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Sharpness-Aware Minimization 1

Figure 1: A sharp minimum to which a ResNet trained with
SGD converged.

Figure 2: A wide minimum to which the same ResNet trained
with SAM converged.

Sharpness-Aware Minimization (SAM) is a procedure that aims to improve model generalization by simultane-
ously minimizing loss value and loss sharpness.

1Foret, Pierre, et al. "Sharpness-aware minimization for efficiently improving generalization." (2020)
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Learning setup

The training dataset drawn i.i.d. from a distribution D:

S = {(xi, yi)}n
i=1,

where xi – feature vector and yi – label.

The training set loss:

LS = 1
n

n∑
i=1

l(w, xi, yi),

where l – per-data-point loss function, w – parameters.

The population loss:
LD = E(x,y)[l(w, x, y)]
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What is sharpness?

ñ Theorem

For any ρ > 0, with high probability over training set S generated from distribution D,

LD(w) ≤ max
∥ϵ∥2≤ρ

LS(w + ϵ) + h
(
∥w∥2

2/ρ2)
,

where h : R+ → R+is a strictly increasing function (under some technical conditions on LD(w) ).

Adding and subtracting LS(w):[
max

∥∈∥2≤ρ
LS(w + ϵ) − LS(w)

]
+ LS(w) + h

(
∥w∥2

2/ρ2)
The term in square brackets captures the sharpness of LS at w by measuring how quickly the training loss can be
increased by moving from w to a nearby parameter value.
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Sharpness-Aware Minimization

The function h is removed in favor of a simpler constant λ. The authors propose selecting parameter values by
solving the following Sharpness-Aware Minimization (SAM) problem:

min
w

LSAM
S (w) + λ∥w∥2

2 where LSAM
S (w) ≜ max

∥ϵ∥p≤ρ
LS(w + ϵ),

with ρ ≥ 0 as hyperparameter and p in [1, ∞] (a little generalization, though p = 2 is empirically the best choice).
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How to minimize LSAM
S ?

In order to minimize LSAM
S an efficient approximation of its gradient is used. A first step is to consider the

first-order Taylor expansion of LS(w + ϵ):

ϵ∗(w) ≜ arg max
∥ϵ∥p≤ρ

LS(w + ϵ) ≈ arg max
∥ϵ∥p≤ρ

LS(w) + ϵT ∇wLS(w) = arg max
∥ϵ∥p≤ρ

ϵT ∇wLS(w).

The last expression is just the argmax of the dot product of the vectors ϵ and ∇wLS(w), and it is well known which
is the argument that maximizes it:

ϵ̂(w) = ρ sign (∇wLS(w)) |∇wLS(w)|q−1 /
(
∥∇wLS(w)∥q

q

)1/p
,

where 1/p + 1/q = 1.

Thus
∇wLSAM

S (w) ≈ ∇wLS(w + ϵ̂(w)) = d(w + ϵ̂(w))
dw

∇wLS(w)
∣∣∣∣
w+ϵ̂(w)

= ∇wLS(w)|w+ϵ̂(w) + dϵ̂(w)
dw

∇wLS(w)
∣∣∣∣
w+ϵ̂(w)
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Sharpness-Aware Minimization
Modern frameworks can easily compute the preceding approximation. However, to speed up the computation,
second-order terms can be dropped obtaining:

∇wLSAM
S (w) ≈ ∇wLS(w)

∣∣
w+ϵ̂(w)

Figure 3: SAM pseudo-code
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SAM results

Figure 4: Error rate reduction obtained by switching to SAM. Each point is a different dataset / model / data augmentation.
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Why VR methods do not work in training neural networks? 2
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Figure 5: DenseNet
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Figure 6: Small ResNet
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Figure 7: LeNet-5
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Figure 8: ResNet-110

• SVRG / SAG provide convincing gains in convex problems,
but on CIFAR-10 (LeNet-5) and ImageNet (ResNet-18),
they do not outperform standard SGD.

