Newton method. Quasi-Newton methods

Seminar

Optimization for ML. Faculty of Computer Science. HSE University
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First interpretation of Newton method (solution of linearized equations)

A Consider the function p(z) : R — R. We
want to find the root of ¢(z) = 0.
The whole idea came from building a linear
/ approximation at the point xx and find its
S]_Ope SO (wk) root, which will be the new iteration point:
e(zk)

!
Tr) =
@ (oK) PRp——

We get an iterative scheme:

et — g PlEE)
QO(xk) T ey
Now, if we consider ¢(z) = V f(x), this will

become a Newton optimization method:

Lr+1 Tk re1 = a — [V ()] V(@)

Y
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Example of Newton linearization method
i Question

Apply Newton method to find the root of ¢(t) = 0 and determine the convergence area:

t

=

— min
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Example of Newton linearization method
i Question

Apply Newton method to find the root of ¢(t) = 0 and determine the convergence area:

t

=

1. Let's find the derivative:
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Example of Newton linearization method
i Question

Apply Newton method to find the root of ¢(t) = 0 and determine the convergence area:

t

=

1. Let's find the derivative:
12 1

_|_
(1+2)2  Vi+e

Q'(t) = —

2. Then the iteration of the method takes the form:

o (k)

2 3
- 1)=—
(o) zp — 2z + 1) Ty

Tk+1 = Tk —
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Example of Newton linearization method
i Question

Apply Newton method to find the root of ¢(t) = 0 and determine the convergence area:

t

=

1. Let's find the derivative:
12 1

_|_
(1+2)2  Vi+e

Q'(t) = —

2. Then the iteration of the method takes the form:

o (k)

2 3
- 1)=—
(o) zp — 2z + 1) Ty

Tk+1 = Tk —

It is easy to see that the method converges only if |zo| < 1, emphasizing the local nature of the Newton
method.
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Second interpretation of Newton method (local quadratic Taylor approximation
minimizer)

Let us now have the function f(x) and a certain point z. Let us consider the quadratic approximation of this
function near xj:

fi,f(l‘) = f(zr) +(Vf(zr), v — xr) + %(VQf(xk)(z —Tk), T — Tk).
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Second interpretation of Newton method (local quadratic Taylor approximation
minimizer)

Let us now have the function f(x) and a certain point z. Let us consider the quadratic approximation of this
function near xj:

1
for(@) = fx) + (Vf(xn), o — xx) + SV f @) (@ — wk), 2 — ).
The idea of the method is to find the point zj 1, that minimizes the function f'7(z), i.e. Vf 7 (2441) = 0.

pis = axgmin { f(@) + (V@) 2 — 1) + & (V1)@ — )0 — o)}
Vil (@re1) = V(xr) + V2 f(a) (@rsr — ax) =0
V2 f(or) (@rt1 — 1) = =V f (k)
[V2f ()] V() (@ngn — 2x) = = [V f(a)] T Vi (ax)
i = ax — [V2f ()] T VF ().
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Second interpretation of Newton method (local quadratic Taylor approximation
minimizer)

Let us now have the function f(x) and a certain point z. Let us consider the quadratic approximation of this
function near xj:

1
for(@) = fx) + (Vf(xn), o — xx) + SV f @) (@ — wk), 2 — ).
The idea of the method is to find the point zj 1, that minimizes the function f'7(z), i.e. Vf 7 (2441) = 0.

pis = axgmin { f(@) + (V@) 2 — 1) + & (V1)@ — )0 — o)}
Vil (@re1) = V(xr) + V2 f(a) (@rsr — ax) =0
V2 f(or) (@rt1 — 1) = =V f (k)
[V2f ()] V() (@ngn — 2x) = = [V f(a)] T Vi (ax)
i = ax — [V2f ()] T VF ().

