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First interpretation of Newton method (solution of linearized equations)
Consider the function φ(x) : R → R. We
want to find the root of φ(x) = 0.
The whole idea came from building a linear
approximation at the point xk and find its
root, which will be the new iteration point:

φ′(xk) = φ(xk)
xk+1 − xk

We get an iterative scheme:

xk+1 = xk − φ(xk)
φ′(xk) .

Now, if we consider φ(x) ≡ ∇f(x), this will
become a Newton optimization method:

xk+1 = xk −
[
∇2f(xk)

]−1 ∇f(xk)
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Example of Newton linearization method

ñ Question

Apply Newton method to find the root of φ(t) = 0 and determine the convergence area:

φ(t) = t√
1 + t2

1. Let’s find the derivative:
φ′(t) = − t2

(1 + t2) 3
2

+ 1√
1 + t2

2. Then the iteration of the method takes the form:

xk+1 = xk − φ(xk)
φ′(xk) = xk − xk(x2

k + 1) = −x3
k

It is easy to see that the method converges only if |x0| < 1, emphasizing the local nature of the Newton
method.
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Second interpretation of Newton method (local quadratic Taylor approximation
minimizer)
Let us now have the function f(x) and a certain point xk. Let us consider the quadratic approximation of this
function near xk:

fII
xk

(x) = f(xk) + ⟨∇f(xk), x − xk⟩ + 1
2 ⟨∇2f(xk)(x − xk), x − xk⟩.

The idea of the method is to find the point xk+1, that minimizes the function fII(x), i.e. ∇fII(xk+1) = 0.

xk+1 = arg min
x

{
f(xk) + ⟨∇f(xk), x − xk⟩ + 1

2
〈
∇2f(xk)(x − xk), x − xk

〉}
∇fII

xk
(xk+1) = ∇f(xk) + ∇2f(xk)(xk+1 − xk) = 0

∇2f(xk)(xk+1 − xk) = −∇f(xk)[
∇2f(xk)

]−1 ∇2f(xk)(xk+1 − xk) = −
[
∇2f(xk)

]−1 ∇f(xk)

xk+1 = xk −
[
∇2f(xk)

]−1 ∇f(xk).

Pay attention to the restrictions related to the need for the Hessian to be non-degenerate (for the method to
work), as well as for it to be positive definite (for convergence guarantee).
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Newton method as a local quadratic Taylor approximation minimizer

Figure 1: Illustration
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Newton method as a local quadratic Taylor approximation minimizer

Figure 2: Illustration
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Newton method as a local quadratic Taylor approximation minimizer

Figure 3: Illustration
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Newton method as a local quadratic Taylor approximation minimizer

Figure 4: Illustration
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Newton method as a local quadratic Taylor approximation minimizer

Figure 5: Illustration
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Newton method as a local quadratic Taylor approximation minimizer

Figure 6: Illustration
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Newton method vs gradient descent

Figure 7: The loss function is depicted in black, the approximation as a dotted red line

The gradient descent ≡ linear approximation
The Newton method ≡ quadratic approximation
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Convergence

ñ Theorem

Let f(x) be a strongly convex twice continuously differentiable function at Rn, for the second derivative of
which inequalities are executed: µIn ⪯ ∇2f(x) ⪯ LIn. Then Newton method with a constant step

xk+1 = xk −
[
∇2f(xk)

]−1 ∇f(xk)

locally converges to solving the problem with superlinear speed. If, in addition, Hessian is M -Lipschitz
continuous, then this method converges locally to x∗ at a quadratic rate:

∥xk+1 − x∗∥2 ≤
M ∥xk − x∗∥2

2

2
(
µ − M ∥xk − x∗∥2

)

“Converge locally” means that the convergence rate described above is guaranteed to occur only if the starting
point is quite close to the minimum point, in particular ∥x0 − x∗∥ < 2µ

3M
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Affine invariance
ñ Question

Consider a function f(x) and a transformation with an invertible matrix A. Let’s figure out how the iteration
step of Newton method will change after applying the transformation.