• The measured ratio “variance of SGD / variance of SVRG”
remains ≲ 2 for most layers - meaning the actual noise
reduction is minimal.

• Possible reasons:
• Data augmentation makes the reference gradient gref

outdated after just a few minibatches.
• BatchNorm and Dropout introduce internal stochasticity

that cannot be compensated by the past gref.
• An additional full pass through the dataset (to compute

gref) consumes the potential iteration savings.
• “Streaming” modifications of SVRG, designed to handle

augmentation, reduce theoretical bias but still lose to SGD
in both time and quality.

• Conclusion: Existing variance reduction methods are
impractical for modern deep networks; future solutions
should take into account the stochastic nature of the
architecture and data (augmentation, BatchNorm,
Dropout).

2Defazio, A., Bottou, L. (2019). On the ineffectiveness of variance reduced optimization for deep learning. Advances in Neural Information
Processing Systems, 32.
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Figure 5: DenseNet
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Figure 6: Small ResNet
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Figure 7: LeNet-5
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Figure 8: ResNet-110

• SVRG / SAG provide convincing gains in convex problems,
but on CIFAR-10 (LeNet-5) and ImageNet (ResNet-18),
they do not outperform standard SGD.

• The measured ratio “variance of SGD / variance of SVRG”
remains ≲ 2 for most layers - meaning the actual noise
reduction is minimal.

• Possible reasons:
• Data augmentation makes the reference gradient gref

outdated after just a few minibatches.
• BatchNorm and Dropout introduce internal stochasticity

that cannot be compensated by the past gref.
• An additional full pass through the dataset (to compute

gref) consumes the potential iteration savings.
• “Streaming” modifications of SVRG, designed to handle

augmentation, reduce theoretical bias but still lose to SGD
in both time and quality.

• Conclusion: Existing variance reduction methods are
impractical for modern deep networks; future solutions
should take into account the stochastic nature of the
architecture and data (augmentation, BatchNorm,
Dropout).

2Defazio, A., Bottou, L. (2019). On the ineffectiveness of variance reduced optimization for deep learning. Advances in Neural Information
Processing Systems, 32.
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they do not outperform standard SGD.
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gref) consumes the potential iteration savings.
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augmentation, reduce theoretical bias but still lose to SGD
in both time and quality.

• Conclusion: Existing variance reduction methods are
impractical for modern deep networks; future solutions
should take into account the stochastic nature of the
architecture and data (augmentation, BatchNorm,
Dropout).
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Mode Connectivity 3

Figure 9: The l2-regularized cross-entropy train loss surface of a ResNet-164 on CIFAR-100, as a function of network weights
in a two-dimensional subspace. In each panel, the horizontal axis is fixed and is attached to the optima of two independently
trained networks. The vertical axis changes between panels as we change planes (defined in the main text). Left: Three
optima for independently trained networks. Middle and Right: A quadratic Bezier curve, and a polygonal chain with one bend,
connecting the lower two optima on the left panel along a path of near-constant loss. Notice that in each panel a direct linear
path between each mode would incur high loss.

3Garipov, T., Izmailov, P., Podoprikhin, D., Vetrov, D. P., Wilson, A. G. (2018). Loss surfaces, mode connectivity, and fast ensembling of
dnns. Advances in neural information processing systems, 31.
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Curve-Finding Procedure

• Weights of pretrained networks:

ŵ1, ŵ2 ∈ R|net|

• Define parametric curve: ϕθ(·) : [0, 1] → R|net|

ϕθ(0) = ŵ1, ϕθ(1) = ŵ2

• DNN loss function:

