Convexity: convex sets, convex functions.
Polyak - Lojasiewicz Condition. Strong
Convexity
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Affine set

Suppose x, Z, are two points in R*. Then the
line passing through them is defined as follows:

x=0r;+ (1—0)zy,0 €R

The set A is called athne if for any xq, 5
from A the line passing through them also lies
in A4, i.e.

I1

0

Vo e R, Vo, 2 € A: 0z, + (1 -0z, € A

Example

]
p—d

® R” is an affine set.

Figure 1: lllustration of a line between two vectors z; and z,

‘f% fnﬂ Convex sets 00
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Affine set

Suppose x, Z, are two points in R*. Then the
line passing through them is defined as follows:

x=0r;+(1—0)zy,0 €R

The set A is called affine if for any z, z,
from A the line passing through them also lies
in A4, i.e.

I1

Vo e R, Vo, 2 € A: 0z, + (1 -0z, € A

Example 0 — 1

® R” is an affine set.

® The set of solutions|{z | Az = b}

is also an affine set. Figure 1: lllustration of a line between two vectors z; and z,

‘f% EHA}‘; Convex sets 00
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Cone
A non-empty set S is called a cone, if:

Vee S, 6>0 — OxeS

For any point in the cone, it also contains a
beam through this point.

— min
‘f 2,4,z Convex sets

Zo,

Figure 2: lllustration of a cone

\ 4
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Convex cone @oIDYKNo(LA
The set S is called a convex cone, if: m H%

Ve, 29 €85, 01,00 >0 — 0,z,+0,x, €S

A Convex cone is just like a cone, but it is also
convex.

Example

e R”

Convex cone: set that contains all conic
combinations of points in the set

— min
‘f 2,4,z Convex sets

L2 4

Figure 3: lllustration of a convex cone

\4
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Convex cone
The set S is called a convex cone, if:

Ve, 29 €85, 0,00 >0 — 0,x,+0,x, €S

A Convex cone is just like a cone, but it is also
convex.

Example

o R™
® Affine sets, containing 0

Convex cone: set that contains all conic
combinations of points in the set

— min
‘f 2,4,z Convex sets

Figure 3: lllustration of a convex cone
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Convex cone
The set S is called a convex cone, if:
Ve, 29 €85, 0,00 >0 — 0,x,+0,x, €S

A Convex cone is just like a cone, but it is also
convex.

Example
o R"

® Affine sets, containing 0
® Ray

Convex cone: set that contains all conic
combinations of points in the set

— min
‘f 2,4,z Convex sets

Figure 3: lllustration of a convex cone

\4
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Convex cone
The set S is called a convex cone, if:

Ve, 29 €85, 0,00 >0 — 0,x,+0,x, €S

A Convex cone is just like a cone, but it is also
convex.

Example

Rn

Affine sets, containing 0

Ray

ST - the set of symmetric positive
semi-definite matrices

Convex cone: set that contains all conic
combinations of points in the set

— min
‘f 2,4,z Convex sets

Figure 3: lllustration of a convex cone

\4

0


Mobile User

https://fmin.xyz
https://hse25.fmin.xyz
https://github.com/MerkulovDaniil/hse25
https://t.me/fminxyz

Line segment
Suppose 1, x4 are two points in R”.

Then the line segment between them is defined
as follows:

x =0z, + (1—0)xy, 0€][0,1]

A Convex set contains a line segment between
any two points in the set.

‘f - EHA}‘; Convex sets @0


Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

https://fmin.xyz
https://hse25.fmin.xyz
https://github.com/MerkulovDaniil/hse25
https://t.me/fminxyz

Convex set

The setuShis called @onvex if for any#@{y@s from S the (line’segment’ between

them@lso lies in S i.e.
Example

Vo € [0,1], V S:0 1—0)x, €8
€[0.1, Va2, € 21+ Joz € An empty set and a set from

a single vector are convex by
/\ \/ \/ definition.
Example

3 Any affine set, a ray, or a line

¢ '
‘ X segment are all convex sets.

