
Conjugate functions. Dual (sub)gradient method. Augmented Lagrangian method.
ADMM.

Seminar

Optimization for ML. Faculty of Computer Science. HSE University

v § } 1

https://fmin.xyz
https://hse25.fmin.xyz
https://github.com/MerkulovDaniil/hse25
https://t.me/fminxyz

Definition
Recall that given f : Rn → R, the function
defined by

f∗(y) = max
x

[
yT x − f(x)

]
is called its conjugate.

Reminder: conjugate functions v § } 2

https://fmin.xyz
https://hse25.fmin.xyz
https://github.com/MerkulovDaniil/hse25
https://t.me/fminxyz

Conjugate function properties

Recall that given f : Rn → R, the function defined by

f∗(y) = max
x

[
yT x − f(x)

]
is called its conjugate.

• Conjugates appear frequently in dual programs, since

−f∗(y) = min
x

[
f(x) − yT x

]
• If f is closed and convex, then f∗∗ = f . Also,

x ∈ ∂f∗(y) ⇔ y ∈ ∂f(x) ⇔ x ∈ arg min
z

[
f(z) − yT z

]
• If f is strictly convex, then

∇f∗(y) = arg min
z

[
f(z) − yT z

]

Reminder: conjugate functions v § } 3

https://fmin.xyz
https://hse25.fmin.xyz
https://github.com/MerkulovDaniil/hse25
https://t.me/fminxyz

Slopes of f and f ∗

Assume that f is a closed and convex function. Then f is strongly convex with parameter µ ⇔ ∇f∗ is Lipschitz
with parameter 1/µ.

Figure 1: Geometrical sense on f∗

Reminder: conjugate functions v § } 4

https://fmin.xyz
https://hse25.fmin.xyz
https://github.com/MerkulovDaniil/hse25
https://t.me/fminxyz

Problem 1
ñ Question

Find the conjugate function for
f1(x) = aT x + b

f∗(s) = sup
x∈Rn

(
sT x − aT x − b

)
=
{

−b, if s = a

∞, else
= δ ([s = a]) − b

domf∗(s) = {a}

ñ Question

Find the conjugate function for
f2(s) = δ ([s = a]) − b

(δ ([s = a]) − b)∗ = sup
s∈domf2(s)

(yT s − δ ([s = a]) + b) = aT y + b

Reminder: conjugate functions v § } 5

https://fmin.xyz
https://hse25.fmin.xyz
https://github.com/MerkulovDaniil/hse25
https://t.me/fminxyz

Problem 1
ñ Question

Find the conjugate function for
f1(x) = aT x + b

f∗(s) = sup
x∈Rn

(
sT x − aT x − b

)
=
{

−b, if s = a

∞, else
= δ ([s = a]) − b

domf∗(s) = {a}

ñ Question

Find the conjugate function for
f2(s) = δ ([s = a]) − b

(δ ([s = a]) − b)∗ = sup
s∈domf2(s)

(yT s − δ ([s = a]) + b) = aT y + b

Reminder: conjugate functions v § } 5

https://fmin.xyz
https://hse25.fmin.xyz
https://github.com/MerkulovDaniil/hse25
https://t.me/fminxyz

Problem 1
ñ Question

Find the conjugate function for
f1(x) = aT x + b

f∗(s) = sup
x∈Rn

(
sT x − aT x − b

)
=
{

−b, if s = a

∞, else
= δ ([s = a]) − b

domf∗(s) = {a}

ñ Question

Find the conjugate function for
f2(s) = δ ([s = a]) − b

(δ ([s = a]) − b)∗ = sup
s∈domf2(s)

(yT s − δ ([s = a]) + b) = aT y + b

Reminder: conjugate functions v § } 5

https://fmin.xyz
https://hse25.fmin.xyz
https://github.com/MerkulovDaniil/hse25
https://t.me/fminxyz

Problem 1
ñ Question

Find the conjugate function for
f1(x) = aT x + b

f∗(s) = sup
x∈Rn

(
sT x − aT x − b

)
=
{

−b, if s = a

∞, else
= δ ([s = a]) − b

domf∗(s) = {a}

ñ Question

Find the conjugate function for
f2(s) = δ ([s = a]) − b

(δ ([s = a]) − b)∗ = sup
s∈domf2(s)

