Matrix calculus. Line search.

Seminar

Optimization for ML. Faculty of Computer Science. HSE University

Theory recap. Differential

• Differential $df(x)[\cdot]: U \to V$ in point $x \in U$ for $f(\cdot): U \to V$:

$$f(x+h) - f(x) = \underbrace{df(x)[h]}_{\text{differential}} + \overline{o}(||h||)$$

$U \rightarrow V$	$\mathbb R$	\mathbb{R}^{n}	$\mathbb{R}^{n imes m}$
R	f'(x)dx	abla f(x)dx	abla f(x)dx
\mathbb{R}^n	$\nabla f(x)^T dx$	J(x)dx	—
Ruxin	$tr(\nabla f(X)^{2} dX)$	—	—

Theory recap. Differential

• Differential $df(x)[\cdot]: U \to V$ in point $x \in U$ for $f(\cdot): U \to V$:

$$f(x+h) - f(x) = \underbrace{df(x)[h]}_{differential} + \overline{o}(||h||)$$

• Canonical form of the differential:

$U \rightarrow V$	\mathbb{R}	\mathbb{R}^{n}	$\mathbb{R}^{n imes m}$
\mathbb{R}	f'(x)dx	abla f(x)dx	abla f(x) dx
\mathbb{R}^n	$ abla f(x)^T dx$	J(x)dx	—
$\mathbb{R}^{n imes m}$	$tr(abla f(X)^T dX)$		—

Theory recap. Differentiation Rules

• Useful differentiation rules and standard derivatives:

Differentiation Rules	Standard Derivatives
dA = 0	$d(\langle A, X \rangle) = \langle A, dX \rangle$
d(lpha X) = lpha (dX)	$d(\langle Ax,x angle)=\langle (A+A^T)x,dx angle$
d(AXB) = A(dX)B	$d(Det(X)) = Det(X)\langle X^{-T}, dX \rangle$
d(X+Y) = dX + dY	$d(X^{-1}) = -X^{-1}(dX)X^{-1}$
$d(X^T) = (dX)^T$	
d(XY) = (dX)Y + X(dY)	
$d(\langle X, Y \rangle) = \langle dX, Y \rangle + \langle X, dY \rangle$	
$d\left(rac{X}{\phi} ight) = rac{\phi dX - (d\phi)X}{\phi^2}$	

Theory recap. Differential and Gradient / Hessian

We can retrieve the gradient using the following formula:

 $d\!f(x) = \langle \nabla f(x), dx \rangle$

Theory recap. Differential and Gradient / Hessian

We can retrieve the gradient using the following formula:

$$df(x) = \langle \nabla f(x), dx \rangle$$

Then, if we have a differential of the above form and we need to calculate the second derivative of the matrix/vector function, we treat "old" dx as the constant dx_1 , then calculate $d(df) = d^2 f(x)$

Theory recap. Differential and Gradient / Hessian

We can retrieve the gradient using the following formula:

$$df(x) = \langle \nabla f(x), dx \rangle$$

Then, if we have a differential of the above form and we need to calculate the second derivative of the matrix/vector function, we treat "old" dx as the constant dx_1 , then calculate $d(df) = d^2 f(x)$

$$d^{2}f(x) = \langle \nabla^{2}f(x)dx_{1}, dx \rangle = \langle H_{f}(x)dx_{1}, dx \rangle$$

• Solution localization methods:

- Solution localization methods:
 - Dichotomy search method

- Solution localization methods:
 - Dichotomy search method
 - Golden selection search method

- Solution localization methods:
 - Dichotomy search method
 - Golden selection search method
- Inexact line search:

- Solution localization methods:
 - Dichotomy search method
 - Golden selection search method
- Inexact line search:
 - Sufficient decrease

- Solution localization methods:
 - Dichotomy search method
 - Golden selection search method
- Inexact line search:
 - Sufficient decrease
 - Goldstein conditions

- Solution localization methods:
 - Dichotomy search method
 - Golden selection search method
- Inexact line search:
 - Sufficient decrease
 - Goldstein conditions
 - Curvature conditions

- Solution localization methods:
 - Dichotomy search method
 - Golden selection search method
- Inexact line search:
 - Sufficient decrease
 - Goldstein conditions
 - Curvature conditions
 - The idea behind backtracking line search

Matrix Calculus. Problem 1

Find
$$\nabla f(x)$$
, if $f(x) = \frac{1}{2}x^TAx + b^Tx + c$.

