
® Has complexity O(T) operations
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Toy example

i Example
f(x1,x2) = 21 * T2 + sinx

R 0 .
Let's calculate the derivatives a—f using forward and reverse modes.
z

[
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Toy example

i Example

fz1,22) = z1 % x2 +sinzy

R 0 .
Let's calculate the derivatives 8f using forward and reverse modes.
z

i
Figure 3: lllustration of computation graph of f(x1,z2).
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Automatic Differentiation with JAX

Example Nel
f(X)=tr(AX " 'B)

Vf=-X"TA"B"X""
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Automatic Differentiation with JAX

Example Nel Example Ne2
f(X)=tr(AX7'B) g(z) = 1/3-||z|[3

Vi=-XTATB X" Vg = [l wx” +[|x]|2 I
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Automatic Differentiation with JAX

Example Nel Example Ne2
f(X)=tr(AX7'B) g(z) = 1/3-||z|[3

Vi=-XTATB X" Vg = [l wx” +[|x]|2 I

Let's calculate the gradients and hessians of f and g in python %@
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Problem 1

i Question

Which of the AD modes would you choose (forward/ reverse) for the following computational graph of primitive
arithmetic operations?

2 v1

ONONO
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Figure 4: Which mode would you choose for calculating gradients there?
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Problem 2

Suppose, we have an invertible matrix A and a vector b, oL
the vector x is the solution of the linear system Ax = b, B
namely one can write down an analytical solution

T = A*lb. A e RV
i Question

oL _,

oL R

Find the derivatives 94" Db

Figure 5: x could be found as a solution of linear system
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Gradient propagation through the linear least squares

Suppose, we have an invertible matrix A and a vector b, the vector x
is the solution of the linear system Ax = b, namely one can write

down an analytical solution z = A™'b, in this example we will show,
OL OL OL
OA’ b’ dx'

costs approximately the same as the forward pass.

that computing all derivatives i.e. the backward pass,

oL _
o

2

Figure 6: x could be found as a solution of linear
system
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Gradient propagation through the linear least squares

Suppose, we have an invertible matrix A and a vector b, the vector x
is the solution of the linear system Ax = b, namely one can write

down an analytical solution z = A™'b, in this example we will show,
oL OL 0L
) OA’ b’ dx'
costs approximately the same as the forward pass.

It is known, that the differential of the function does not depend on
the parametrization:

oL oL oL
ar = (52 dn) = (57.dA) + (57 )

that computing all derivatives i.e. the backward pass,

oL _
o

2

Figure 6: x could be found as a solution of linear
system
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Gradient propagation through the linear least squares

Suppose, we have an invertible matrix A and a vector b, the vector x

oL
A= is the solution of the linear system Ax = b, namely one can write
down an analytical solution z = A™'b, in this example we will show,
OL OL OL

that computing all derivatives i.e. the backward pass,

A e RV . 877%’87’
costs approximately the same as the forward pass.
It is known, that the differential of the function does not depend on

the parametrization:

oL oL oL
ar = (52 dn) = (57.dA) + (57 )

Given the linear system, we have:

9L _,
ob
Az =b
Figure 6: x could be found as a solution of linear |
system dAz + Adx = db — dz = A™ " (db — dAx)
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Gradient propagation through the linear least squares

The straightforward substitution gives us:

oL 4o (0L o
<%,A (dbfdAm)>_<6A,dA>+<ab,db>

A e R

oL _
o

?

Figure 7: x could be found as a solution of linear
system
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Gradient propagation through the linear least squares

The straightforward substitution gives us:

oL 4o (0L o
<%,A (dbfdAm)>_<8A,dA>+<ab,db>

(a7 e aa) + (4775 ) = (504) + (5 )

oL _
o

?

