Conditional gradient methods. Projected Gradient Descent. Frank-Wolfe Method.
Mirror Descent Algorithm ldea.
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Projection

The distance d from point y € R" to closed set S C R™:

d(y, S, [I- 1) = nf{flz —y|[ | 2 € S}

We will focus on Euclidean projection (other options are possible) of a point y € R™ on set S C R" is a point
projs (y) € S:

. 1 . 2
projs(y) = argmin|z — /3
xE

Sufficient conditions of existence of a projection. If S C R" - closed set, then the projection on set S exists
for any point.

Sufficient conditions of uniqueness of a projection. If S C R™ - closed convex set, then the projection on set
S is unique for any point.

® |f a set is open, and a point is beyond this set, then its projection on this set does not exist.

If a point is in set, then its projection is the point itself.
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Projection

@ Bourbaki-Cheney-Goldstein inequality theorem

Let S C R™ be closed and convex, Vz € S,y € R™. Then
(y — projg (y), x — projg(y)) < 0 (1)

llz = projs ()1 + lly — projs (WII* < [l — y|? 2

@ Non-expansive function

A function f is called non-expansive if f is L-Lipschitz with L <1
! That is, for any two points x,y € domf,

1) = @I < Ll — yll, where L <1.

It means the distance between the mapped points is possibly smaller
than that of the unmapped points.

Non-expansive becomes contractive if L < 1.
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Figure 1: Obtuse or straight angle should be
for any point z € S
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Problems

i Question

Is projection operator non-expansive?

i Question

Find projection projg(y) onto S, where S:
® [>-ball with center 0 and radius 1:

d
S={zer|zl3= 2! <1}

i=1

* R-cube:
S={zeRa <z <b}

® Affine constraints:
S = {x € R Az = b}
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Task 1

Let L1, denote the set of matrices that are L-Lipschitz:

Lp={AeR™"||Az - Ayl < Lllz — y|l» Vz,y eR"}.
A projection problem: Given a matrix M € R™*", find the matrix X € L that is closest to M under a norm:

1
PiL,cy: argmin §||X - M|3.
XeLlr

In fact, this problem has a simple solution when L =1 and ( = F: Can you come up with the idea of solution in

such case?
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Task 2

Let S be the nonnegative orthant, find the following projection

projs(y) = arg min||x — y||2
x>0

where x > 0 means x is inside the nonnegative orthant S = {x | z; > 0 Vi}.

What if § = {z|l < X < u}?
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Task 3

Spectraplex is a spectrahedron, defined as the set
S:={XeS}; TrX =1},
Spectraplex = spectra + simplex, meaning eigenvalues in simplex. Spectraplex is the semidefinite
analogue of simplex.
Question: given a matrix Z € R™*™, what is the projection of Z onto the set S?

In other words solve the following optimization problem:

1
argmin = || X — Z||%.
X»0, Tr X=1 2
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Projected Gradient Descent (PGD). Idea

Yk = Tk — ox V f(2k)

ZTrp+1 = projg (zx — axV f(zy)) & )
Tt1 = projg (k)

Below you can find example of using this method to attack Neural Net: ®Adversarial Attacks.

yr = T — oV f(zg)

k11 = Projs(yk)
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Frank-Wolfe Method (FWM). Idea

Figure 3: lllustration of Frank-Wolfe (conditional gradient) algorithm
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Frank-Wolfe Method (FWM). Idea

Figure 4: lllustration of Frank-Wolfe (conditional gradient) algorithm
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Frank-Wolfe Method (FWM). Idea

Figure 5: lllustration of Frank-Wolfe (conditional gradient) algorithm
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Frank-Wolfe Method (FWM). Idea

Figure 6: lllustration of Frank-Wolfe (conditional gradient) algorithm
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Frank-Wolfe Method (FWM). Idea

Figure 7: lllustration of Frank-Wolfe (conditional gradient) algorithm
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Frank-Wolfe Method (FWM). Idea

Figure 8: lllustration of Frank-Wolfe (conditional gradient) algorithm
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Frank-Wolfe Method (FWM). Idea