(yT s − δ ([s = a]) + b) = aT y + b

Reminder: conjugate functions v § } 5

https://fmin.xyz
https://hse25.fmin.xyz
https://github.com/MerkulovDaniil/hse25
https://t.me/fminxyz

Problem 2

ñ Question

Find the conjugate function for
f(x) = log(1 + exp(x))

f∗(s) = sup
x∈Rn

(sx − log(1 + exp(x)))

f∗(s) =



∞, if s < 0
0, if s = 0
0, if s = 1
∞, if s > 1
?, if 0 < s < 1

Reminder: conjugate functions v § } 6

https://fmin.xyz
https://hse25.fmin.xyz
https://github.com/MerkulovDaniil/hse25
https://t.me/fminxyz

Problem 2

ñ Question

Find the conjugate function for
f(x) = log(1 + exp(x))

f∗(s) = sup
x∈Rn

(sx − log(1 + exp(x)))

f∗(s) =



∞, if s < 0
0, if s = 0
0, if s = 1
∞, if s > 1
?, if 0 < s < 1

Reminder: conjugate functions v § } 6

https://fmin.xyz
https://hse25.fmin.xyz
https://github.com/MerkulovDaniil/hse25
https://t.me/fminxyz

Problem 2

ñ Question

Find the conjugate function for
f(x) = log(1 + exp(x))

f∗(s) = sup
x∈Rn

(sx − log(1 + exp(x)))

f∗(s) =



∞, if s < 0
0, if s = 0
0, if s = 1
∞, if s > 1
?, if 0 < s < 1

Reminder: conjugate functions v § } 6

https://fmin.xyz
https://hse25.fmin.xyz
https://github.com/MerkulovDaniil/hse25
https://t.me/fminxyz

Problem 2

ñ Question

Find the conjugate function for
f(x) = log(1 + exp(x))

s ∈ (0, 1):

s − exp(x)
1 + exp(x) = 0 ⇔ xopt = log s

1 − s

Thus,

f∗(s) =


0, if s ∈ {0, 1}
s log s + (1 − s) log(1 − s), if 0 < s < 1
∞, else

domf∗(s) = [0, 1]

Reminder: conjugate functions v § } 7

https://fmin.xyz
https://hse25.fmin.xyz
https://github.com/MerkulovDaniil/hse25
https://t.me/fminxyz

Problem 2

ñ Question

Find the conjugate function for
f(x) = log(1 + exp(x))

s ∈ (0, 1):

s − exp(x)
1 + exp(x) = 0 ⇔ xopt = log s

1 − s

Thus,

f∗(s) =


0, if s ∈ {0, 1}
s log s + (1 − s) log(1 − s), if 0 < s < 1
∞, else

domf∗(s) = [0, 1]

Reminder: conjugate functions v § } 7

https://fmin.xyz
https://hse25.fmin.xyz
https://github.com/MerkulovDaniil/hse25
https://t.me/fminxyz

Dual (sub)gradient method
Even if we can’t derive dual (conjugate) in closed form, we can still use dual-based gradient or subgradient methods.

Consider the problem:
min

x
f(x) subject to Ax = b

Its dual problem is:
max

u
−f∗(−AT u) − bT u

where f∗ is the conjugate of f . Defining g(u) = −f∗(−AT u) − bT u, note that:
∂g(u) = A∂f∗(−AT u) − b

Therefore, using what we know about conjugates
∂g(u) = Ax − b where x ∈ arg min

z

[
f(z) + uT Az

]
Dual ascent method for maximizing dual objective:

ñ

xk ∈ arg min
x

[
f(x) + (uk−1)T Ax

]
uk = uk−1 + αk(Axk − b)

• Step sizes αk, k = 1, 2, 3, . . ., are chosen in standard
ways.

• Proximal gradients and acceleration can be applied as
they would usually.