Figure 7: x could be found as a solution of linear
system
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Gradient propagation through the linear least squares

The straightforward substitution gives us:

oL 4o (0L o
<%,A (dbfdAm)>_<6A,dA>+<ab,db>

(a7 e aa) + (4775 ) = (504) + (5 )

Therefore:

oL _ _,—rdL r OL _ , 1L

9A or" b O

oL _
o

?

Figure 7: x could be found as a solution of linear
system
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Gradient propagation through the linear least squares

The straightforward substitution gives us:

oL 4o (0L o
<%,A (dbfdAm)>_<8A,dA>+<ab,db>

(a7 e aa) + (4775 ) = (504) + (5 )

Therefore:

oL _ _,—rdL r OL _ , 1L

A or" b O

Z_i —7 It is interesting, that the most computationally intensive part here is
the matrix inverse, which is the same as for the forward pass.
Figure 7: « could be found as a solution of linear S0metimes it is even possible to store the result itself, which makes

2

system the backward pass even cheaper.
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Problem 3

Suppose, we have the rectangular matrix W € R™*",

which has a singular value decomposition:

w=uxv"', UTUu=1 VTV=I,
Y= diag(m, ceey Umin(m,n))

The regularizer R(W) = tr(X) in any loss function
encourages low rank solutions.

1 Question

OR
Find the derivative ——.
ind the derivative -7
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Figure 8: Computation graph for singular regularizer
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Gradient propagation through the SVD

Suppose, we have the rectangular matrix W € R™*™, which has a singular value
decomposition:

W=usv', U'U=1, V'V=I, S=dag(o1,...,0minwmmn))

R=tx(%)
1. Similarly to the previous example:

w=uxv"
dW = dUusvT + UudsvT + Usdv”
Urawv =Udusv?'v + UTudsvTv + UTusavTv
UTawVv = UTdUS + ds + 2dVTV
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Gradient propagation through the SVD

2. Note, that UTU =T — dUTU + UTdU = 0. But also dUTU = (UTdU)7,
which actually involves, that the matrix UZdU is antisymmetric:

WTdNT +UTdU =0 —  diag(UTdU) = (0,...,0)

@ The same logic could be applied to the matrix V' and

diag(dV™V) = (0,...,0)

()
N
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Gradient propagation through the SVD

2. Note, that UTU =T — dUTU + UTdU = 0. But also dUTU = (UTdU)7,
which actually involves, that the matrix UZdU is antisymmetric:

WTdNT +UTdU =0 —  diag(UTdU) = (0,...,0)

@ The same logic could be applied to the matrix V' and

diag(dV™V) = (0,...,0)

3. At the same time, the matrix dX is diagonal, which means (look at the 1.)
that

()
N

diag(UTdWV) = d%

Here on both sides, we have diagonal matrices.
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Gradient propagation through the SVD

4. Now, we can decompose the differential of the loss function as a function of
3> - such problems arise in ML problems, where we need to restrict the
matrix rank:

_/OL . T
f<8—2,d|ag(U dWV)>

()
N

oL .
=tr <8Z diag(U dWV))
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Gradient propagation through the SVD

5. As soon as we have diagonal matrices inside the product, the trace of the

R =tx(3)

oL7T T
dL = tr (82 diag(U dWV))

OLT -
<az U dWV>

L

<a§ U dWV>
oL .

(o2

‘f - W;rﬁ Automatic Differentiation Problems 0 O

diagonal part of the matrix will be equal to the trace of the whole matrix:


https://fmin.xyz
https://hse25.fmin.xyz
https://github.com/MerkulovDaniil/hse25
https://t.me/fminxyz

Gradient propagation through the SVD

6. Finally, using another parametrization of the differential

oL _ ¢ /0L
UV W) = (W)

()
N

OL
ow 0%
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- . 0L
This nice result allows us to connect the gradients —— and ——.
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Computation experiment with JAX

Let's make sure numerically that we have correctly calculated the derivatives in problems 2-3 @
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Feedforward Architecture

Forward pass

OO0
O=0202020

Backward pass

Figure 9: Computation graph for obtaining gradients for a simple feed-forward neural network with n layers. The activations
marked with an f. The gradient of the loss with respect to the activations and parameters marked with b.
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Feedforward Architecture

Forward pass

OO0
O=0202020

Backward pass

Figure 9: Computation graph for obtaining gradients for a simple feed-forward neural network with n layers. The activations
marked with an f. The gradient of the loss with respect to the activations and parameters marked with b.

