Advanced stochastic methods. Variance reduction

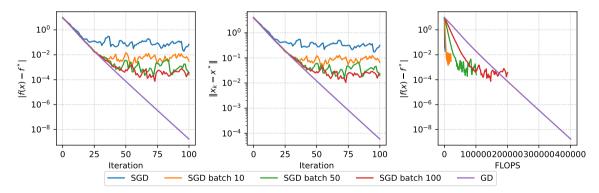
Seminar

Optimization for ML. Faculty of Computer Science. HSE University

Main problem of SGD

$$f(x) = \frac{\mu}{2} \|x\|_2^2 + \frac{1}{m} \sum_{i=1}^m \log(1 + \exp(-y_i \langle a_i, x \rangle)) \to \min_{x \in \mathbb{R}^n}$$

Strongly convex binary logistic regression. m=200, n=10, mu=1.



Key idea of variance reduction

Principle: reducing variance of a sample of X by using a sample from another random variable Y with known expectation:

$$Z_{\alpha} = \alpha(X - Y) + \mathbb{E}[Y]$$

•
$$\mathbb{E}[Z_{\alpha}] = \alpha \mathbb{E}[X] + (1 - \alpha) \mathbb{E}[Y]$$

• $\operatorname{var}(Z_{\alpha}) = \alpha^{2} (\operatorname{var}(X) + \operatorname{var}(Y) - 2\operatorname{cov}(X, Y))$

• If $\alpha = 1$: no bias

- If $\alpha < 1$: potential bias (but reduced variance).
- Useful if Y is positively correlated with X.

Application to gradient estimation ?

- SVRG: Let $X = \nabla f_{i_k}(x^{(k-1)})$ and $Y = \nabla f_{i_k}(\tilde{x})$, with $\alpha = 1$ and \tilde{x} stored.
- $\mathbb{E}[Y] = \frac{1}{n} \sum_{i=1}^{n} \nabla f_i(\tilde{x})$ full gradient at \tilde{x} ;
- $X Y = \nabla f_{i_k}(x^{(k-1)}) \nabla f_{i_k}(\tilde{x})$

SVRG (Stochastic Variance Reduced gradient)¹

- Initialize: $\tilde{x} \in \mathbb{R}^d$
- For $i_{epoch} = 1$ to # of epochs
 - Compute all gradients $\nabla f_i(\tilde{x})$; store $\nabla f(\tilde{x}) = \frac{1}{n} \sum_{i=1}^n \nabla f_i(\tilde{x})$
 - Initialize $x_0 = \tilde{x}$
 - For t = 1 to length of epochs (m)

•
$$x_t = x_{t-1} - \alpha \left[\nabla f(\tilde{x}) + \left(\nabla f_{i_t}(x_{t-1}) - \nabla f_{i_t}(\tilde{x}) \right) \right]$$

Notes:

- Two gradient evaluations per inner step.
- Two parameters: length of epochs + step-size γ .
- Linear convergence rate, simple proof.

¹Johnson, R., Zhang, T. (2013). Accelerating stochastic gradient descent using predictive variance reduction. Advances in neural information processing systems, 26.

SAG (Stochastic average gradient)²

- Maintain table, containing gradient g_i of f_i , i = 1, ..., n
- Initialize $x^{(0)}$, and $g^{(0)}_i =
 abla f_i(x^{(0)})$, $i=1,\ldots,n$
- At steps $k = 1, 2, 3, \ldots$, pick random $i_k \in \{1, \ldots, n\}$, then let

$$g_{i_k}^{(k)} =
abla f_{i_k}(x^{(k-1)}) \quad (\text{most recent gradient of } f_{i_k})$$

Set all other $g_i^{(k)} = g_i^{(k-1)}$, $i
eq i_k$, i.e., these stay the same

Update

$$x^{(k)} = x^{(k-1)} - \alpha_k \frac{1}{n} \sum_{i=1}^n g_i^{(k)}$$

- SAG gradient estimates are no longer unbiased, but they have greatly reduced variance
- Isn't it expensive to average all these gradients? Basically just as efficient as SGD, as long we're clever:

$$x^{(k)} = x^{(k-1)} - \alpha_k \underbrace{\left(\frac{1}{n}g_i^{(k)} - \frac{1}{n}g_i^{(k-1)} + \underbrace{\frac{1}{n}\sum_{i=1}^{n}g_i^{(k-1)}}_{\text{old table average}}\right)}_{\text{pew table average}}$$

²Schmidt, M., Le Roux, N., Bach, F. (2017). Minimizing finite sums with the stochastic average gradient. Mathematical Programming, 162, 83-112.

SAG convergence

Assume that $f(x) = \frac{1}{n} \sum_{i=1}^{n} f_i(x)$, where each f_i is differentiable, and ∇f_i is Lipschitz with constant L. Denote $\bar{x}^{(k)} = \frac{1}{k} \sum_{l=0}^{k-1} x^{(l)}$, the average iterate after k-1 steps.

i Theorem

SAG, with a fixed step size $\alpha = \frac{1}{16L}$, and the initialization

$$g_i^{(0)} = \nabla f_i(x^{(0)}) - \nabla f(x^{(0)}), \quad i = 1, \dots, n$$

satisfies

$$\mathbb{E}[f(\bar{x}^{(k)})] - f^{\star} \le \frac{48n}{k} [f(x^{(0)}) - f^{\star}] + \frac{128L}{k} \|x^{(0)} - x^{\star}\|^{2}$$

where the expectation is taken over random choices of indices.