Dual ascent v § } 8

https://fmin.xyz
https://hse25.fmin.xyz
https://github.com/MerkulovDaniil/hse25
https://t.me/fminxyz

Dual (sub)gradient method
Even if we can’t derive dual (conjugate) in closed form, we can still use dual-based gradient or subgradient methods.

Consider the problem:
min

x
f(x) subject to Ax = b

Its dual problem is:
max

u
−f∗(−AT u) − bT u

where f∗ is the conjugate of f . Defining g(u) = −f∗(−AT u) − bT u, note that:
∂g(u) = A∂f∗(−AT u) − b

Therefore, using what we know about conjugates
∂g(u) = Ax − b where x ∈ arg min

z

[
f(z) + uT Az

]
Dual ascent method for maximizing dual objective:

ñ

xk ∈ arg min
x

[
f(x) + (uk−1)T Ax

]
uk = uk−1 + αk(Axk − b)

• Step sizes αk, k = 1, 2, 3, . . ., are chosen in standard
ways.

• Proximal gradients and acceleration can be applied as
they would usually.

Dual ascent v § } 8

https://fmin.xyz
https://hse25.fmin.xyz
https://github.com/MerkulovDaniil/hse25
https://t.me/fminxyz

Dual (sub)gradient method
Even if we can’t derive dual (conjugate) in closed form, we can still use dual-based gradient or subgradient methods.

Consider the problem:
min

x
f(x) subject to Ax = b

Its dual problem is:
max

u
−f∗(−AT u) − bT u

where f∗ is the conjugate of f . Defining g(u) = −f∗(−AT u) − bT u, note that:
∂g(u) = A∂f∗(−AT u) − b

Therefore, using what we know about conjugates
∂g(u) = Ax − b where x ∈ arg min

z

[
f(z) + uT Az

]

Dual ascent method for maximizing dual objective:

ñ

xk ∈ arg min
x

[
f(x) + (uk−1)T Ax

]
uk = uk−1 + αk(Axk − b)

• Step sizes αk, k = 1, 2, 3, . . ., are chosen in standard
ways.

• Proximal gradients and acceleration can be applied as
they would usually.

Dual ascent v § } 8

https://fmin.xyz
https://hse25.fmin.xyz
https://github.com/MerkulovDaniil/hse25
https://t.me/fminxyz

Dual (sub)gradient method
Even if we can’t derive dual (conjugate) in closed form, we can still use dual-based gradient or subgradient methods.

Consider the problem:
min

x
f(x) subject to Ax = b

Its dual problem is:
max

u
−f∗(−AT u) − bT u

where f∗ is the conjugate of f . Defining g(u) = −f∗(−AT u) − bT u, note that:
∂g(u) = A∂f∗(−AT u) − b

Therefore, using what we know about conjugates
∂g(u) = Ax − b where x ∈ arg min

z

[
f(z) + uT Az

]
Dual ascent method for maximizing dual objective:

ñ

xk ∈ arg min
x

[
f(x) + (uk−1)T Ax

]
uk = uk−1 + αk(Axk − b)

• Step sizes αk, k = 1, 2, 3, . . ., are chosen in standard
ways.

• Proximal gradients and acceleration can be applied as
they would usually.

Dual ascent v § } 8

https://fmin.xyz
https://hse25.fmin.xyz
https://github.com/MerkulovDaniil/hse25
https://t.me/fminxyz

Dual ascent v § } 9

https://fmin.xyz
https://hse25.fmin.xyz
https://github.com/MerkulovDaniil/hse25
https://t.me/fminxyz

Convergence guarantees

The following results hold from combining the last fact with what we already know about gradient descent:1

• If f is strongly convex with parameter µ, then dual gradient ascent with constant step sizes αk = µ converges
at sublinear rate O(1

ϵ
).

• If f is strongly convex with parameter µ and ∇f is Lipschitz with parameter L, then dual gradient ascent with
step sizes αk = 2

1
µ

+ 1
L

converges at linear rate O(log(1
ϵ
)).

