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Projection

The distance d from point y ∈ Rn to closed set S ⊂ Rn:

d(y, S, ∥ · ∥) = inf{∥x − y∥ | x ∈ S}

We will focus on Euclidean projection (other options are possible) of a point y ∈ Rn on set S ⊆ Rn is a point
projS(y) ∈ S:

projS(y) = 1
2argmin

x∈S

∥x − y∥2
2

• Sufficient conditions of existence of a projection. If S ⊆ Rn - closed set, then the projection on set S exists
for any point.

• Sufficient conditions of uniqueness of a projection. If S ⊆ Rn - closed convex set, then the projection on set
S is unique for any point.

• If a set is open, and a point is beyond this set, then its projection on this set does not exist.
• If a point is in set, then its projection is the point itself.
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Projection

� Bourbaki-Cheney-Goldstein inequality theorem

Let S ⊆ Rn be closed and convex, ∀x ∈ S, y ∈ Rn. Then

⟨y − projS(y), x − projS(y)⟩ ≤ 0 (1)

∥x − projS(y)∥2 + ∥y − projS(y)∥2 ≤ ∥x − y∥2 (2)

� Non-expansive function

A function f is called non-expansive if f is L-Lipschitz with L ≤ 1
1. That is, for any two points x, y ∈ domf ,

∥f(x) − f(y)∥ ≤ L∥x − y∥, where L ≤ 1.

It means the distance between the mapped points is possibly smaller
than that of the unmapped points.

Non-expansive becomes contractive if L < 1.

Figure 1: Obtuse or straight angle should be
for any point x ∈ S
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Problems

ñ Question

Is projection operator non-expansive?

ñ Question

Find projection projS(y) onto S, where S:
• l2-ball with center 0 and radius 1:

S = {x ∈ Rd| ∥x∥2
2 =

d∑
i=1

x2
i ≤ 1}

• Rd-cube:
S = {x ∈ Rd| ai ≤ xi ≤ bi}

• Affine constraints:
S = {x ∈ Rd| Ax = b}
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Task 1

Let LL denote the set of matrices that are L-Lipschitz:

LL =
{

A ∈ Rm×n
∣∣ ∥Ax − Ay∥2 ≤ L∥x − y∥2 ∀x, y ∈ Rn

}
.

A projection problem: Given a matrix M ∈ Rm×n, find the matrix X ∈ LL that is closest to M under a norm:

P(L,ζ) : argmin
X∈LL

1
2∥X − M∥2

ζ .

In fact, this problem has a simple solution when L = 1 and ζ = F : Can you come up with the idea of solution in
such case?
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Task 2

Let S be the nonnegative orthant, find the following projection

projS(y) = arg min
x≥0

∥x − y∥2

where x ≥ 0 means x is inside the nonnegative orthant S = {x | xi ≥ 0 ∀i}.

What if S = {x|l ≤ X ≤ u}?
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Task 3

Spectraplex is a spectrahedron, defined as the set

S := {X ∈ Sn
+ : Tr X = 1} ,

Spectraplex = spectra + simplex, meaning eigenvalues in simplex. Spectraplex is the semidefinite
analogue of simplex.

Question: given a matrix Z ∈ Rn×n, what is the projection of Z onto the set S?

In other words solve the following optimization problem:

arg min
X⪰0, Tr X=1

1
2∥X − Z∥2

F .
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Projected Gradient Descent (PGD). Idea

xk+1 = projS (xk − αk∇f(xk)) ⇔
yk = xk − αk∇f(xk)

xk+1 = projS (yk)

Below you can find example of using this method to attack Neural Net: 3Adversarial Attacks.

Figure 2: Illustration of Projected Gradient Descent algorithm
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Frank-Wolfe Method (FWM). Idea

Figure 3: Illustration of Frank-Wolfe (conditional gradient) algorithm
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Frank-Wolfe Method (FWM). Idea

Figure 4: Illustration of Frank-Wolfe (conditional gradient) algorithm
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Frank-Wolfe Method (FWM). Idea

Figure 5: Illustration of Frank-Wolfe (conditional gradient) algorithm
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Frank-Wolfe Method (FWM). Idea

Figure 6: Illustration of Frank-Wolfe (conditional gradient) algorithm
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Frank-Wolfe Method (FWM). Idea

Figure 7: Illustration of Frank-Wolfe (conditional gradient) algorithm
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Frank-Wolfe Method (FWM). Idea

Figure 8: Illustration of Frank-Wolfe (conditional gradient) algorithm
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Frank-Wolfe Method (FWM). Idea

Figure 9: Illustration of Frank-Wolfe (conditional gradient) algorithm
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Frank-Wolfe Method (FWM). Idea

yk = arg min
x∈S

fI
xk

(x) = arg min
x∈S

⟨∇f(xk), x⟩

xk+1 = γkxk + (1 − γk)yk

Figure 10: Illustration of Frank-Wolfe (conditional gradient) algorithm
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Convergence rate for smooth and convex case
ñ Theorem

Let f : Rn → R be convex and differentiable. Let S ⊆ Rnd be a closed convex set, and assume that there is
a minimizer x∗ of f over S; furthermore, suppose that f is smooth over S with parameter L.

