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Accurate, Large Minibatch SGD. Motivation

� Main Pros of Big Data

The increasing data and model scale is rapidly improving accuracy

, Main Cons of Big Data

As model and data scale grow, so does training time

Solution: Use distributed SGD with large batch size to make more efficient iterations
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Accurate, Large Minibatch SGD. Problem
Loss function

L(w) = 1
|X|

∑
x∈X

l(x, w)

One Iteration of Minibatch SGD (batch size is n)

wt+1 = wt − η
1
n

∑
x∈B

∇l(x, wt)

k Iterations of Minibatch SGD (batch size is n)

wt+k = wt − η
1
n

∑
j<k

∑
x∈B|

∇l(x, wt+j)

One Large Batch Iteration of Minibatch SGD (batch size is kn)

ŵt+1 = wt − η̂
1

kn

∑
j<k

∑
x∈B|

∇l(x, wt)

Desired due to multi-GPU training: ŵt+1 ∼ wt+k
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Accurate, Large Minibatch SGD. Main idea

Desired due to multi-GPU training: ŵt+1 ∼ wt+k

� Main Paper Asumption

If we could assume ∇l(x, wt) ∼ ∇l(x, wt+j) for j < k, then setting η̂ = kη would yield ŵt+1 ∼ wt+k

ñ Question

When is condition ∇l(x, wt) ∼ ∇l(x, wt+j) clearly not hold?

1. The network changes rapidly in initial training
2. Very large k causes very large η̂ and makes training too unstable
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Accurate, Large Minibatch SGD. Solving assumption problems

ñ Question

How would you struggle with assumption problems?

Gradual warmup. Iteration-wise linear scheduler for start value η̂ = η and finish value η̂ = kη after ∼ 5 epochs.
• avoids a sudden increase of the learning rate

Constant per-worker sample size. For global batch size kn we keep the per-worker sample size n constant when
changing the number of workers k.

• extremly important for Batch Normalization!
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Accurate, Large Minibatch SGD. Results on ImageNet
The training curves
closely match the
baseline (aside from
the warmup period) up
through 8k
minibatches.
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Accurate, Large Minibatch SGD. Results on ImageNet
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Both sets of curves match closely after training for
sufficient epochs.
Note that the BN statistics (for inference only) are
computed using running average, which is updated less
frequently with a large minibatch and thus is noisier in
early training (this explains the larger variation of the
validation error in early epochs).
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Reduce memory usage. CPU Offloading

• Offloading the weights to the CPU and only loading them on the GPU when performing the forward pass
• CPU offloading works on submodules rather than whole models.
• Inference is much slower due to the iterative uploading and offloading.
• Colab Example 3Open in Colab.
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Reduce memory usage. Model Offloading

• CPU Offloading makes inference slower because submodules are moved to GPU as needed, and they’re
immediately returned to the CPU when a new module runs.

• Full-model offloading is an alternative that moves whole models to the GPU, instead of handling each model’s
constituent submodules.

• During model offloading, only one of the main components of the pipeline (typically the text encoder, UNet or
VAE) is placed on the GPU while the others wait on the CPU.

• Colab Example 3Open in Colab.
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Reduce memory usage. Quantization
• Quantization maps a floating point value x ∈ [α, β] to a b-bit integer xq ∈ [αq, βq].
• The quantization process is defined as

xq = clip
(

round
(1

s
x + z

)
, αq, βq

)
And the de-quantization process is defined as

x = s(xq − z)

The value of scale s and zero point z are

s = β − α

βq − αq
(1)

z = round
(βαq − αβq

β − α

)
(2)

(3)

Note that z is an integer and s is a positive floating point number.
• Quantization allows to perform a lot of heavy DL-operations (e.g. matrix maltiplication) in integer scope using

efficient integer hardware (NVIDIA Tensor Core or Tensor Core IMMA operations) and algorithms.
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Reduce memory usage. Quantization

• For more theory look at Quantization for Neural Networks , Lei Mao: ¥.
• Colab Example 3Open in Colab.
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Mixed Precision Training (MPT)

Mixed Precision Training is a technique where both 16-bit (FP16) and 32-bit (FP32) floating-point types are used
during neural network training. This approach accelerates training and reduces memory usage without compromising
model accuracy.
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Why is MPT beneficial?

• Faster Training: Utilizing FP16 allows for faster computations, especially on modern GPUs equipped with
Tensor Cores, such as NVIDIA Volta, Turing, and Ampere architectures. This can lead to training speedups of
2–3 times.

• Reduced Memory Consumption: FP16 uses half the memory compared to FP32, enabling the training of
larger models or the use of larger batch sizes.

• Maintained Accuracy: With proper implementation, mixed precision training maintains the same level of
model accuracy as full precision (FP32) training.
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How does it work?
1. Autocasting: Certain operations, like matrix multiplications and convolutions, are performed in FP16, while

others that require higher precision remain in FP32. This is managed automatically in frameworks like PyTorch
and TensorFlow.

2. Loss Scaling: To prevent small gradient values from underflowing in FP16, the loss is scaled up during
backpropagation and then scaled down before the optimizer step.

PyTorch example:
from torch.cuda.amp import autocast, GradScaler

scaler = GradScaler()

for data, target in dataloader:
optimizer.zero_grad()
with autocast():

output = model(data)
loss = loss_fn(output, target)

scaler.scale(loss).backward()
scaler.step(optimizer)
scaler.update()
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When to use Mixed Precision Training?

• Training on Modern GPUs: Particularly effective on GPUs with Tensor Cores (e.g., NVIDIA V100, A100).
• Resource-Constrained Environments: Reduces memory consumption and accelerates training, beneficial when

computational resources are limited.
• See also an interesting blog post on the topic of Mixed Precision Training P
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