1. Let’s x = Ay and g(y) = f(Ay).

2. Consider a quadratic approximation:

g(y + u) ≈ g(y) +
〈
g′(y), u

〉
+ 1

2u⊤g′′(y)u → min
u

u∗ = −
(
g′′(y)

)−1
g′(y) yk+1 = yk −

(
g′′ (yk)

)−1
g′ (yk)

3. Substitute explicit expressions for g′′ (yk) , g′ (yk):

yk+1 = yk −
(
A⊤f ′′ (Ayk) A

)−1
A⊤f ′ (Ayk) = yk − A−1 (

f ′′ (Ayk)
)−1

f ′ (Ayk)

4. Thus, the method’s step is transformed by linear transformation in the same way as the coordinates:

Ayk+1 = Ayk −
(
f ′′ (Ayk)

)−1
f ′ (Ayk) xk+1 = xk −

(
f ′′ (xk)

)−1
f ′ (xk)
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Summary of Newton method

Pros

• quadratic convergence near the solution
• high accuracy of the obtained solution
• affine invariance

Cons

• no global convergence
• it is necessary to store the hessian on each iteration: O(n2) memory
• it is necessary to solve linear systems: O(n3) operations
• the Hessian can be degenerate
• the Hessian may not be positively determined → direction −(f ′′(x))−1f ′(x) may not be a descending

direction 4

Cubic-regularized Newton method and Quasi Newton methods partially solve these problems!
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A bit of base.

Figure 8: We have been making Newton step wrongly all this time!
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Intuition on how to improve Newton method

� Gradient Descent recap

If f has L-Lipschitz gradient, then

f(y) ≤ f(x) + ⟨∇f(x), y − x⟩ + L

2 ∥y − x∥2 .

So, each step of gradient descent for function f with L-Lipschitz gradient is a minimization of majorizing
paraboloid:

xk+1 = arg min
x

{
f(xk) + ⟨∇f(xk), x − xk⟩ + L

2 ∥x − xk∥2
}

= xk − 1
L

∇f(xk).

But if function f has M -Lipschitz Hessian, it is easy to show that

f(y) ≤ f(x) + ⟨∇f(x), y − x⟩ + 1
2

〈
∇2f(x)(y − x), y − x

〉
+ M

6 ∥y − x∥3 .

What if we use the same logic as in gradient descent for function with M-Lipschitz Hessian?

Cubic-regularized Newton method v § } 11
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Cubic-regularized Newton method
If f has M -Lipschitz Hessian, then

f(y) ≤ f(x) + ⟨∇f(x), y − x⟩ + 1
2

〈
∇2f(x)(y − x), y − x

〉
+ M

6 ∥y − x∥3 .

Minimizing the right-hand side of this inequality, we come to Cubic-regularized Newton method

xk+1 = arg min
x

{
f(xk) + ⟨∇f(xk), x − xk⟩ + 1

2
〈
∇2f(xk)(x − xk), x − xk

〉
+ M

6 ∥x − xk∥3
}

. (1)

Question
What problems do you see in (1)?

, Challenges

1. We can’t get explicit expression for xk+1 (without argmin) from (1) as we could in gradient descent.
2. The subproblem inside (1) can be non-convex.

� Solutions

1. We can use numerical methods with fast convergence
2. The subproblem is equivalent to a convex one-dimensional optimization problem. a

3. The subproblem can be made convex with proper regularization coefficient. b

aNesterov, Y. (2018). Lectures on convex optimization. Springer.
bNesterov, Y. (2021). Implementable tensor methods in unconstrained convex optimization. Mathematical Programming.
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1. We can’t get explicit expression for xk+1 (without argmin) from (1) as we could in gradient descent.
2. The subproblem inside (1) can be non-convex.

� Solutions

1. We can use numerical methods with fast convergence
2. The subproblem is equivalent to a convex one-dimensional optimization problem. a

3. The subproblem can be made convex with proper regularization coefficient. b

aNesterov, Y. (2018). Lectures on convex optimization. Springer.
bNesterov, Y. (2021). Implementable tensor methods in unconstrained convex optimization. Mathematical Programming.
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Convergence 1

ñ Theorem

Let f(x) be µ-strongly convex function with M -Lipschitz Hessian. Then, Cubic-regularized Newton Method
(1) converges globally superlinearly as

f(xk+1) − f∗ ≤ γk(f(xk) − f∗), γk → 0.

1Kamzolov, D., et al. (2024). Optami: Global superlinear convergence of high-order methods. Accepted to ICLR 2025.
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Quasi-Newton methods intuition

For the classic task of unconditional optimization f(x) → min
x∈Rn

the general scheme of iteration method is written as:

xk+1 = xk + αkdk

In the Newton method, the dk direction (Newton direction) is set by the linear system solution at each step:

Bkdk = −∇f(xk), Bk = ∇2f(xk)

i.e. at each iteration it is necessary to compute hessian and gradient and solve linear system.

Note here that if we take a single matrix of Bk = In as Bk at each step, we will exactly get the gradient descent
method.

