
Conjugate gradient method

Seminar

Optimization for ML. Faculty of Computer Science. HSE University

v § } 1

https://fmin.xyz
https://hse25.fmin.xyz
https://github.com/MerkulovDaniil/hse25
https://t.me/fminxyz

Strongly convex quadratics
Consider the following quadratic optimization problem:

min
x∈Rd

f(x) = min
x∈Rd

1
2x⊤Ax − b⊤x + c, where A ∈ Sd

++.

Optimality conditions:

∇f(x∗) = Ax∗ − b = 0 ⇐⇒ Ax∗ = b

4 2 0 2 4

4

2

0

2

4

Steepest Descent

4 2 0 2 4

4

2

0

2

4

Conjugate Gradient

Lecture recap v § } 2

https://fmin.xyz
https://hse25.fmin.xyz
https://github.com/MerkulovDaniil/hse25
https://t.me/fminxyz

Strongly convex quadratics
Consider the following quadratic optimization problem:

min
x∈Rd

f(x) = min
x∈Rd

1
2x⊤Ax − b⊤x + c, where A ∈ Sd

++.

Optimality conditions:

∇f(x∗) = Ax∗ − b = 0 ⇐⇒ Ax∗ = b

4 2 0 2 4

4

2

0

2

4

Steepest Descent

4 2 0 2 4

4

2

0

2

4

Conjugate Gradient

Lecture recap v § } 2

https://fmin.xyz
https://hse25.fmin.xyz
https://github.com/MerkulovDaniil/hse25
https://t.me/fminxyz

Overview of the CG method for the quadratic problem
1) Initialization. k = 0 and xk = x0, dk = d0 = −∇f(x0).

2) Optimal Step Length. By the procedure of line search we find the optimal length of step. This involves
calculate αk minimizing f(xk + αkdk):

αk = −d⊤
k (Axk − b)

d⊤
k Adk

3) Algorithm Iteration. Update the position of xk by moving in the direction dk, with a step size αk:

xk+1 = xk + αkdk

4) Direction Update. Update the dk+1 = −∇f(xk+1) + βkdk, where βk is calculated by the formula:

βk = ∇f(xk+1)⊤Adk

d⊤
k Adk

.

5) Convergence Loop. Repeat steps 2-4 until n directions are built, where n is the dimension of space (dimension
of x).

Lecture recap v § } 3

https://fmin.xyz
https://hse25.fmin.xyz
https://github.com/MerkulovDaniil/hse25
https://t.me/fminxyz

Overview of the CG method for the quadratic problem
1) Initialization. k = 0 and xk = x0, dk = d0 = −∇f(x0).

2) Optimal Step Length. By the procedure of line search we find the optimal length of step. This involves
calculate αk minimizing f(xk + αkdk):

αk = −d⊤
k (Axk − b)

d⊤
k Adk

3) Algorithm Iteration. Update the position of xk by moving in the direction dk, with a step size αk:

xk+1 = xk + αkdk

4) Direction Update. Update the dk+1 = −∇f(xk+1) + βkdk, where βk is calculated by the formula:

βk = ∇f(xk+1)⊤Adk

d⊤
k Adk

.

5) Convergence Loop. Repeat steps 2-4 until n directions are built, where n is the dimension of space (dimension
of x).

Lecture recap v § } 3

https://fmin.xyz
https://hse25.fmin.xyz
https://github.com/MerkulovDaniil/hse25
https://t.me/fminxyz

Overview of the CG method for the quadratic problem
1) Initialization. k = 0 and xk = x0, dk = d0 = −∇f(x0).

2) Optimal Step Length. By the procedure of line search we find the optimal length of step. This involves
calculate αk minimizing f(xk + αkdk):

αk = −d⊤
k (Axk − b)

d⊤
k Adk

3) Algorithm Iteration. Update the position of xk by moving in the direction dk, with a step size αk:

xk+1 = xk + αkdk

4) Direction Update. Update the dk+1 = −∇f(xk+1) + βkdk, where βk is calculated by the formula:

βk = ∇f(xk+1)⊤Adk

d⊤
k Adk

.

5) Convergence Loop. Repeat steps 2-4 until n directions are built, where n is the dimension of space (dimension
of x).