! Important

The results obtained for the f nodes are needed to compute the b nodes.
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Vanilla backpropagation
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Figure 10: Computation graph for obtaining gradients for a simple feed-forward neural network with n layers. The purple color
indicates nodes that are stored in memory.
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Vanilla backpropagation
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Figure 10: Computation graph for obtaining gradients for a simple feed-forward neural network with n layers. The purple color
indicates nodes that are stored in memory.

® All activations f are kept in memory after the forward pass.
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Vanilla backpropagation
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Figure 10: Computation graph for obtaining gradients for a simple feed-forward neural network with n layers. The purple color
indicates nodes that are stored in memory.

® All activations f are kept in memory after the forward pass.
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Vanilla backpropagation
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Figure 10: Computation graph for obtaining gradients for a simple feed-forward neural network with n layers. The purple color
indicates nodes that are stored in memory.

® All activations f are kept in memory after the forward pass.

® Optimal in terms of computation: it only computes each node once.

‘f - ;nylr; Gradient checkpointing 0 O 18
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Figure 10: Computation graph for obtaining gradients for a simple feed-forward neural network with n layers. The purple color
indicates nodes that are stored in memory.

® All activations f are kept in memory after the forward pass.

® Optimal in terms of computation: it only computes each node once.
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Vanilla backpropagation
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Figure 10: Computation graph for obtaining gradients for a simple feed-forward neural network with n layers. The purple color
indicates nodes that are stored in memory.

® All activations f are kept in memory after the forward pass.

® Optimal in terms of computation: it only computes each node once.

® High memory usage. The memory usage grows linearly with the number of layers in the neural network.
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Memory poor backpropagation
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Figure 11: Computation graph for obtaining gradients for a simple feed-forward neural network with n layers. The purple color
indicates nodes that are stored in memory.
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Memory poor backpropagation
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Figure 11: Computation graph for obtaining gradients for a simple feed-forward neural network with n layers. The purple color
indicates nodes that are stored in memory.

® Each activation f is recalculated as needed.
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Memory poor backpropagation
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Figure 11: Computation graph for obtaining gradients for a simple feed-forward neural network with n layers. The purple color
indicates nodes that are stored in memory.

® Each activation f is recalculated as needed.

‘f%;nyu; Gradient checkpointing 0 O 19


https://fmin.xyz
https://hse25.fmin.xyz
https://github.com/MerkulovDaniil/hse25
https://t.me/fminxyz

Memory poor backpropagation

Figure 11: Computation graph for obtaining gradients for a simple feed-forward neural network with n layers. The purple color
indicates nodes that are stored in memory.

® Each activation f is recalculated as needed.

® Optimal in terms of memory: there is no need to store all activations in memory.
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Memory poor backpropagation

Figure 11: Computation graph for obtaining gradients for a simple feed-forward neural network with n layers. The purple color
indicates nodes that are stored in memory.

® Each activation f is recalculated as needed.

® Optimal in terms of memory: there is no need to store all activations in memory.
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Memory poor backpropagation

Figure 11: Computation graph for obtaining gradients for a simple feed-forward neural network with n layers. The purple color
indicates nodes that are stored in memory.

® Each activation f is recalculated as needed.