Figure 9: lllustration of Frank-Wolfe (conditional gradient) algorithm
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Frank-Wolfe Method (FWM). Idea

_ Y _ .
ye = argmin f;, (z) = argmin(V f(z), )

Zrr1 = Tk + (1 — v)yk

Figure 10: lllustration of Frank-Wolfe (conditional gradient) algorithm
‘f g i’,‘,,‘,’i Lecture recap. Frank-Wolfe Method
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Convergence rate for smooth and convex case

i Theorem

Let f: R™ — R be convex and differentiable. Let S C R"™d be a closed convex set, and assume that there is
a minimizer z* of f over S; furthermore, suppose that f is smooth over S with parameter L.
® The Projected Gradient Descent algorithm with stepsize % achieves the following convergence after

L
iteration k > 0: )
« _ Lllzo — 2"l
_ < e 7 U2

flze) = 7 < %

® The Frank-Wolfe Method achieves the following convergence after iteration k£ > 0:

. _ 2Lflzo — 2"
_ B L U | P
Fla) = "< =57

@ FWM specificity

1
® FWM convergence rate for the u-strongly convex functions is O (E)

® FWM doesn’t work for non-smooth functions. But modifications do.
® FWM works for any norm.

lf%ﬁ}‘i Convergence rates @0 O


https://fmin.xyz
https://hse25.fmin.xyz
https://github.com/MerkulovDaniil/hse25
https://t.me/fminxyz

Subgradient method: linear approximation + proximity
Recall SubGD step with sub-gradient gx:

. 1
T = axgmin f(on) + ol (@ — ) + 5o — 2l

linear approximation to f
= PP

Tk+1 = Tk — Ak Jk proximity term

. T 1 2
= argmin agy = + §Hx — z|2
x

T1

- 1l2

Figure 11: || - ||1 is not spherical symmetrical
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Example. Poor condition

1
Consider f(x1,x2) = 27 - 100 + 3 - 100.

~1

Figure 12: Poorly conditioned problem in || - |[2 norm
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Example. Poor condition

Suppose we are at the point: x = (—10 —0.1)"T. SubGD method: x4 11 = zx — aV f(zx)

221 T ( 1 )T
— 2z -100 =(—= =20
(Too 27271000 | o e 5

Vf(zk)
The problem: due to elongation of the level sets the direction of movement (zx4+1 — x%) is ~L (2% — zx).
The solution: Change proximity term

. 1
ZTp+1 = argmin f(zg) + g,;r(ac — )+ g(.r - a:k)T (z — k)

linear approximation to f -
proximity term

to another 1
: T T
Tp+1 = argmin f(zr) + g (x—:rk)—l—%(x—wk) (z — zx),
x
linear approximation to f -
proximity term
s 0
where Q = 56) 200 for this example. And more generally to another function that measures proximity.
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Example. Poor condition
Let's find 441 for this new algorithm

oV f(zr) + (%) 280) (x —xr) =0.

Solving for x, we get

Th1 = Tk — (500 ?) Vf(zg) = (=10 —0.1)" —a(=10 —0.1)"
200

Observation: Changing the proximity term, we change the direction 411 — x. In other words, if we measure
distance using this new way, we also change Lipschitzness.

1 Question

What is the Lipshitz constant of f at the point (1 1)" for the norm:
ol = =7 (50 ! ) 2?
0 360
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Example. Robust Regression

Square loss || Az — b||3 is very sensitive to outliers.
Instead: min ||Axz — b||;. This problem also convex.

Let's compute L-Lipshitz constant for f(z) = || Az — b||1:
[lAz = bl[x — [|Ay = bl[1| < Lz — yl|2.

To simplify calculation: A=1,b=0, i.e. f(z)=|z:.
If we take z =14, y = (1 4+ ¢)14:

In—(1+e)n| =en < Lz —ylls = || —ells = /(ne?) = ev/m.

Finally, we get . As we can see, L is dimension dependent.

i Question

Show that if || Vf(z)|leo < 1, then |V f(z)]]2 < Vd.
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References

Examples for the Mirror Descent was taken from the @ Lecture.
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