Pay attention to the restrictions related to the need for the Hessian to be non-degenerate (for the method to
work), as well as for it to be positive definite (for convergence guarantee).
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Newton method as a local quadratic Taylor approximation minimizer

f(z)

— min
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Newton method as a local quadratic Taylor approximation minimizer
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Newton method as a local quadratic Taylor approximation minimizer

0 L1 Lk
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Newton method as a local quadratic Taylor approximation minimizer

f(z)

0 L1
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Newton method as a local quadratic Taylor approximation minimizer

f(z)

0 L1
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Newton method as a local quadratic Taylor approximation minimizer

f(z)

4

0 Lh+2 Lkt1
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Newton method vs gradient descent

Gradient Step (||g||=1.281474e+01)

Newton Step (||g||=1.232242e+01)

80 80
60 60 -
40 A 40
original /77 N
riginal .
Point f£ AN Original
. Point
] \
204 . 20 N
Update S After
7 ~._ Update
720 N R N
7
,
0 : T . — o
0 2 4 6 2 4 6

Figure 7: The loss function is depicted in black, the approximation as a dotted red line

The gradient descent = linear approximation

The Newton method = quadratic approximation
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Convergence

i Theorem

Let f(x) be a strongly convex twice continuously differentiable function at R™, for the second derivative of
which inequalities are executed: ul, < V2f(z) < LI,. Then Newton method with a constant step
-1
Tp+1 = Tk — [sz(mk)] Vf(xr)

locally converges to solving the problem with superlinear speed. If, in addition, Hessian is M-Lipschitz
continuous, then this method converges locally to ™ at a quadratic rate:

M |lzr — a3

2 (p— M llzy —z7|,)

lzkt1 — 27, <
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Convergence

i Theorem

Let f(x) be a strongly convex twice continuously differentiable function at R™, for the second derivative of
which inequalities are executed: ul, < V2f(z) < LI,. Then Newton method with a constant step
-1
Tp+1 = Tk — [sz(mk)] Vf(xr)

locally converges to solving the problem with superlinear speed. If, in addition, Hessian is M-Lipschitz
continuous, then this method converges locally to ™ at a quadratic rate:

M |lzr — a3

2 (p— M llzy —z7|,)

lzkt1 — 27, <

“Converge locally” means that the convergence rate described above is guaranteed to occur only if the starting
point is quite close to the minimum point, in particular ||xzo — z*|| < ;—1’\2
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Affine invariance

i Question

Consider a function f(x) and a transformation with an invertible matrix A. Let’s figure out how the iteration
step of Newton method will change after applying the transformation.
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Affine invariance

i Question

Consider a function f(x) and a transformation with an invertible matrix A. Let’s figure out how the iteration
step of Newton method will change after applying the transformation.

1. Let's x = Ay and g(y) = f(Ay).
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Affine invariance

i Question

Consider a function f(x) and a transformation with an invertible matrix A. Let’s figure out how the iteration
step of Newton method will change after applying the transformation.

1. Let's z = Ay and g(y) = f(Ay).
2. Consider a quadratic approximation:

gy +u) =~ g(y) + <g'(y), u> + %u—rg”(y)u — muin

—1

w=—(g"W) 9@ e =ys— (9" ) g ()
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Affine invariance

i Question

Consider a function f(x) and a transformation with an invertible matrix A. Let’s figure out how the iteration
step of Newton method will change after applying the transformation.

1. Let's z = Ay and g(y) = f(Ay).
2. Consider a quadratic approximation:

gy +u) =~ g(y) + <g'(y), u> + %u—rg”(y)u — muin

N -1 -1
w==(9"W) 9@ werr=w— (9" (W) 9 (ur)
3. Substitute explicit expressions for g (yx), g (yx):

yerr =y — (AT F (Aye) A) AT (Agi) =y — A7 (F7 (Age)) T F (Age)
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Affine invariance

i Question

Consider a function f(x) and a transformation with an invertible matrix A. Let’s figure out how the iteration
step of Newton method will change after applying the transformation.

1. Let's z = Ay and g(y) = f(Ay).
2. Consider a quadratic approximation:

gy +u) =~ g(y) + <g'(y), u> + %u—rg”(y)u — muin

w=—(0"W) dW) v = — (9" W) g ()
3. Substitute explicit expressions for ¢ (yx), 9" (yx):
yrr =y — (AT (Age) A) T ATS (Age) = g — A7 (£ (Ag)) 7 (Aun)
4. Thus, the method’s step is transformed by linear transformation in the same way as the coordinates:
Ayiy1 = Ayx — (£ (Ayk))’l F(Ayr)  apgr = — (f” (wk))*l I (zk)
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Summary of Newton method

Pros

® quadratic convergence near the solution
® high accuracy of the obtained solution
® affine invariance
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Summary of Newton method

Pros

® quadratic convergence near the solution
® high accuracy of the obtained solution
® affine invariance