Lecture recap v § } 3

https://fmin.xyz
https://hse25.fmin.xyz
https://github.com/MerkulovDaniil/hse25
https://t.me/fminxyz

Overview of the CG method for the quadratic problem
1) Initialization. k = 0 and xk = x0, dk = d0 = −∇f(x0).

2) Optimal Step Length. By the procedure of line search we find the optimal length of step. This involves
calculate αk minimizing f(xk + αkdk):

αk = −d⊤
k (Axk − b)

d⊤
k Adk

3) Algorithm Iteration. Update the position of xk by moving in the direction dk, with a step size αk:

xk+1 = xk + αkdk

4) Direction Update. Update the dk+1 = −∇f(xk+1) + βkdk, where βk is calculated by the formula:

βk = ∇f(xk+1)⊤Adk

d⊤
k Adk

.

5) Convergence Loop. Repeat steps 2-4 until n directions are built, where n is the dimension of space (dimension
of x).

Lecture recap v § } 3

https://fmin.xyz
https://hse25.fmin.xyz
https://github.com/MerkulovDaniil/hse25
https://t.me/fminxyz

Overview of the CG method for the quadratic problem
1) Initialization. k = 0 and xk = x0, dk = d0 = −∇f(x0).

2) Optimal Step Length. By the procedure of line search we find the optimal length of step. This involves
calculate αk minimizing f(xk + αkdk):

αk = −d⊤
k (Axk − b)

d⊤
k Adk

3) Algorithm Iteration. Update the position of xk by moving in the direction dk, with a step size αk:

xk+1 = xk + αkdk

4) Direction Update. Update the dk+1 = −∇f(xk+1) + βkdk, where βk is calculated by the formula:

βk = ∇f(xk+1)⊤Adk

d⊤
k Adk

.

5) Convergence Loop. Repeat steps 2-4 until n directions are built, where n is the dimension of space (dimension
of x).

Lecture recap v § } 3

https://fmin.xyz
https://hse25.fmin.xyz
https://github.com/MerkulovDaniil/hse25
https://t.me/fminxyz

Optimal Step Length

Exact line search:
αk = arg min

α∈R+
f (xk+1) = arg min

α∈R+
f (xk + αdk)

Let’s find an analytical expression for the step αk:

f (xk + αdk) = 1
2 (xk + αdk)⊤ A (xk + αdk) − b⊤ (xk + αdk) + c

= 1
2α2d⊤

k Adk + d⊤
k (Axk − b) α +

(1
2x⊤

k Axk + x⊤
k dk + c

)
We consider A ∈ Sd

++, so the point with zero derivative on this parabola is a minimum:

(
d⊤

k Adk

)
αk + d⊤

k (Axk − b) = 0 ⇐⇒ αk = −d⊤
k (Axk − b)

d⊤
k Adk

Lecture recap v § } 4

https://fmin.xyz
https://hse25.fmin.xyz
https://github.com/MerkulovDaniil/hse25
https://t.me/fminxyz

Optimal Step Length

Exact line search:
αk = arg min

α∈R+
f (xk+1) = arg min

α∈R+
f (xk + αdk)

Let’s find an analytical expression for the step αk:

f (xk + αdk) = 1
2 (xk + αdk)⊤ A (xk + αdk) − b⊤ (xk + αdk) + c

= 1
2α2d⊤

k Adk + d⊤
k (Axk − b) α +

(1
2x⊤

k Axk + x⊤
k dk + c

)

We consider A ∈ Sd
++, so the point with zero derivative on this parabola is a minimum:

(
d⊤

k Adk

)
αk + d⊤

k (Axk − b) = 0 ⇐⇒ αk = −d⊤
k (Axk − b)

d⊤
k Adk

Lecture recap v § } 4

https://fmin.xyz
https://hse25.fmin.xyz
https://github.com/MerkulovDaniil/hse25
https://t.me/fminxyz

Optimal Step Length

Exact line search:
αk = arg min

α∈R+
f (xk+1) = arg min

α∈R+
f (xk + αdk)

Let’s find an analytical expression for the step αk:

f (xk + αdk) = 1
2 (xk + αdk)⊤ A (xk + αdk) − b⊤ (xk + αdk) + c

= 1
2α2d⊤

k Adk + d⊤
k (Axk − b) α +

(1
2x⊤

k Axk + x⊤
k dk + c

)
We consider A ∈ Sd

++, so the point with zero derivative on this parabola is a minimum:

(
d⊤

k Adk

)
αk + d⊤

k (Axk − b) = 0 ⇐⇒ αk = −d⊤
k (Axk − b)

d⊤
k Adk

Lecture recap v § } 4

https://fmin.xyz
https://hse25.fmin.xyz
https://github.com/MerkulovDaniil/hse25
https://t.me/fminxyz

Direction Update

We update the direction in such a way that the next direction is A - orthogonal to the previous one:

dk+1 ⊥A dk ⇐⇒ d⊤
k+1Adk = 0

Since dk+1 = −∇f(xk+1) + βkdk, we choose βk so that there is A - orthogonality:

d⊤
k+1Adk = −∇f (xk+1)⊤ Adk + βkd⊤

k Adk = 0 ⇐⇒ βk = ∇f (xk+1)⊤ Adk

d⊤
k Adk

� Lemma 1

All directions of construction using the procedure described above are orthogonal to each other:

d⊤
i Adj = 0, if i ̸= j

d⊤
i Adj > 0, if i = j

Lecture recap v § } 5

https://fmin.xyz
https://hse25.fmin.xyz
https://github.com/MerkulovDaniil/hse25
https://t.me/fminxyz

Direction Update

We update the direction in such a way that the next direction is A - orthogonal to the previous one:

dk+1 ⊥A dk ⇐⇒ d⊤
k+1Adk = 0

Since dk+1 = −∇f(xk+1) + βkdk, we choose βk so that there is A - orthogonality:

d⊤
k+1Adk = −∇f (xk+1)⊤ Adk + βkd⊤

k Adk = 0 ⇐⇒ βk = ∇f (xk+1)⊤ Adk

d⊤
k Adk

� Lemma 1

All directions of construction using the procedure described above are orthogonal to each other:

d⊤
i Adj = 0, if i ̸= j

d⊤
i Adj > 0, if i = j

Lecture recap v § } 5

https://fmin.xyz
https://hse25.fmin.xyz
https://github.com/MerkulovDaniil/hse25
https://t.me/fminxyz

Direction Update

We update the direction in such a way that the next direction is A - orthogonal to the previous one:

dk+1 ⊥A dk ⇐⇒ d⊤
k+1Adk = 0

Since dk+1 = −∇f(xk+1) + βkdk, we choose βk so that there is A - orthogonality:

d⊤
k+1Adk = −∇f (xk+1)⊤ Adk + βkd⊤

k Adk = 0 ⇐⇒ βk = ∇f (xk+1)⊤ Adk

d⊤
k Adk

� Lemma 1

All directions of construction using the procedure described above are orthogonal to each other:

d⊤
i Adj = 0, if i ̸= j

d⊤
i Adj > 0, if i = j

Lecture recap v § } 5

https://fmin.xyz
https://hse25.fmin.xyz
https://github.com/MerkulovDaniil/hse25
https://t.me/fminxyz

A-orthogonality

4 2 0 2 4
x

4

2

0

2

4

x
v1 and v2 are orthogonal

vT
1v2 = 0.00

vT
1Av2 = 1.19

4 2 0 2 4
x

4

2

0

2

4

x

v and v are A-orthogonal
v Tv = 0.80

v TAv = 0.00

Figure 1

Lecture recap v § } 6

https://colab.research.google.com/github/MerkulovDaniil/optim/blob/master/assets/Notebooks/CG.ipynb
https://fmin.xyz
https://hse25.fmin.xyz
https://github.com/MerkulovDaniil/hse25
https://t.me/fminxyz

Convergence of the CG method

� Lemma 2

Suppose, we solve n-dimensional quadratic convex optimization problem. The conjugate directions method:

xk+1 = x0 +
k∑

i=0

αidi,

where αi = −d⊤
i (Axi − b)

d⊤
i Adi

taken from the line search, converges for at most n steps of the algorithm.

Lecture recap v § } 7

https://fmin.xyz
https://hse25.fmin.xyz
https://github.com/MerkulovDaniil/hse25
https://t.me/fminxyz

CG method in practice
In practice, the following formulas are usually used for the step αk and the coefficient βk:

αk = r⊤
k rk

d⊤
k Adk

βk =
r⊤

k+1rk+1

r⊤
k rk

,

where rk = b − Axk, since xk+1 = xk + αkdk then rk+1 = rk − αkAdk. Also, rT
i rk = 0, ∀i ̸= k (Lemma 5 from

the lecture).