• The Projected Gradient Descent algorithm with stepsize 1
L

achieves the following convergence after
iteration k > 0:

f(xk) − f∗ ≤ L∥x0 − x∗∥2
2

2k
• The Frank-Wolfe Method achieves the following convergence after iteration k > 0:

f(xk) − f∗ ≤ 2L∥x0 − x∗∥2
2

k + 1

� FWM specificity

• FWM convergence rate for the µ-strongly convex functions is O
( 1

k

)
• FWM doesn’t work for non-smooth functions. But modifications do.
• FWM works for any norm.
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Subgradient method: linear approximation + proximity
Recall SubGD step with sub-gradient gk:

xk+1 = xk − αkgk ⇔

xk+1 = argmin
x

f(xk) + g⊤
k (x − xk)︸ ︷︷ ︸

linear approximation to f

+ 1
2α

∥x − xk∥2
2︸ ︷︷ ︸

proximity term

= argmin
x

αg⊤
k x + 1

2∥x − xk∥2
2

Figure 11: ∥ · ∥1 is not spherical symmetrical
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Example. Poor condition
Consider f(x1, x2) = x2

1 · 1
100 + x2

2 · 100.

Figure 12: Poorly conditioned problem in ∥ · ∥2 norm
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Example. Poor condition
Suppose we are at the point: xk = (−10 − 0.1)⊤. SubGD method: xk+1 = xk − α∇f(xk)

∇f(xk) = (2x1

100 2x2 · 100)⊤
∣∣∣
(−10 −0.1)⊤

=
(

−1
5 − 20

)⊤

The problem: due to elongation of the level sets the direction of movement (xk+1 − xk) is ∼⊥ (x∗ − xk).

The solution: Change proximity term

xk+1 = argmin
x

f(xk) + g⊤
k (x − xk)︸ ︷︷ ︸

linear approximation to f

+ 1
2α

(x − xk)⊤I(x − xk)︸ ︷︷ ︸
proximity term

to another
xk+1 = argmin

x

f(xk) + g⊤
k (x − xk)︸ ︷︷ ︸

linear approximation to f

+ 1
2α

(x − xk)⊤Q(x − xk)︸ ︷︷ ︸
proximity term

,

where Q =
(

1
50 0
0 200

)
for this example. And more generally to another function Bϕ(x, y) that measures proximity.
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Example. Poor condition
Let’s find xk+1 for this new algorithm

α∇f(xk) +
(

1
50 0
0 200

)
(x − xk) = 0.

Solving for x, we get

xk+1 = xk − α

(
50 0
0 1

200

)
∇f(xk) = (−10 − 0.1)⊤ − α(−10 − 0.1)⊤

Observation: Changing the proximity term, we change the direction xk+1 − xk. In other words, if we measure
distance using this new way, we also change Lipschitzness.

ñ Question

What is the Lipshitz constant of f at the point (1 1)⊤ for the norm:

∥z∥2 = z⊤
(

50 0
0 1

200

)
z?
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Example. Robust Regression

Square loss ∥Ax − b∥2
2 is very sensitive to outliers.

Instead: min ∥Ax − b∥1. This problem also convex.

Let’s compute L-Lipshitz constant for f(x) = ∥Ax − b∥1:

|∥Ax − b∥1 − ∥Ay − b∥1| ≤ L∥x − y∥2.

To simplify calculation: A = I, b = 0, i.e. f(x) = ∥x∥1.

If we take x = 1d, y = (1 + ε)1d:

|n − (1 + ε)n| = εn ≤ L∥x − y∥2 = ∥ − ε∥2 =
√

(nε2) = ε
√

n.

Finally, we get L =
√

n. As we can see, L is dimension dependent.

ñ Question

Show that if ∥∇f(x)∥∞ ≤ 1, then ∥∇f(x)∥2 ≤
√

d.
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References

Examples for the Mirror Descent was taken from the Å Lecture.
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