Cons
® no global convergence
® it is necessary to store the hessian on each iteration: O(n?) memory
® it is necessary to solve linear systems: O(n®) operations
® the Hessian can be degenerate
e the Hessian may not be positively determined — direction —(f”(z))~"f’(z) may not be a descending

direction @
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Summary of Newton method

Pros

® quadratic convergence near the solution
® high accuracy of the obtained solution
® affine invariance

Cons
® no global convergence
® it is necessary to store the hessian on each iteration: O(n?) memory
® it is necessary to solve linear systems: O(n®) operations
® the Hessian can be degenerate
e the Hessian may not be positively determined — direction —(f”(z))~"f’(z) may not be a descending

direction @

Cubic-regularized Newton method and Quasi Newton methods partially solve these problems!
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A bit of base.

Always has heen.
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Intuition on how to improve Newton method

@ Gradient Descent recap
If f has L-Lipschitz gradient, then

F) < F@) + (Vi @)y —a) + 5y~

So, each step of gradient descent for function f with L-Lipschitz gradient is a minimization of majorizing
paraboloid:

s = argmin { (@) + (VS (on) 0 =20 + 5 llo — o]}

=z — %Vf(ack)

‘f - wl} Cubic-regularized Newton method 0 0
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Intuition on how to improve Newton method

@ Gradient Descent recap
If f has L-Lipschitz gradient, then

F) < F@) + (Vi @)y —a) + 5y~

So, each step of gradient descent for function f with L-Lipschitz gradient is a minimization of majorizing
paraboloid:

sue = argmin { (@) + (VS (on). — ) + 5 o — ]}

But if function f has M-Lipschitz Hessian, it is easy to show that
1 2 M 3
fly) < fl2) +(Vf(z).y —2) + 5 (V2 f(@)(y — o)y —z) + 5 ly ==l

What if we use the same logic as in gradient descent for function with )M -Lipschitz Hessian?
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Cubic-regularized Newton method
If f has M-Lipschitz Hessian, then

F) < $@) + (Vi @)y~ 2)+ 3 (VF@)y —2)y —2) + Iy~ ol

Minimizing the right-hand side of this inequality, we come to Cubic-regularized Newton method
. 1 M
Tk+1 = arg min {f(a:k) +{(Vf(zk),x —zk) + 5 <V2f(xk)(x —TE), T — :ck> + 5 |z — xk||3} .

Question
What problems do you see in (1)?

‘f - W;rﬁ Cubic-regularized Newton method D0
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Cubic-regularized Newton method
If f has M-Lipschitz Hessian, then

F) < $@) + (Vi @)y~ 2)+ 3 (VF@)y —2)y —2) + Iy~ ol

Minimizing the right-hand side of this inequality, we come to Cubic-regularized Newton method

Tpt1 = argmin {f(l’k) + (Vf(zr), ® — xx) + % (V2 f(an) (@ — z), @ — 21 ) + % |z — $k||3} :

(1)

! Challenges

1. We can't get explicit expression for 241 (without argmin) from (1) as we could in gradient descent.
2. The subproblem inside (1) can be non-convex.
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Cubic-regularized Newton method
If f has M-Lipschitz Hessian, then

1 M
F) < @) + (VI @),y =) + 5 (VI @)y —2),y — z) + = lly — =l
Minimizing the right-hand side of this inequality, we come to Cubic-regularized Newton method

Tpt1 = argmin {f(l’k) + (Vf(zr), ® — xx) + % (V2 f(an) (@ — z), @ — 21 ) + % |z — $k||3} :

(1)

! Challenges

2. The subproblem inside (1) can be non-convex.

1. We can't get explicit expression for 241 (without argmin) from (1) as we could in gradient descent.

@ Solutions

1. We can use numerical methods with fast convergence
2. The subproblem is equivalent to a convex one-dimensional optimization problem.
3. The subproblem can be made convex with proper regularization coefficient. ®

a

“Nesterov, Y. (2018). Lectures on convex optimization. Springer.
bNesterov, Y. (2021). Implementable tensor methods in unconstrained convex optimization. Mathematical Programming.
Lf - §ny1r; Cubic-regularized Newton method
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Convergence !

i Theorem

Let f(z) be p-strongly convex function with M-Lipschitz Hessian. Then, Cubic-regularized Newton Method
(1) converges globally superlinearly as

flee) — 7 <w(f(ze) — f7), e — 0.