Let’s get an expression for βk:

βk = ∇f (xk+1)⊤ Adk

d⊤
k Adk

= −
r⊤

k+1Adk

d⊤
k Adk

Numerator: r⊤
k+1Adk = 1

αk
r⊤

k+1 (rk − rk+1) = [r⊤
k+1rk = 0] = − 1

αk
r⊤

k+1rk+1

Denominator: d⊤
k Adk = (rk + βk−1dk−1)⊤ Adk = 1

αk
r⊤

k (rk − rk+1) = 1
αk

r⊤
k rk

ñ Question

Why is this modification better than the standard version?

Lecture recap v § } 8

https://fmin.xyz
https://hse25.fmin.xyz
https://github.com/MerkulovDaniil/hse25
https://t.me/fminxyz

CG method in practice
In practice, the following formulas are usually used for the step αk and the coefficient βk:

αk = r⊤
k rk

d⊤
k Adk

βk =
r⊤

k+1rk+1

r⊤
k rk

,

where rk = b − Axk, since xk+1 = xk + αkdk then rk+1 = rk − αkAdk. Also, rT
i rk = 0, ∀i ̸= k (Lemma 5 from

the lecture).

Let’s get an expression for βk:

βk = ∇f (xk+1)⊤ Adk

d⊤
k Adk

= −
r⊤

k+1Adk

d⊤
k Adk

Numerator: r⊤
k+1Adk = 1

αk
r⊤

k+1 (rk − rk+1) = [r⊤
k+1rk = 0] = − 1

αk
r⊤

k+1rk+1

Denominator: d⊤
k Adk = (rk + βk−1dk−1)⊤ Adk = 1

αk
r⊤

k (rk − rk+1) = 1
αk

r⊤
k rk

ñ Question

Why is this modification better than the standard version?

Lecture recap v § } 8

https://fmin.xyz
https://hse25.fmin.xyz
https://github.com/MerkulovDaniil/hse25
https://t.me/fminxyz

CG method in practice
In practice, the following formulas are usually used for the step αk and the coefficient βk:

αk = r⊤
k rk

d⊤
k Adk

βk =
r⊤

k+1rk+1

r⊤
k rk

,

where rk = b − Axk, since xk+1 = xk + αkdk then rk+1 = rk − αkAdk. Also, rT
i rk = 0, ∀i ̸= k (Lemma 5 from

the lecture).

Let’s get an expression for βk:

βk = ∇f (xk+1)⊤ Adk

d⊤
k Adk

= −
r⊤

k+1Adk

d⊤
k Adk

Numerator: r⊤
k+1Adk = 1

αk
r⊤

k+1 (rk − rk+1) = [r⊤
k+1rk = 0] = − 1

αk
r⊤

k+1rk+1

Denominator: d⊤
k Adk = (rk + βk−1dk−1)⊤ Adk = 1

αk
r⊤

k (rk − rk+1) = 1
αk

r⊤
k rk

ñ Question

Why is this modification better than the standard version?

Lecture recap v § } 8

https://fmin.xyz
https://hse25.fmin.xyz
https://github.com/MerkulovDaniil/hse25
https://t.me/fminxyz

CG method in practice
In practice, the following formulas are usually used for the step αk and the coefficient βk:

αk = r⊤
k rk

d⊤
k Adk

βk =
r⊤

k+1rk+1

r⊤
k rk

,

where rk = b − Axk, since xk+1 = xk + αkdk then rk+1 = rk − αkAdk. Also, rT
i rk = 0, ∀i ̸= k (Lemma 5 from

the lecture).

Let’s get an expression for βk:

βk = ∇f (xk+1)⊤ Adk

d⊤
k Adk

= −
r⊤

k+1Adk

d⊤
k Adk

Numerator: r⊤
k+1Adk = 1

αk
r⊤

k+1 (rk − rk+1) = [r⊤
k+1rk = 0] = − 1

αk
r⊤

k+1rk+1

Denominator: d⊤
k Adk = (rk + βk−1dk−1)⊤ Adk = 1

αk
r⊤

k (rk − rk+1) = 1
αk

r⊤
k rk

ñ Question

Why is this modification better than the standard version?