Matrix Calculus. Problem 2

i Example

Find $\nabla f(X)$, if $f(X) = tr(AX^{-1}B)$

Matrix Calculus. Problem 3

i Example

Find the gradient $\nabla f(x)$ and hessian $\nabla^2 f(x)$, if $f(x) = \frac{1}{3} ||x||_2^3$

Line Search. Example 1: Comparison of Methods (Colab 4)

$$f_1(x) = x(x-2)(x+2)^2 + 10$$
$$[a,b] = [-3,2]$$

Random search: 72 function calls. 36 iterations. $f_1^* = 0.09$ Binary search: 23 function calls. 13 iterations. $f_1^* = 10.00$ Golden search: 19 function calls. 18 iterations. $f_1^* = 10.00$ Parabolic search: 20 function calls. 17 iterations. $f_1^* = 10.00$

Figure 1: Comparison of different line search algorithms with f_1

Line Search. Example 1: Comparison of Methods (Colab 4)

$$f_2(x) = -\sqrt{\frac{2}{\pi}} \frac{x^2 e^{-\frac{x^2}{8}}}{8}$$
$$[a, b] = [0, 6]$$

Random search: 68 function calls. 34 iterations. $f_2^* = 0.71$ Binary search: 23 function calls. 13 iterations. $f_2^* = 0.71$ Golden search: 20 function calls. 19 iterations. $f_2^* = 0.71$ Parabolic search: 17 function calls. 14 iterations. $f_2^* = 0.71$

Figure 2: Comparison of different line search algorithms with f_2

Line Search. Example 1: Comparison of Methods (Colab 4)

$$f_3(x) = \sin\left(\sin\left(\sin\left(\sqrt{\frac{x}{2}}\right)\right)\right)$$
$$[a,b] = [5,70]$$

Random search: 66 function calls. 33 iterations. $f_3^* = 0.25$ Binary search: 32 function calls. 17 iterations. $f_3^* = 0.25$ Golden search: 25 function calls. 24 iterations. $f_3^* = 0.25$ Parabolic search: 103 function calls. 100 iterations. $f_3^* = 0.25$

Figure 3: Comparison of different line search algorithms with f_3

• Parabolic Interpolation + Golden Search = Brent Method

Figure 4: Idea of Brent Method

- Parabolic Interpolation + Golden Search = Brent Method
- The key idea of the method is to track the value of the optimized scalar function at six points *a*, *b*, *x*, *w*, *v*, *u*

Figure 4: Idea of Brent Method

- Parabolic Interpolation + Golden Search = Brent Method
- The key idea of the method is to track the value of the optimized scalar function at six points *a*, *b*, *x*, *w*, *v*, *u*
- [a,b] localization interval in the current iteration

Figure 4: Idea of Brent Method

- Parabolic Interpolation + Golden Search = Brent Method
- The key idea of the method is to track the value of the optimized scalar function at six points *a*, *b*, *x*, *w*, *v*, *u*
- [a,b] localization interval in the current iteration
- The pounts x, w and v such that the inequality $f(x) \leqslant f(w) \leqslant f(v)$ is valid

Figure 4: Idea of Brent Method

- Parabolic Interpolation + Golden Search = Brent Method
- The key idea of the method is to track the value of the optimized scalar function at six points *a*, *b*, *x*, *w*, *v*, *u*
- [a,b] localization interval in the current iteration
- The pounts x, w and v such that the inequality $f(x) \leq f(w) \leq f(v)$ is valid
- u minimum of a parabola built on points x, w and v or the point of the golden section of the largest of the intervals [a, x] [x, b].

Figure 4: Idea of Brent Method

A parabola is constructed only if the points $x,\,w$ and v are different, and its vertex u^* is taken as the point u only if

• $u^* \in [a, b]$

Figure 5: An example of how the Brent Method works

A parabola is constructed only if the points $x,\,w$ and v are different, and its vertex u^{\ast} is taken as the point u only if

- $u^* \in [a, b]$
- u^* is no more than half the length of the step that was before the previous one, from the point x

Figure 5: An example of how the Brent Method works

A parabola is constructed only if the points $x,\,w$ and v are different, and its vertex u^* is taken as the point u only if

• $u^* \in [a, b]$

- u^* is no more than half the length of the step that was before the previous one, from the point x
- If the conditions above are not met, then point u is located from the golden search

Figure 5: An example of how the Brent Method works

A parabola is constructed only if the points $x,\,w$ and v are different, and its vertex u^* is taken as the point u only if

• $u^* \in [a, b]$

- u^* is no more than half the length of the step that was before the previous one, from the point x
- If the conditions above are not met, then point *u* is located from the golden search
- Example In Colab 🐥

Figure 5: An example of how the Brent Method works