!Kamzolov, D., et al. (2024). Optami: Global superlinear convergence of high-order methods. Accepted to ICLR 2025.
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Quasi-Newton methods intuition

For the classic task of unconditional optimization f(z) — min the general scheme of iteration method is written as:
T ERM

Th41 = Tk + ardy

R /=min o Newton methods 0 O 14
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Quasi-Newton methods intuition

For the classic task of unconditional optimization f(z) — min the general scheme of iteration method is written as:

T ERM

Th41 = Tk + ardy

In the Newton method, the dj direction (Newton direction) is set by the linear system solution at each step:

Bidy = =V f(z1), Bir=V>f(xk)

‘f - §“}‘§ Quasi Newton methods Q@0
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Quasi-Newton methods intuition

For the classic task of unconditional optimization f(z) — min the general scheme of iteration method is written as:

T ERM

Th41 = Tk + ardy

In the Newton method, the dj direction (Newton direction) is set by the linear system solution at each step:

Bidy = =V f(z1), Bir=V>f(xk)

i.e. at each iteration it is necessary to compute hessian and gradient and solve linear system.

‘f - fnﬂ Quasi Newton methods Q@0
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Quasi-Newton methods intuition

For the classic task of unconditional optimization f(z) — min the general scheme of iteration method is written as:
T ERM

Th41 = Tk + ardy

In the Newton method, the dj direction (Newton direction) is set by the linear system solution at each step:

Bidy = =V f(z1), Bir=V>f(xk)

i.e. at each iteration it is necessary to compute hessian and gradient and solve linear system.

Note here that if we take a single matrix of By = I,, as By at each step, we will exactly get the gradient descent
method.

The general scheme of quasi-Newton methods is based on the selection of the Bj matrix so that it tends in some
sense at k — oo to the truth value of the Hessian V2 f(z).
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Quasi-Newton method Template

Let zo € R", By = 0. For k =1,2,3,..., repeat:

1. Find dk : Bkdk = fo(xk)
2. Update xx4+1 = ok + ardy
3. Compute By+1 from By

‘f - ﬂ'.ri Quasi Newton methods
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Quasi-Newton method Template

Let zo € R", By = 0. For k =1,2,3,..., repeat:

1. Find dk : Bkdk = fo(xk)
2. Update xx4+1 = ok + ardy
3. Compute Bj1 from By

Different quasi-Newton methods implement Step 3 differently. As we will see, commonly we can compute (B;H_l)_l

from (Bx)™".
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Quasi-Newton method Template

Let zo € R", By = 0. For k =1,2,3,..., repeat:

1. Find dk : Bkdk = 7Vf(£ljk)
2. Update xx4+1 = ok + ardy
3. Compute Bj1 from By

Different quasi-Newton methods implement Step 3 differently. As we will see, commonly we can compute (B;H_l)_l

from (Bx)™".

Basic Idea: As By, already contains information about the Hessian, use a suitable matrix update to form By1.

‘f - §“}‘§ Quasi Newton methods 0 O
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Quasi-Newton method Template

Let zo € R", By = 0. For k =1,2,3,..., repeat:

1. Find dk : Bkdk = 7Vf(£ljk)
2. Update xx4+1 = ok + ardy
3. Compute Bjy1 from By

Different quasi-Newton methods implement Step 3 differently. As we will see, commonly we can compute (B;H_l)_l
from (Bx)™".

Basic Idea: As By, already contains information about the Hessian, use a suitable matrix update to form By1.

Reasonable Requirement for Bj11 (motivated by the secant method):

Vf(@k+1) = Vf(xk) = Brs1(Tht1 — 2x) = Brirde
Ay = Bry1ds

‘f - fnﬂ Quasi Newton methods 0 O 15
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Quasi-Newton method Template

Let zo € R", By = 0. For k =1,2,3,..., repeat:

1. Find dk : Bkdk = 7Vf(£ljk)
2. Update xx4+1 = ok + ardy
3. Compute Bjy1 from By

Different quasi-Newton methods implement Step 3 differently. As we will see, commonly we can compute (B;H_l)_l
from (Bx)™".