SAG convergence

- Result stated in terms of the average iterate $\bar{x}^{(k)}$, but also can be shown to hold for the best iterate $x_{best}^{(k)}$ seen so far.
- This is $\mathcal{O}\left(\frac{1}{k}\right)$ convergence rate for SAG. Compare to $\mathcal{O}\left(\frac{1}{k}\right)$ rate for GD, and $\mathcal{O}\left(\frac{1}{\sqrt{k}}\right)$ rate for SGD.
- But, the constants are different! Bounds after k steps:
 - GD: $\frac{L \|x^{(0)} x^{\star}\|^2}{2k}$
 - SAG: $\frac{48n[f(x^{(0)})-f^{\star}]+128L\|x^{(0)}-x^{\star}\|^2}{k}$
- So the first term in SAG bound suffers from a factor of n; authors suggest smarter initialization to make $f(x^{(0)}) f^*$ small (e.g., they suggest using the result of n SGD steps).

SAG convergence

Assume further that each f_i is strongly convex with parameter μ .

i Theorem

SAG, with a step size $\alpha = \frac{1}{16L}$ and the same initialization as before, satisfies

$$\mathbb{E}[f(x^{(k)})] - f^{\star} \le \left(1 - \min\left(\frac{\mu}{16L}, \frac{1}{8n}\right)\right)^{k} \left(\frac{3}{2}\left(f(x^{(0)}) - f^{\star}\right) + \frac{4L}{n} \|x^{(0)} - x^{\star}\|^{2}\right)^{k}$$

Notes:

- This is linear convergence rate $\mathcal{O}(\gamma^k)$ for SAG. Compare this to $\mathcal{O}(\gamma^k)$ for GD, and only $\mathcal{O}\left(\frac{1}{k}\right)$ for SGD.
- Like GD, we say SAG is adaptive to strong convexity.
- Proofs of these results not easy: 15 pages, computed-aided!

The name of this anime?

Vinland SAGA ³

SAG:

$$x^{k+1} = x^k - \gamma \left[\frac{f'_j(x^k) - f'_j(\phi^k_j)}{n} + \frac{1}{n} \sum_{i=1}^n f'_i(\phi^k_i) \right]$$

SAGA:

$$x^{k+1} = x^k - \gamma \left[f'_j(x^k) - f'_j(\phi^k_j) + \frac{1}{n} \sum_{i=1}^n f'_i(\phi^k_i) \right]$$

SVRG:

$$x^{k+1} = x^k - \gamma \left[f'_j(x^k) - f'_j(\tilde{x}) + \frac{1}{n} \sum_{i=1}^n f'_i(\tilde{x}) \right]$$

- both SAGA and SVRG are unbiased, compared to SAG, which makes its analysis and convergence guarantees better
- has n^2 times bigger variance
- can be extened to composite optimization by use of proximal operators

³Defazio A. et. al. (2014). SAGA: A Fast Incremental Gradient Method With Support for Non-Strongly Convex Composite Objectives. $f \rightarrow \min_{A \in A} SAGA$

SAGA convergence

Assume that $f(x) = \frac{1}{n} \sum_{i=1}^{n} f_i(x)$, where each f_i is convex, differentiable, and ∇f_i is Lipschitz with constant L. Denote $\bar{x}^{(k)} = \frac{1}{k} \sum_{l=0}^{k-1} x^{(l)}$, the average iterate after k-1 steps.

i Theorem

SAGA, with a fixed step size $\alpha = \frac{1}{3L}$, and the initialization

$$g_i^{(0)} = \nabla f_i(x^{(0)}) - \nabla f(x^{(0)}), \quad i = 1, \dots, n$$

satisfies

$$\mathbb{E}[f(\bar{x}^{(k)})] - f^{\star} \leq \frac{4n}{k} \left[f(x^0) - f^{\star} \right] + \frac{8L}{k} \left[||x^0 - x^{\star}||^2 \right].$$

where the expectation is taken over random choices of indices.

• Due to unbiasedness of the update, the analysis is much less complex than for SAG

- training of neural networks breaks most of assumptions needed for VR method to work
- authors consider SVRG, since it does not need to have full gradient in memory
- results in poor results or even divergence
- in the end authors propose to use VR technique along with adaptivity of AdaGrad, ADAM, etc.

⁴Defazio, A., Bottou, L. (2019). On the ineffectiveness of variance reduced optimization for deep learning. Advances in Neural Information Processing Systems, 32.

Computational experiments

Let's look at computational experiments for

- SGD, SAG and SVRG in JAX **@**.
- SVRG in JAX for VAE 🕏.
- SVRG & SARAH Pure Torch (MLP + RNN)