Figure 5: Top: examples of convex sets. Bottom: examples of non-convex sets.

‘f% EHA}‘; Convex sets 00


Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

https://fmin.xyz
https://hse25.fmin.xyz
https://github.com/MerkulovDaniil/hse25
https://t.me/fminxyz

Convex combination

BeNVIAR 8 KoMBU HAth Ug
= ToY«kA

Let|x,, xy, ... , x5, € S| then the point| 6,2, + 0,25 + ... + 0,2, fis called the convex combination of points

Ty, Ty .eey Ty IF 2:191- =1,6,>0.
=

— Roinye. o d

6 e Q - “u“u‘»\ KO.}*&CU‘-G-‘AM

O, =0 - KoHweckad zomé\uwsdus
T

Sy-1 - Geuues kot § WHeayud

— min
‘f 2,9,z Convex sets
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Convex hull  BolDYKAN & CBONO U A- Conv,Xe)

The set of all convex combinations of points from .S is called the convex hull of the set S. J
k k M
conv(S)—{;Qixﬁxies,;@i—l, 91-20} X\ X2
® The set conv(.S) is the smallest convex set containing S. Cd\‘/(xi))(g

O

) Figure 6: Top: convex hulls of the convex sets. Bottom: the convex hull of the non-convex sets.
‘f% fnﬂ Convex sets @0 0
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Convex hull
The set of all convex combinations of points from .S is called the convex hull of the set S.

k k
conv(S) = {Z@,x, |z, € S,Z@i =1,6,> 0}
=1 i=1

® The set conv(.S) is the smallest convex set contalnlng S.
® The set S is convex if and only i S = conv

oA

Figure 6: Top: convex hulls of the convex sets. Bottom: the convex hull of the non-convex sets.

— min
‘f 2,4,z Convex sets
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Minkowski addition

The Minkowski sum of two sets of vectors S; and S, in Euclidean space is formed by adding each vector in S; to
each vector in S,.

Sy + 8y ={s; +8;,]8; €54, 5, €5}

Similarly, one can define a linear combination of the sets.

i Example
We will work in the R? space. Let's define: P P
Sy i={reR?:2?+22 <1}
This is a unit circle centered at the origin. And: 1 1,00 & z1
)
Sy ={reR?: —4<x <-1,-3<m, <1}
This represents a rectangle. The sum of the sets .S; and S, will
form an enlarged rectangle S, with rounded corners. The resulting Figure 7: S =S + 5,

set will be convex.

‘f% fnﬂ Convex sets 00
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Finding convexity

In practice, it is very important to understand whether a specific set is convex or not. Two approaches are used for
this depending on the context.

e By definition. x&) va c g
o Oxu(tDwe S
Helosl

‘f - Wy‘l} Convex sets 0 0

11
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Finding convexity

In practice, it is very important to understand whether a specific set is convex or not. Two approaches are used for
this depending on the context.

® By definition.
® Show that S is derived from simple convex sets using operations that preserve convexity.

‘f% fnﬂ Convex sets 00
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Finding convexity by definition

1,85 €5,0<0<1 — Ox;+(1—0)z, €S

i Example

Prove, that the set of symmetric positive definite matriced S7, = {X € R™*" | X = X', X > 0} is convex.

Pousuue: \\ )(1 X, € S:_,( V\XeQ’ a X.H >0 V;f)i;w

3:) Paceusrunn @ X, ((—B)Xl 6 S—H V? +@ g\)&Y>O

AP_~9 (B 5

= 6 PXpt (—9) p"Xq> >0

— min
‘f 2,9,z Convex sets
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Operations, that preserve convexity S =C, S,+ Ca $2

The linear combination of convex sets is convex Let there be 2 convex sets S, 5, let the set

S:{s\s:clz+02y, T ES,, YES,, cl,czelR}

Take two points from S: s, = ¢;z; + ¢y, Sg = €1Z9 + CoY, and prove that the segment between them
0s; + (1 —0)s,,6 € [0,1] also belongs to .S