Basic Idea: As By, already contains information about the Hessian, use a suitable matrix update to form By1.
Reasonable Requirement for Bj11 (motivated by the secant method):

Vf(@k+1) = Vf(xk) = Brs1(Tht1 — 2x) = Brirde
Ay = Bry1ds

In addition to the secant equation, we want:

® Bi+1 to be symmetric
® Bii+1 to be “close” to By
o Bk>-0:>Bk+1>-0
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Problem 1: Symmetric Rank-One (SR1) update

Let's try an update with rank-one matrix:
Bi41 = B + auu®

i Question

What a and u can we choose? How the update of the Bj41 would look like?
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Problem 1: Symmetric Rank-One (SR1) update

Let's try an update with rank-one matrix:
Bi41 = B + auu®

i Question

What a and u can we choose? How the update of the Bj41 would look like?
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SR1 convergence

Ay — Brdi)(Ayy — Brdi)T
Bk+1_Bk+( Yk kk)( Yk kk)

(Ayr — Brdy)Tds,

called the symmetric rank-one (SR1) update or Broyden method.

i Theorem

Let

® f be twice continuously differentiable, has unique stationary point z*,
® 0> V2f(z?), V2f(x) is Lipschitz continuous in a neighborhood z*,
® the sequence of matrices {By} is bounded in norm,

* |(Ayx — Bidi)"di| > 7 ||di|| [|Ayx — Brdi||, 0 <7 < 1.
Then in SR1 zx — ™ superlinearly.
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SR1 with inverse update

How can we solve
Bii1des1 = =V f(@ry1),

—1

in order to take the next step? In addition to propagating By to Br1, let's propagate inverses, i.e., C, = B, " to
Crt1 = (Bt1) ™.
Sherman-Morrison Formula:
The Sherman-Morrison formula states:
_ _ AT AL
(A—l—uvT) bt ——
1+0vTA- 1y
0 O 18
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SR1 with inverse update

How can we solve
Bit1dii1 = =V f(Tr41),

—1

in order to take the next step? In addition to propagating By to Br1, let's propagate inverses, i.e., C, = B, " to
Cr+1 = (Brr)
Sherman-Morrison Formula:
The Sherman-Morrison formula states:
_ _ AT AL
A V-1 _ g1
(A+uv’) 14+ 0T A1y
Thus, for the SR1 update, the inverse is also easily updated:
Cry1=Cr + (di — O A ) (dr — CrAy)”
(drx — CrlAyr)T Ayy
In general, SR1 is simple and cheap, but it has a key drawback: it does not preserve positive definiteness.
@00
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Problem 2: Broyden-Fletcher-Goldfarb-Shanno (BFGS) update

Let's now try a rank-two update:
Bit1 = By, 4 auu” + bov”.

i Question

What a, u, b and v can we choose? How the update of the By41 would look like?
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BFGS convergence

d¥' Bydy dl Ay
called the Broyden-Fletcher-Goldfarb-Shanno (BFGS) update.

Byy1 = By —

i Theorem

Let f(x) be twice continuously differentiable, have Lipschitz Hessian at z* and additionally % | [jzx —z*|| <
0o. Then in BFGS z, — ™ superlinearly.
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BFGS update with inverse

Woodbury Formula
The Woodbury formula, a generalization of the Sherman-Morrison formula, is given by:

(A+UCV) ' =A"'—A'U(Cct +vatu)ytva!
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BFGS update with inverse

Woodbury Formula
The Woodbury formula, a generalization of the Sherman-Morrison formula, is given by:

(A+UCV) ' =A"'—A'U(Cct +vatu)ytva!
Applied to our case, we get a rank-two update on the inverse C":

(di. — CrAyp)dE | di(di — CrAye)”  (di — CrAye) T Ay,

Cry1=C, - dpdf
k+1 k+ Aydek + Aygdk (Aydek)Q kO
deAyL Aydy dpdF
Crr=(I- Cr|1-
Bt ( AgZd, ) S\ T Ay ) T AyTay

This formulation ensures that the BFGS update, while comprehensive, remains computationally efficient, requiring
O(n?) operations. Importantly, BFGS update preserves positive definiteness. Recall this means
By = 0= Bry1 > 0. Equivalently, Cx, > 0= Cry1 >0
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L-BFGS main idea

® |-BFGS does not store full matrix By, (Cy), instead it stores two sequences of vectors of length m : m < n
® memory reduces from O(n?) to O(mn), making it more sutable for high-dimensional problems
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Computational experiments

e Computation experiments for Quasi-Newtom, CG and GD &
e Computational experiments for Newton and Quasi Newton methods €).
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