The general scheme of quasi-Newton methods is based on the selection of the Bk matrix so that it tends in some
sense at k → ∞ to the truth value of the Hessian ∇2f(xk).
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Quasi-Newton method Template
Let x0 ∈ Rn, B0 ≻ 0. For k = 1, 2, 3, . . ., repeat:

1. Find dk : Bkdk = −∇f(xk)
2. Update xk+1 = xk + αkdk

3. Compute Bk+1 from Bk

Different quasi-Newton methods implement Step 3 differently. As we will see, commonly we can compute (Bk+1)−1

from (Bk)−1.

Basic Idea: As Bk already contains information about the Hessian, use a suitable matrix update to form Bk+1.

Reasonable Requirement for Bk+1 (motivated by the secant method):

∇f(xk+1) − ∇f(xk) = Bk+1(xk+1 − xk) = Bk+1dk

∆yk = Bk+1dk

In addition to the secant equation, we want:
• Bk+1 to be symmetric
• Bk+1 to be “close” to Bk

• Bk ≻ 0 ⇒ Bk+1 ≻ 0

Quasi Newton methods v § } 15
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Problem 1: Symmetric Rank-One (SR1) update

Let’s try an update with rank-one matrix:
Bk+1 = Bk + auuT

ñ Question

What a and u can we choose? How the update of the Bk+1 would look like?
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SR1 convergence

Bk+1 = Bk + (∆yk − Bkdk)(∆yk − Bkdk)T

(∆yk − Bkdk)T dk

called the symmetric rank-one (SR1) update or Broyden method.

ñ Theorem

Let
• f be twice continuously differentiable, has unique stationary point x∗,
• 0 ≻ ∇2f(x2), ∇2f(x) is Lipschitz continuous in a neighborhood x∗,
• the sequence of matrices {Bk} is bounded in norm,
• |(∆yk − Bkdk)T dk| ≥ r ∥dk∥ ∥∆yk − Bkdk∥ , 0 < r ≪ 1.

Then in SR1 xk → x∗ superlinearly.
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SR1 with inverse update

How can we solve
Bk+1dk+1 = −∇f(xk+1),

in order to take the next step? In addition to propagating Bk to Bk+1, let’s propagate inverses, i.e., Ck = B−1
k to

Ck+1 = (Bk+1)−1.

Sherman-Morrison Formula:
The Sherman-Morrison formula states:

(A + uvT )−1 = A−1 − A−1uvT A−1

1 + vT A−1u

Thus, for the SR1 update, the inverse is also easily updated:

Ck+1 = Ck + (dk − Ck∆yk)(dk − Ck∆yk)T

(dk − Ck∆yk)T ∆yk

In general, SR1 is simple and cheap, but it has a key drawback: it does not preserve positive definiteness.
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Problem 2: Broyden-Fletcher-Goldfarb-Shanno (BFGS) update

Let’s now try a rank-two update:
Bk+1 = Bk + auuT + bvvT .

ñ Question

What a, u, b and v can we choose? How the update of the Bk+1 would look like?
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BFGS convergence

Bk+1 = Bk − BkdkdT
k Bk

dT
k Bkdk

+ ∆yk∆yT
k

dT
k ∆yk

called the Broyden-Fletcher-Goldfarb-Shanno (BFGS) update.

ñ Theorem

Let f(x) be twice continuously differentiable, have Lipschitz Hessian at x∗ and additionally
∑∞

k=1 ∥xk −x∗∥ ≤
∞. Then in BFGS xk → x∗ superlinearly.
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BFGS update with inverse

Woodbury Formula
The Woodbury formula, a generalization of the Sherman-Morrison formula, is given by:

(A + UCV )−1 = A−1 − A−1U(C−1 + V A−1U)−1V A−1

Applied to our case, we get a rank-two update on the inverse C:

Ck+1 = Ck + (dk − Ck∆yk)dT
k

∆yT
k dk

+ dk(dk − Ck∆yk)T

∆yT
k dk

− (dk − Ck∆yk)T ∆yk

(∆yT
k dk)2 dkdT

k

Ck+1 =
(

I − dk∆yT
k

∆yT
k dk

)
Ck

(
I − ∆ykdT

k

∆yT
k dk

)
+ dkdT

k

∆yT
k dk

This formulation ensures that the BFGS update, while comprehensive, remains computationally efficient, requiring
O(n2) operations. Importantly, BFGS update preserves positive definiteness. Recall this means
Bk ≻ 0 ⇒ Bk+1 ≻ 0. Equivalently, Ck ≻ 0 ⇒ Ck+1 ≻ 0
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L-BFGS main idea

• L-BFGS does not store full matrix Bk (Ck), instead it stores two sequences of vectors of length m : m < n
• memory reduces from O(n2) to O(mn), making it more sutable for high-dimensional problems
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Computational experiments

• Computation experiments for Quasi-Newtom, CG and GD 3
• Computational experiments for Newton and Quasi Newton methods §.
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