0s; + (1 —0)s,

O(cymy + coyy) + (1= 0)(e1m5 + coya)

c1(0zy + (1= 0)zy) + co(0y; + (1 —0)ys)

T +cy €S

— min
‘f 2,4,z Convex sets
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The intersection of any (!) number of convex sets is convex

If the desired intersection is empty or contains one point, the property is proved by definition. Otherwise, take 2
points and a segment between them. These points must lie in all intersecting sets, and since they are all convex, the
segment between them lies in all sets and, therefore, in their intersection.

pY
S
2

) Figure 8: Intersection of halfplanes
‘fﬁ}fnﬂ Convex sets g P P00 O 14
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The image of the convex set under affine mapping is convex

S CR" convex — f(S)={f(z)|x €S} convex [(f(z)=Ax+Db)

Examples of affine functions: extension, projection, transposition, set of solutions of linear matrix inequality
{z |z A + ...+ z,A,, X B}. Here A;, B € SP are symmetric matrices p X p.

Note also that the prototype of the convex set under affine mapping is also convex.

S C R™ convex | |f71(S) = {z € R" | f(x) € S}|convex (f(x) = Ax+D)

— min
‘f 2,4,z Convex sets

15
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L | 2L

& .
Example %uel(ﬂﬂ X Q| dql. - %k [Qn
Y pelpel L | o
Let|z € R|is a random variable with a given probability distribution of P(x = a;) = p;, where i = 1,...,n, and

a; < ... < a,. Itis said that the probability vector of outcomes of p € R™ belongs to the probabilistic simplex, i.e.

—— LeposTroTHEU
P={p|1Tp=1,p=0}={p|p +..+p, =1,p; > 0}. UANGke

Determine if the following sets of p are convex:

-P(m>a)§6\/ @EX >o)\\3 = PL*P+.+""+P" £$
clp<p

= 1 L4414
C, (oﬁo oo i_kﬂ n)

‘f% fn.}‘; Convex sets P00 O 16
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Example

Let z € R is a random variable with a given probability distribution of P(x = a;) = p;, where i = 1,...,n, and
a; < ...<a,. Itissaid that the probability vector of outcomes of p € R™ belongs to the probabilistic simplex, i.e.

P={p|1Tp=1,p=0t={p|p +...+p, =1,p; > 0}.
201

Determine if the following sets of p are convex:

s Pz>a) <8 E M = i P;"XL\ > b(

N S
Efe -2 p bl =

P= (A E) R mip <0

b=t

lf%ﬁ}‘i Convex sets ' v P00 O 16


Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

https://fmin.xyz
https://hse25.fmin.xyz
https://github.com/MerkulovDaniil/hse25
https://t.me/fminxyz

Example

Let z € R is a random variable with a given probability distribution of P(x = a;) = p;, where i = 1,...,n, and
a; < ...<a,. Itissaid that the probability vector of outcomes of p € R™ belongs to the probabilistic simplex, i.e.

P={p|1Tp=1,p=0t={p|p +...+p, =1,p; > 0}.

Determine if the following sets of p are convex:

* Plz>a)<f
* E|z20| < aFE|z|
° Elx?| > >«

‘f% fnﬂ Convex sets 00
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‘f — min
Tz

Convex functions

Convex functions
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Jensen’s inequality

The function f(z), which is defined on the
convex set S C R", is called convex on S, if:

fAzy + (1= Nzy) < Af(xq) + (1= A) f(zy)

f(x) Non convex

for any z,25, € Sand 0 < A < 1.
If the above inequality holds as strict inequality
xq # x5 and 0 < X < 1, then the function is

called strictly convex on S.

G% CTe ™0 polNYKARA Convex

olvenes O T
OYHK u\\y

Figure 9: Difference between convex and non-convex function

— min .
‘f 2oz Convex functions

"X
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Jensen’s inequality

Theorem

Let f(x) be a convex function on a convex set X C R™ and let z; € X,1 < i < m, be arbitrary points from

X. Then

forany A =[A\,..., \,,] € A, - proba

Proof

1. First, note that the point Zzl A;x; as a convex combination of points from the convex set X belongs to X.

— min .
‘f 2oz Convex functions

f (Z Al

i=1

) < f: A f(x;)

bility simplex.