L(w)
• Minimize averaged loss w.r.t. θ:

minimize
θ

ℓ(θ) =
∫ 1

0
L (ϕθ(t)) dt = Et∼U(0,1)L (ϕθ(t))
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• DNN loss function:

L(w)
• Minimize averaged loss w.r.t. θ:

minimize
θ

ℓ(θ) =
∫ 1

0
L (ϕθ(t)) dt = Et∼U(0,1)L (ϕθ(t))

Mode Connectivity v § } 14

https://fmin.xyz
https://hse25.fmin.xyz
https://github.com/MerkulovDaniil/hse25
https://t.me/fminxyz


Grokking4

• After achieving zero train loss the weights
continue evolving in a kind of random
walk manner

• It is possible that they slowly drift to a
wider minima

• Recently discovered grokking effect
confirms this hypo

Figure 10: Grokking: A dramatic example of generalization far after
overfitting on an algorithmic dataset.

4Power, Alethea, et al. “Grokking: Generalization beyond overfitting on small algorithmic datasets.” (2022).
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Double Descent5

Figure 11: Curves for training risk (dashed line) and test risk (solid line). (a) The classical U-shaped risk curve arising from the
bias-variance trade-off. (b) The double descent risk curve, which incorporates the U-shaped risk curve (i.e., the “classical”
regime) together with the observed behavior from using high capacity function classes (i.e., the “modern” interpolating regime),
separated by the interpolation threshold. The predictors to the right of the interpolation threshold have zero training risk.

5Belkin, Mikhail, et al. “Reconciling modern machine-learning practice and the classical bias–variance trade-off.” (2019)
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Shampoo 6

Stands for Stochastic Hessian-Approximation Matrix Preconditioning for Optimization Of deep networks. It’s a
method inspired by second-order optimization designed for large-scale deep learning.

Core Idea: Approximates the full-matrix AdaGrad pre conditioner using efficient matrix structures, specifically
Kronecker products.

For a weight matrix W ∈ Rm×n, the update involves preconditioning using approximations of the statistics matrices
L ≈

∑
k

GkGT
k and R ≈

∑
k

GT
k Gk, where Gk are the gradients.

Simplified concept:

1. Compute gradient Gk.
2. Update statistics Lk = βLk−1 + (1 − β)GkGT

k and Rk = βRk−1 + (1 − β)GT
k Gk.

3. Compute preconditioners PL = L
−1/4
k and PR = R

−1/4
k . (Inverse matrix root)

4. Update: Wk+1 = Wk − αPLGkPR.

Notes:
• Aims to capture curvature information more effectively than first-order methods.
• Computationally more expensive than Adam but can converge faster or to better solutions in terms of steps.
• Requires careful implementation for efficiency (e.g., efficient computation of inverse matrix roots, handling large

matrices).
• Variants exist for different tensor shapes (e.g., convolutional layers).
6Gupta, V., Koren, T. and Singer, Y., 2018, July. Shampoo: Preconditioned stochastic tensor optimization. In International Conference on

Machine Learning (pp. 1842-1850). PMLR.Shampoo and Muon v § } 18
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Muon 7 8 9

Wt+1 = Wt − η(GtG
⊤
t )−1/4Gt(G⊤

t Gt)−1/4

= Wt − η(US2U⊤)−1/4(USV ⊤)(V S2V ⊤)−1/4

= Wt − η(US−1/2U⊤)(USV ⊤)(V S−1/2V ⊤)

= Wt − ηUS−1/2SS−1/2V ⊤

= Wt − ηUV ⊤

7K. Jordan blogpost "Muon: An optimizer for hidden layers in neural networks". 2024.
8J. Bernstein blogpost "Deriving Muon". 2025.
9Kovalev, D. (2025). Understanding Gradient Orthogonalization for Deep Learning via Non-Euclidean Trust-Region Optimization. arXiv

preprint arXiv:2503.12645.
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Muon comparison with AdamW on LogReg

3 Simple comparison of Muon and AdamW on small LogReg problem
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Additional materials

• Å D. Vetrov "Surprising properties of loss lansdcape in overparametrized models"
• Å V. Goloshapov "What grokking is not about"
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