Lecture recap v § } 8

https://fmin.xyz
https://hse25.fmin.xyz
https://github.com/MerkulovDaniil/hse25
https://t.me/fminxyz

CG method in practice. Pseudocode
r0 := b − Ax0

if r0 is sufficiently small, then return x0 as the result
d0 := r0

k := 0
repeat

αk := rT
krk

dT
kAdk

xk+1 := xk + αkdk

rk+1 := rk − αkAdk

if rk+1 is sufficiently small, then exit loop

βk :=
rT

k+1rk+1

rT
krk

dk+1 := rk+1 + βkdk

k := k + 1
end repeat
return xk+1 as the result

Lecture recap v § } 9

https://fmin.xyz
https://hse25.fmin.xyz
https://github.com/MerkulovDaniil/hse25
https://t.me/fminxyz

Exercise 1

Write iterations of the conjugate gradient method for a quadratic problem

f(x) = 1
2xT Ax − bT x −→ min

x∈Rn

and run experiments for several matrices A. See code here 3.

Lecture recap v § } 10

https://colab.research.google.com/github/MerkulovDaniil/hse25/blob/main/notebooks/s10_ex1.ipynb
https://fmin.xyz
https://hse25.fmin.xyz
https://github.com/MerkulovDaniil/hse25
https://t.me/fminxyz

Non-linear conjugate gradient method
In case we do not have an analytic expression for a function or its gradient, we will most likely not be able to solve
the one-dimensional minimization problem analytically. Therefore, step 2 of the algorithm is replaced by the usual
line search procedure. But there is the following mathematical trick for the fourth point:

For two iterations, it is fair:

xk+1 − xk = cdk,

where c is some kind of constant. Then for the quadratic case, we have:

∇f(xk+1) − ∇f(xk) = (Axk+1 − b) − (Axk − b) = A(xk+1 − xk) = cAdk

Expressing from this equation the work Adk = 1
c

(∇f(xk+1) − ∇f(xk)), we get rid of the “knowledge” of the
function in step definition βk, then point 4 will be rewritten as:

βk = ∇f(xk+1)⊤(∇f(xk+1) − ∇f(xk))
d⊤

k (∇f(xk+1) − ∇f(xk))
.

This method is called the Polak-Ribier method.
Lecture recap v § } 11

https://fmin.xyz
https://hse25.fmin.xyz
https://github.com/MerkulovDaniil/hse25
https://t.me/fminxyz

Exercise 2

Write iterations of the Polack-Ribier method and run experiments for several µ in binary logistic regression:

f(x) = µ

2 ∥x∥2
2 + 1

m

m∑
i=1

log(1 + exp(−yi⟨ai, x⟩)) −→ min
x∈Rn

See code here 3.

Lecture recap v § } 12

https://colab.research.google.com/github/MerkulovDaniil/hse25/blob/main/notebooks/s10_ex2.ipynb
https://fmin.xyz
https://hse25.fmin.xyz
https://github.com/MerkulovDaniil/hse25
https://t.me/fminxyz

A pathological example

Let t ∈ (0, 1) and

W =


t

√
t√

t 1 + t
√

t√
t 1 + t

√
t

.√
t 1 + t

 , b =


1
0
...
0


Since W invertible, there exists a unique solution to W x = b. Solving it by conjugate gradient descent gives us
rather bad convergence. During the CG process, the error grows exponentially (!), until it suddenly becomes zero as
the unique solution is found.

Residual ∥W xk − b∥2 grows exponentially as (1/t)k until the n iteration, after which it drops sharply to zero.

See experiment here 3.

Computational experiments v § } 13

https://colab.research.google.com/github/MerkulovDaniil/hse25/blob/main/notebooks/s10_pathological_example.ipynb
https://fmin.xyz
https://hse25.fmin.xyz
https://github.com/MerkulovDaniil/hse25
https://t.me/fminxyz

Another computational experiments

Let’s see another examples here 3. The code taken from §.

Computational experiments v § } 14

https://colab.research.google.com/drive/1N_PH8h8corIpVZSsXDzJ9Utpv7vVp6f6?usp=sharing
https://github.com/amkatrutsa/optimization_course/blob/master/Spring2022/cg.ipynb
https://fmin.xyz
https://hse25.fmin.xyz
https://github.com/MerkulovDaniil/hse25
https://t.me/fminxyz

	Lecture recap
	Computational experiments