>0
fA=1
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Jensen’s inequality

i Theorem

Let f(x) be a convex function on a convex set X C R™ and let z; € X,1 < i < m, be arbitrary points from
X. Then

m m
! (Z )‘zxz> < Z Aif(z;)
i=1 =1
for any A = [\, ..., \,,,] € A,,, - probability simplex.

Proof

1. First, note that the point Zzl A;x; as a convex combination of points from the convex set X belongs to X.
2. We will prove this by induction. For m = 1, the statement is obviously true, and for m = 2, it follows from the
definition of a convex function.

‘f% fn.}‘; Convex functions P00 O 19
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Jensen’s inequality
3. Assume it is true for all m up to m = k, and we will prove it for m = k+ 1. Let A € Ak + 1 and

k41 k
T = E Axy = E Ay + A1 Tpgr
o1 =1

Assuming 0 < A\, < 1, as otherwise, it reduces to previously considered cases, we have

T = N1 Tppq + (L= Apyy)7, \

A
1-X

where T = Zle ~;x; and v; = —>0,1<i<k

k1 k1
! (Z /\ixi> = f (A1 Zrar + (1= X )Z) < Nepr f@pn) + (1= Ay f(@) < Z Aif(z;)
i=1 =1

Thus, initial inequality is satisfied for m = k 4+ 1 as well.

‘f - fnﬂ Convex functions @0
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Jensen’s inequality
3. Assume it is true for all m up to m = k, and we will prove it for m = k+ 1. Let A € Ak + 1 and

k41 k
T = E Axy = E Ay + A1 Tpgr
o1 =1

Assuming 0 < A\, < 1, as otherwise, it reduces to previously considered cases, we have

T = Np1Zppn T (1 — Mgy,

_ k : .
where 7 =" v;x; and ; = 1&;“ >0,1<i<k.

4. Since A € Ay, then v = [y,..., 7] € Ay. Therefore £ € X and by the convexity of f(z) and the induction

hypothesis:
k1 k1
! (Z /\ixi> = f (A1 Zrar + (1= X )Z) < Nepr f@pn) + (1= Ay f(@) < Z Aif(z;)
i=1 =1

Thus, initial inequality is satisfied for m = k 4+ 1 as well.

‘fﬁ}fnﬂ Convex functions P00 O 20
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Examples of convex functions

X0
e f(x)=aP,p>1, 2R,
© F(@) = Jo]?, p> 1,2 € R”
® flx)=e”, ceR,zeR
® f(z)=—Inz, ze R,
® f(x)=zlnz, xeR
® The sum of the largest k coordinates f(x)
© F(X) = Apoul(X), X = X7
® f(X)=—logdet X, X € S7,

— min .
‘f Tz Convex functions

= I(l) + +I<k), T € Rn
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Epigraph ~ HA DTPARUK  ®vik LLUU

For the function f(x), defined on S C R™, the following
set:

epi f={[z,u] € S xR: f(z) < p}
is called epigraph of the function f(z).

Convexity of the epigraph is the convexity of the
function

For a function f(x), defined on a convex set X, to

be convex on X, it is necessary and sufficient that
the epigraph of f is a convex set.

£ R"— R
ME P HOCT6
Ph> HAATPAPU KA

— min .
‘f 2oz Convex functions

f(z)

Epi f

nti
Sm—

Figure 10: Epigraph of a function
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Convexity of the epigraph is the convexity of the functios
1. Necessity: Assume f(z) is convex on X. Take any two arbitrary pointan
Also take 0 < A < 1 and denotd zy = Ay + (1 — Ny, iy = Ay + (1= A5, Then,
B e
H1 Ho Hx -(-( \éﬂl
%

From the convexity of the set X, it follows that xy, € X. Moreover, since f(x) is a convex function,

f(@y) S Af(@q) + (1= A) f(zg) § Mg + (1= Mg = py

Inequality above indicates that [Zﬁ] € epif. Thus, the epigraph of f is a convex set.
A

‘F ) —
} ﬂunx& N >

‘f% fnﬂ Convex functions @0 O
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Convexity of the e -: h is_the convexity of the function
1. Necessity; A an 2 Y points |4, fiy

O ta /

Inequality above indicates epif. eplgraph o

2. Sufficiency: Assume the epigraph of f, epif, is a convex set. Then, from the membership of the points [z, 114]

and [z, i15] in the epigraph of f, it follows that
‘F b&) é‘“).