Note that this describes convergence in the dual. (Convergence in the primal requires more assumptions)

1This is ignoring the role of A, and thus reflects the case when the singular values of A are all close to 1. To be more precise, the step sizes
here should be: µ

σmax(A)2 (first case) and 2
σmax(A)2

µ
+ σmin(A)2

L

(second case).
Dual ascent v § } 9

https://fmin.xyz
https://hse25.fmin.xyz
https://github.com/MerkulovDaniil/hse25
https://t.me/fminxyz

Dual decomposition
Consider

min
x

B∑
i=1

fi(xi) subject to Ax = b

Here x = (x1, . . . , xB) ∈ Rn divides into B blocks of variables, with each xi ∈ Rni . We can also partition A
accordingly:

A = [A1 . . . AB], where Ai ∈ Rm×ni

Simple but powerful observation, in calculation of subgradient, is that the minimization decomposes into B separate
problems:

xnew ∈ arg min
x

(
B∑

i=1

fi(xi) + uT Ax

)
⇒ xnew

i ∈ arg min
xi

(
fi(xi) + uT Aixi

)
, i = 1, . . . , B

xk
i ∈ arg min

xi

(
fi(xi) + (uk−1)T Aixi

)
, i = 1, . . . , B

uk
i = uk−1

i + αk

(
Aix

k
i − bi

)
, i = 1, . . . , B

Can think of these steps as:
• Broadcast: Send u to each of the B

processors, each optimizes in parallel to find xi.
• Gather: Collect Aixi from each processor,

update the global dual variable u.

Dual ascent v § } 10

https://fmin.xyz
https://hse25.fmin.xyz
https://github.com/MerkulovDaniil/hse25
https://t.me/fminxyz

Dual decomposition
Consider

min
x

B∑
i=1

fi(xi) subject to Ax = b

Here x = (x1, . . . , xB) ∈ Rn divides into B blocks of variables, with each xi ∈ Rni . We can also partition A
accordingly:

A = [A1 . . . AB], where Ai ∈ Rm×ni

Simple but powerful observation, in calculation of subgradient, is that the minimization decomposes into B separate
problems:

xnew ∈ arg min
x

(
B∑

i=1

fi(xi) + uT Ax

)
⇒ xnew

i ∈ arg min
xi

(
fi(xi) + uT Aixi

)
, i = 1, . . . , B

xk
i ∈ arg min

xi

(
fi(xi) + (uk−1)T Aixi

)
, i = 1, . . . , B

uk
i = uk−1

i + αk

(
Aix

k
i − bi

)
, i = 1, . . . , B

Can think of these steps as:
• Broadcast: Send u to each of the B

processors, each optimizes in parallel to find xi.
• Gather: Collect Aixi from each processor,

update the global dual variable u.
Dual ascent v § } 10

https://fmin.xyz
https://hse25.fmin.xyz
https://github.com/MerkulovDaniil/hse25
https://t.me/fminxyz

Inequality constraints

Consider the optimization problem:

min
x

B∑
i=1

fi(xi) subject to
B∑

i=1

Aixi ≤ b

Using dual decomposition, specifically the projected subgradient method, the iterative steps can be expressed as:
• The primal update step:

xk
i ∈ arg min

xi

[
fi(xi) +

(
uk−1)T

Aixi

]
, i = 1, . . . , B

• The dual update step:

uk =

(
uk−1 + αk

(
B∑

i=1

Aix
k
i − b

))
+

where (u)+ denotes the positive part of u, i.e., (u+)i = max{0, ui}, for i = 1, . . . , m.

Dual ascent v § } 11

https://fmin.xyz
https://hse25.fmin.xyz
https://github.com/MerkulovDaniil/hse25
https://t.me/fminxyz

Inequality constraints

Consider the optimization problem:

min
x

B∑
i=1

fi(xi) subject to
B∑

i=1

Aixi ≤ b

Using dual decomposition, specifically the projected subgradient method, the iterative steps can be expressed as:
• The primal update step:

xk
i ∈ arg min

xi

[
fi(xi) +

(
uk−1)T

Aixi

]
, i = 1, . . . , B

• The dual update step:

uk =

(
uk−1 + αk

(
B∑

i=1

Aix
k
i − b

))
+

where (u)+ denotes the positive part of u, i.e., (u+)i = max{0, ui}, for i = 1, . . . , m.