® Optimal in terms of memory: there is no need to store all activations in memory.

o Computationally inefficient. The number of node evaluations scales with 1%, whereas it vanilla backprop
scaled as n: each of the n nodes is recomputed on the order of n times.
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Checkpointed backpropagation

checkpoint

Figure 12: Computation graph for obtaining gradients for a simple feed-forward neural network with n layers. The purple color
indicates nodes that are stored in memory.
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Checkpointed backpropagation
che‘c‘:lf_qoint

N

Figure 12: Computation graph for obtaining gradients for a simple feed-forward neural network with n layers. The purple color
indicates nodes that are stored in memory.

® Trade-off between the vanilla and memory poor approaches. The strategy is to mark a subset of the neural net
activations as checkpoint nodes, that will be stored in memory.
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Checkpointed backpropagation
che‘c‘:lf_qoint
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Figure 12: Computation graph for obtaining gradients for a simple feed-forward neural network with n layers. The purple color
indicates nodes that are stored in memory.

® Trade-off between the vanilla and memory poor approaches. The strategy is to mark a subset of the neural net
activations as checkpoint nodes, that will be stored in memory.
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Figure 12: Computation graph for obtaining gradients for a simple feed-forward neural network with n layers. The purple color
indicates nodes that are stored in memory.

® Trade-off between the vanilla and memory poor approaches. The strategy is to mark a subset of the neural net
activations as checkpoint nodes, that will be stored in memory.

® Faster recalculation of activations f. We only need to recompute the nodes between a b node and the
last checkpoint preceding it when computing that b node during backprop.
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Checkpointed backpropagation
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Figure 12: Computation graph for obtaining gradients for a simple feed-forward neural network with n layers. The purple color
indicates nodes that are stored in memory.

® Trade-off between the vanilla and memory poor approaches. The strategy is to mark a subset of the neural net
activations as checkpoint nodes, that will be stored in memory.

® Faster recalculation of activations f. We only need to recompute the nodes between a b node and the
last checkpoint preceding it when computing that b node during backprop.
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Checkpointed backpropagation

checkpoint
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Figure 12: Computation graph for obtaining gradients for a simple feed-forward neural network with n layers. The purple color
indicates nodes that are stored in memory.

® Trade-off between the vanilla and memory poor approaches. The strategy is to mark a subset of the neural net
activations as checkpoint nodes, that will be stored in memory.

® Faster recalculation of activations f. We only need to recompute the nodes between a b node and the
last checkpoint preceding it when computing that b node during backprop.

® Memory consumption depends on the number of checkpoints. More effective then vanilla approach.
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Gradient checkpointing visualization

The animated visualization of the above approaches €)

An example of using a gradient checkpointing
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https://github.com/cybertronai/gradient-checkpointing
https://github.com/rasbt/deeplearning-models/blob/master/pytorch_ipynb/mechanics/gradient-checkpointing-nin.ipynb
https://fmin.xyz
https://hse25.fmin.xyz
https://github.com/MerkulovDaniil/hse25
https://t.me/fminxyz

Hutchinson Trace Estimation !

This example illustrates the estimation the Hessian trace of a neural network using Hutchinson's method, which is an
algorithm to obtain such an estimate from matrix-vector products:

Let X € R¥ and v € R? be a random vector such that E[vv”] = I. Then,

v Y
1
Tr(X) = ]E[UTXU} = v ;v?Xvi. .

An example of using Hutchinson Trace
Estimation )

10 100

0
Number of Samples

Figure 13: Multiple runs of the Hutchinson trace estimate, initialized at
different random seeds.

LA stochastic estimator of the trace of the influence matrix for Laplacian smoothing splines - M.F. Hutchinson, 1990
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https://colab.research.google.com/drive/1aLx_-Sv2tTTKz0NCEFcedqQyopBUczJH#scrollTo=DZTgqcHoa8O3
https://www.tandfonline.com/doi/abs/10.1080/03610919008812866
https://fmin.xyz
https://hse25.fmin.xyz
https://github.com/MerkulovDaniil/hse25
https://t.me/fminxyz
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