Ty x Zq .
=A +(1—A €
|://')\:| [M] ( ) [Nz] epif ‘F 64) :HI
forany 0 < A <1, 0., f(zy) < py = Mg + (1 — A)py. But this is true for all iy > f(z) and py > f(z5),
particularly when 11y = f(x1) and py = f(x,). Hence we arrive at the inequality _F(b‘)__m
® 00

— min :
kf s Convex functions
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N
Example: norm cone kow\VC Wo P o| - bo
Let a norm | - | be defined in the space U. Consider the set: >0
4 éundk/lo
— + .
K :={(z,t) e U xR : |z|| < t} => 4(’,()0 - i - ,&’“Hn
which represents the epigraph of the function = = ||z|. This set is called the cone norm. According to the stattment

above, the set K is convex. ®@Code for the figures
p =~ Norm Cone

p =1 Norm Cone p =2 Norm Cone

1.75
1.50
1.25
1.00
0.75
0.50
0.25

1.0

0.0
-0.5

0.0
0.5
X -
1.0 1.0

— min .
‘f Tz Convex functions

-1.0
-0.5
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Sublevel set QGV'C; (MH’ o AZSQW)

“,H"D n ﬁw For the function f(x), defined on S C R", the following

set:

Ly={z€S: f(x)< B}

is called sublevel set or Lebesgue set of the function f(x).

0 "'Eg T

Figure 12: Sublevel set of a function with respect to level 5
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Sublevel set

Figure 12: Sublevel set of a function with respect to level 5

‘f — min
2oz

Convex functions

Lg

For the function f(x), defined on S C R", the following
set:

Ly={z€S: f(x)< B}

is called sublevel set or Lebesgue set of the function f(x).

Note, that if the function f(z) is convex, then its sublevel
sets are convex for any 8 € R.
While the converse is not true. (For example, consider

the function f(z) = /|z])
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Reduction to a line

f:S — Ris convex if and only if S is a convex set and the function ¢g(t) = f(x + tv) defined on {t | z + tv € S} is
convex for any x € S, v € R™, which allows checking convexity of the scalar function to establish convexity of the
vector function.

lf%ﬁ}‘i Convex functions P00 O 26
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{0 — R

Reduction to a line
g(t) = f(z +tv)

g:@—"‘?

defined on {t | x +tv € S} is

f S — Ris convex if and only if S is a convex set and the function
€ scalar tunction to establish convexity of the

convex for any z € S,v € R", which allows checking convexity of th
vector function. fers

If you find a direction v for which g(r“then”

No Dropout. Plane projection of loss surface.

Before training After training
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— min h
‘f Tz Convex functions
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Operations that preserve convexity

f(z) = max{fi(z), f2(z), f3(z)}

fi(z)
f2(z)

Figure 13: Pointwise maximum (supremum) of convex functions is
RCOnVEX

Convex functions

® Pointwise maximum (supremum) of any number of
functions: If f(z),..., f,,(x) are convex, then

fx) = max{f(x),..., f,,(x)} is convex.
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Operations that preserve convexity
® Pointwise maximum (supremum) of any number of

functions: If f(z),..., f,,(x) are convex, then
f(m) - max{f1 ($)7 f2($)7 f3 (1‘)} flx)= max{]l"l(m), ey fin(2)} is convex.
® Non- negative sum of the convex functions:

af(x +ﬁg( ), (@ =0,520).