Dual ascent v § } 11

https://fmin.xyz
https://hse25.fmin.xyz
https://github.com/MerkulovDaniil/hse25
https://t.me/fminxyz

Augmented Lagrangian method aka method of multipliers
Dual ascent disadvantage: convergence requires strong conditions. Augmented Lagrangian method transforms the
primal problem:

min
x

f(x) + ρ

2 ∥Ax − b∥2

s.t. Ax = b

where ρ > 0 is a parameter. This formulation is clearly equivalent to the original problem. The problem is strongly
convex if matrix A has full column rank.

Dual gradient ascent: The iterative updates are given by:

xk = arg min
x

[
f(x) + (uk−1)T Ax + ρ

2 ∥Ax − b∥2
]

uk = uk−1 + ρ(Axk − b)

• Advantage: The augmented Lagrangian gives better convergence.
• Disadvantage: We lose decomposability! (Separability is ruined)
• Notice step size choice αk = ρ in dual algorithm.

Augmented Lagrangian method v § } 12

https://fmin.xyz
https://hse25.fmin.xyz
https://github.com/MerkulovDaniil/hse25
https://t.me/fminxyz

Augmented Lagrangian method aka method of multipliers
Dual ascent disadvantage: convergence requires strong conditions. Augmented Lagrangian method transforms the
primal problem:

min
x

f(x) + ρ

2 ∥Ax − b∥2

s.t. Ax = b

where ρ > 0 is a parameter. This formulation is clearly equivalent to the original problem. The problem is strongly
convex if matrix A has full column rank.

Dual gradient ascent: The iterative updates are given by:

xk = arg min
x

[
f(x) + (uk−1)T Ax + ρ

2 ∥Ax − b∥2
]

uk = uk−1 + ρ(Axk − b)

• Advantage: The augmented Lagrangian gives better convergence.
• Disadvantage: We lose decomposability! (Separability is ruined)
• Notice step size choice αk = ρ in dual algorithm.

Augmented Lagrangian method v § } 12

https://fmin.xyz
https://hse25.fmin.xyz
https://github.com/MerkulovDaniil/hse25
https://t.me/fminxyz

Augmented Lagrangian method aka method of multipliers
Dual ascent disadvantage: convergence requires strong conditions. Augmented Lagrangian method transforms the
primal problem:

min
x

f(x) + ρ

2 ∥Ax − b∥2

s.t. Ax = b

where ρ > 0 is a parameter. This formulation is clearly equivalent to the original problem. The problem is strongly
convex if matrix A has full column rank.

Dual gradient ascent: The iterative updates are given by:

xk = arg min
x

[
f(x) + (uk−1)T Ax + ρ

2 ∥Ax − b∥2
]

uk = uk−1 + ρ(Axk − b)

• Advantage: The augmented Lagrangian gives better convergence.
• Disadvantage: We lose decomposability! (Separability is ruined)
• Notice step size choice αk = ρ in dual algorithm.

Augmented Lagrangian method v § } 12

https://fmin.xyz
https://hse25.fmin.xyz
https://github.com/MerkulovDaniil/hse25
https://t.me/fminxyz

Colab Example

• Dual subgradient and Augmented Lagrangian methods Comparison 3Open in Colab.

Augmented Lagrangian method v § } 13

https://colab.research.google.com/drive/1__lX2Oi1wQbAREfzRJex1ZUgA58reZu1?usp=sharing
https://fmin.xyz
https://hse25.fmin.xyz
https://github.com/MerkulovDaniil/hse25
https://t.me/fminxyz

Alternating Direction Method of Multipliers (ADMM)

Alternating direction method of multipliers or ADMM aims for the best of both worlds. Consider the following
optimization problem:

Minimize the function:
min
x,z

f(x) + g(z)

s.t. Ax + Bz = c

We augment the objective to include a penalty term for constraint violation:

min
x,z

f(x) + g(z) + ρ

2 ∥Ax + Bz − c∥2

s.t. Ax + Bz = c

where ρ > 0 is a parameter. The augmented Lagrangian for this problem is defined as:

