Subgradient and Subdifferential

Seminar

Optimization for ML. Faculty of Computer Science. HSE University

Main notions recap

Main notions

For a domain set $E \in \mathbb{R}^n$ and a function $f: E \to \mathbb{R}$:

• A vector $q \in \mathbb{R}^n$ is called **subgradient** of the function f at $x \in E$ if $\forall u \in E$

$$f(y) \ge f(x) + g^T(y - x)$$

• A set $\partial f(x)$ is called **subdifferential** of the function f at $x \in E$ if:

$$\partial f(x) = \{g \in \mathbb{R}^n \mid f(y) \ge f(x) + g^T(y - x)\} \forall y \in E$$

• $f(\cdot)$ is called **subdifferentiable** at point $x \in E$ if $\partial f(x) \neq \emptyset$

Connection between subdifferentiation and convexity

Connection between subdifferentiation and convexity

If $f: E \to \mathbb{R}$ is subdifferentiable on the **convex** subset $S \in E$ then f is convex on S.

- The inverse is generally incorrect
- There is no sense to derive the subgradient of nonconvex function.

Connection between subdifferentiation and differentiation

Connection between subdifferentiation and differentiation

1) If $f: E \to \mathbb{R}$ is convex and differentiable at $x \in \text{int } E$ then $\partial f(x) = \{\Delta f(x)\}$ 2) If $f: E \to \mathbb{R}$ is convex and for $x \in \text{int } E \ \partial f(x) = \{s\}$ then f is differentiable at x and $\Delta f(x) = s$

• Derive the subdifferencial of a differentiable function is overkill.

Subgradient descent

The subgradient method is a straightforward algorithm for minimizing a convex function that is not differentiable:

$$x_{k+1} = x_k - \alpha_k g_k$$

Here $g_k \in \partial f(x_k)$ and $\alpha_k > 0$. There are several well-known α_k selection strategies for this method:

• $\alpha_k = \alpha$ – fixed step size (for G-Lipshitz functions it can give a constant residual $\frac{G^2 \alpha}{2}$ between f^* and f_k)

•
$$\alpha_k = \frac{\gamma}{\|g_k\|_2}$$
 - constant step length $(\|x_{k+1} - x_k\| = \gamma)$

- $\alpha_k: \sum_{k=1}^{\infty} \alpha_k^2 < \infty$ and $\sum_{k=1}^{\infty} \alpha_k = \infty$ square summable but not summable
- $\alpha_k : \lim_{k \to \infty} \alpha_k = 0$ and $\sum_{k=1}^{\infty} \alpha_k = \infty$ nonsummable diminishing

•
$$\alpha_k = \frac{f(x_k) - f^*}{\|g_k\|_2^2}$$
 – Polyak step size

i Question

Find the subgradient of the function

$$f(x) = -\sqrt{x}$$

Subdifferentiation rules 1) $f: E \to \mathbb{R}, x \in E, c > 0$

 $\Rightarrow \partial(cf)(x) = c\partial f(x)$

2) $f: F \to \mathbb{R}, g: G \to \mathbb{R}, x \in F \bigcap G$

 $\Rightarrow \partial (f+g)(x) \supseteq \partial f(x) + \partial g(x)$

3) $T: V \to W = Ax + b, g: W \to \mathbb{R}, x_0 \in V$

 $\Rightarrow \partial(g \circ T)(x_0) \supseteq A^* \, \partial(g)(T(x_0))$

4)
$$f(x) = \max(f_1(x), \dots, f_m(x)), I(x) = \{i \in 1 \dots m | f_i(x) = f(x)\}$$

 $\Rightarrow \partial f(x) \supseteq \operatorname{Conv}(\bigcup_{i \in I(x)} \partial f_i(x))$

When is equality reached?

If abovementioned functions are convex and x is inner point then all inequalities turn into equalities.

i Question

Find the subgradient of the function f(x) + g(x) if

$$f(x) = -\sqrt{x}$$
 when $x \ge 0$
 $g(x) = -\sqrt{-x}$ when $x \le 0$

i Question

1) Find the subdifferential of the function $f(x) = ||Ax - b||_1$; 2) For task $f(x) = \frac{1}{2} ||Ax - b||_2^2 + \lambda ||x||_1 \rightarrow \min_x$ say which lambdas lead to $x_{opt} = 0$

i Exercise

We want to find a vector of weights $w \in \mathbb{R}^d$, defining the linear classifier $sign(w^T x)$. Use SVM with l_2 -regularization:

$$L(w) = \frac{\lambda}{2} ||w||^2 + \frac{1}{N} \sum_{i=1}^{N} \max\left\{0, \ 1 - y_i w^T x_i\right\}$$

Here $\ell_i(w) = \max\left\{0, \ 1 - y_i w^T x_i\right\}$ is a hinge loss. Show that the subgradient at any point is given by:

$$g(w) = \lambda w + rac{1}{N} \sum_{i=1}^{N} egin{cases} -y_i x_i, & ext{if } y_i w^T x_i < 1, \ 0, & ext{otherwise} \end{cases}$$

and check out the sample code here \clubsuit .

i Question

Find the subdifferential $\partial f(x)$ of the function f(x) = exp(|x-1| + |x+1|) for all $x \in \mathbb{R}$