Lρ(x, z, u) = f(x) + g(z) + uT (Ax + Bz − c) + ρ

2 ∥Ax + Bz − c∥2

Introduction to ADMM v § } 14

https://fmin.xyz
https://hse25.fmin.xyz
https://github.com/MerkulovDaniil/hse25
https://t.me/fminxyz

Alternating Direction Method of Multipliers (ADMM)

Alternating direction method of multipliers or ADMM aims for the best of both worlds. Consider the following
optimization problem:

Minimize the function:
min
x,z

f(x) + g(z)

s.t. Ax + Bz = c

We augment the objective to include a penalty term for constraint violation:

min
x,z

f(x) + g(z) + ρ

2 ∥Ax + Bz − c∥2

s.t. Ax + Bz = c

where ρ > 0 is a parameter. The augmented Lagrangian for this problem is defined as:

Lρ(x, z, u) = f(x) + g(z) + uT (Ax + Bz − c) + ρ

2 ∥Ax + Bz − c∥2

Introduction to ADMM v § } 14

https://fmin.xyz
https://hse25.fmin.xyz
https://github.com/MerkulovDaniil/hse25
https://t.me/fminxyz

Alternating Direction Method of Multipliers (ADMM)

Alternating direction method of multipliers or ADMM aims for the best of both worlds. Consider the following
optimization problem:

Minimize the function:
min
x,z

f(x) + g(z)

s.t. Ax + Bz = c

We augment the objective to include a penalty term for constraint violation:

min
x,z

f(x) + g(z) + ρ

2 ∥Ax + Bz − c∥2

s.t. Ax + Bz = c

where ρ > 0 is a parameter. The augmented Lagrangian for this problem is defined as:

Lρ(x, z, u) = f(x) + g(z) + uT (Ax + Bz − c) + ρ

2 ∥Ax + Bz − c∥2

Introduction to ADMM v § } 14

https://fmin.xyz
https://hse25.fmin.xyz
https://github.com/MerkulovDaniil/hse25
https://t.me/fminxyz

Alternating Direction Method of Multipliers (ADMM)

ADMM repeats the following steps, for k = 1, 2, 3, . . .:

1. Update x:
xk = arg min

x
Lρ(x, zk−1, uk−1)

2. Update z:
zk = arg min

z
Lρ(xk, z, uk−1)

3. Update u:
uk = uk−1 + ρ(Axk + Bzk − c)

Note: The usual method of multipliers would replace the first two steps by a joint minimization:

(x(k), z(k)) = arg min
x,z

Lρ(x, z, u(k−1))

Introduction to ADMM v § } 15

https://fmin.xyz
https://hse25.fmin.xyz
https://github.com/MerkulovDaniil/hse25
https://t.me/fminxyz

Alternating Direction Method of Multipliers (ADMM)

ADMM repeats the following steps, for k = 1, 2, 3, . . .:

1. Update x:
xk = arg min

x
Lρ(x, zk−1, uk−1)

2. Update z:
zk = arg min

z
Lρ(xk, z, uk−1)

3. Update u:
uk = uk−1 + ρ(Axk + Bzk − c)

Note: The usual method of multipliers would replace the first two steps by a joint minimization:

(x(k), z(k)) = arg min
x,z

Lρ(x, z, u(k−1))

Introduction to ADMM v § } 15

https://fmin.xyz
https://hse25.fmin.xyz
https://github.com/MerkulovDaniil/hse25
https://t.me/fminxyz

ADMM Summary

• ADMM is one of the key and popular recent optimization methods.
• It is implemented in many solvers and is often used as a default method.
• The non-standard formulation of the problem itself, for which ADMM is invented, turns out to include many

important special cases. “Unusual” variable y often plays the role of an auxiliary variable.
• Here the penalty is an additional modification to stabilize and accelerate convergence. It is not necessary to

make ρ very large.

Introduction to ADMM v § } 16

https://fmin.xyz
https://hse25.fmin.xyz
https://github.com/MerkulovDaniil/hse25
https://t.me/fminxyz

	Reminder: conjugate functions
	Dual ascent
	Augmented Lagrangian method
	Introduction to ADMM