Figure 13: Pointwise maximum (supremum) of convex functions is
RCOnVEX

Convex functions P00 O
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Operations that preserve convexity
® Pointwise maximum (supremum) of any number of

functions: If f(z),..., f,,(x) are convex, then
f(z) = max{fi(z), f2(z), f3(z)} f(x) = max{f,(z),..., f,,(x)} is convex.
® Non-negative sum of the convex functions:
af(z) + Bg(z), (> 0,8 >0).
fl(m) ® Composition with affine function f(Az + b) is convex,

if f(x) is convex.
fa(z)

Figure 13: Pointwise maximum (supremum) of convex functions is

‘CQD—V% Convex functions P00 O 27
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Operations that preserve convexity
® Pointwise maximum (supremum) of any number of

functions: If f(z),..., f,,(x) are convex, then
f(m) - max{f1 (m)v f2($)7 f3 (m)} flx)= max{]l"l(m), ey fin(2)} is convex.
® Non-negative sum of the convex functions:

af(z) + Bg(z), (a > 0,8 > 0).

fl(m) ® Composition with affine function f(Ax + b) is convex,
if f(x) is convex.
f2 (.’13) ® If f(z,y) is convex on x for any y € Y
g(x) = sup f(z,y) is convex.
yeY

Figure 13: Pointwise maximum (supremum) of convex functions is

‘CQD—V% Convex functions P00 O 27
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Operations that preserve convexity
® Pointwise maximum (supremum) of any number of

functions: If f(z),..., f,,(x) are convex, then
f(m) - max{f1 (m)v fQ(x)a f3 (m)} flx)= max{]l"l(m), ey fin(2)} is convex.
® Non-negative sum of the convex functions:

af(z) + Bg(z), (a > 0,8 > 0).

fl(m) ® Composition with affine function f(Ax + b) is convex,
if f(x) is convex.
f2 (.’13) ® If f(z,y) is convex on x for any y € Y
g(x) = sup f(z,y) is convex.
yeY

® If f(x) is convex on S, then g(z,t) =tf(x/t) - is
convex with z/t € S,t > 0.

Figure 13: Pointwise maximum (supremum) of convex functions is
‘cqw% Convex functions P00 O 27
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Operations that preserve convexity
® Pointwise maximum (supremum) of any number of

functions: If f(z),..., f,,(x) are convex, then
f(m) - max{f1 ($)7 f2($)7 f3 (aj)} flx)= max{]l"l(ac), ey fin(2)} is convex.
® Non-negative sum of the convex functions:

af(z) + Bg(z), (a > 0,8 > 0).

fl(m) ® Composition with affine function f(Ax + b) is convex,
if f(x) is convex.
f2 (.’13) ® If f(z,y) is convex on x for any y € Y
g(x) = sup f(z,y) is convex.
yeY

® If f(x) is convex on S, then g(z,t) =tf(x/t) - is
convex with z/t € S,t > 0.
® Llet f;: S; = Rand f;: 5, = R, where
f (:B) range(f;) C Sy. If f; and f, are convex, and f, is
3 increasing, then f, o f; is convex on S;.

Figure 13: Pointwise maximum (supremum) of convex functions is

‘cqw% Convex functions P00 O 27
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Maximum eigenvalue of a matrix is a conyex functign
M NSO CE eapuyy

S i
-C® _ _
- ¢ che —ace
eAe

Show, that f(A) = \,,,,.(A4) - is convex, if A € S™.

max
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First-order differential criterion of convexity
The differentiable function f(x) defined on the convex set

S C R"™ is convex if and only if Vx,y € S:

f(z)
fy) = f(2) + V() (y — =)
Let y = = + Az, then the criterion will become more tractable: Function
flz+Az) > f(z) + V() Az
0 x

Global linear lower bounds

Figure 14: Convex function is greater or equal than Taylor
linear approximation at any point
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Second-order differential criterion of convexity

Twice differentiable function f(z) defined on the convex set S C R™ is convex if and only if Vz € int(S) # 0

V2 f(z) =0

In other words, Vy € R™:

(y, V3 f(2)y) = 0
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Strong convexity
f(x), defined on the convex set S C R", is called u-strongly

convex (strongly convex) on S, if:

f(z)

f(Az1+(1=A)z,) < )\f(ﬂh)+(1_)\)f($2)_g>\(1_)\)||351_$2||2

for any z, 25 € S and 0 < A <1 for some p > 0. Function

0 T

Global quadratic lower bounds

Figure 15: Strongly convex function is greater or equal than
Taylor quadratic approximation at any point
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First-order differential criterion of strong convexity

Differentiable f(z) defined on the convex set S C R™ is p-strongly convex if and only if Vz,y € S:

‘f — min
Tz

Strong convexity criteria

) = f@) + VT @)y —2) + Sy — 2l
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First-order differential criterion of strong convexity

Differentiable f(z) defined on the convex set S C R™ is p-strongly convex if and only if Vz,y € S:

F) = f(@) + VT @)y =) + Sy —al

Let y = x + Az, then the criterion will become more tractable:
——E—————

f@+ Az) > f@) + VT (@)Ac + S| Aa|?

— mi L
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First-order differential criterion of strong convexity X4 c‘«"h

Differentiable f(z) defined on the convex set S C R™ is p-strongly convex if and only if Vz,y € S: ' ’
T H 2
Fy) = f@) + VI @)y —2) + Sy — 2] e Ma
Let y = x + Az, then the criterion will become more tractable: rk—_-o - &maknmm

flat+Aa) = f() + Vi (@)Ar + jarz AP0 — CUAbHES
Bbingy kndcre

i Theorem

Let f(z) be a differentiable function on a convex set X C R™. Then f(z) is strongly convex on X with a

constant p > 0 if and only if ,AA' KOHETAHTA
CUNbOU
@6y khoCTu

F(@) = f(@o) 2 (V(@o), — 30} + Sl — w2

forall z,z5 € X.
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Proof of first-order differential criterion of strong convexity

Necessity: Let 0 < A < 1. According to the definition of a strongly convex function,

FO@ + (1= XNag) < Af(x) + (1= N f(xo) — g/\(l = Mllz —z|?

— mi L
‘f ?qyu} Strong convexity criteria
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Proof of first-order differential criterion of strong convexity

Necessity: Let 0 < A < 1. According to the definition of a strongly convex function,

FO@ + (1= XNag) < Af(x) + (1= N f(xo) — g/\(l = Mllz —z|?

or equivalently, .
F@) = fag) = 5 (1= Nlle = 2ol = 51/ + (1 = Nzg) = F(zp)] =

— mi L
‘f Wy‘rﬁ Strong convexity criteria
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Proof of first-order differential criterion of strong convexity

Necessity: Let 0 < A < 1. According to the definition of a strongly convex function,

FO@ + (1= XNag) < Af(x) + (1= N f(xo) — g/\(l = Mllz —z|?

or equivalently, .
F@) = fag) = 5 (1= Nlle = 2ol = 51/ + (1 = Nzg) = F(zp)] =

1

= <[f(xo + Mz —x)) — f(zo)] =

3 MV f(2o), 2 — 20) + 0(N)] =

> =
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Proof of first-order differential criterion of strong convexity

Necessity: Let 0 < A < 1. According to the definition of a strongly convex function,
1
FOz + (1= Nzg) < Af(2) + (1= N f (o) = AL = V)| — 2o

or equivalently,
[FAz + (1= N)zp) — flzo)] =

> =

F@) = flag) = S = Ne —ay* >

1

= ~[f(zo + Mz —20)) — f(20)] = T IMV f(20), 2 — T0) + 0(N)] =

> =

A

= (Vf(a).z —zo) + 2.

Thus, taking the limit as A | 0, we arrive at the initial statement.
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Proof of first-order differential criterion of strong convexity

Sufficiency: Assume the inequality in the theorem is satisfied for all z, 2z, € X. Take z( = Azxy + (1 — A)zy, where
Z1,T9 € X, 0 <A < 1. According to the inequality, the following inequalities hold:
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Proof of first-order differential criterion of strong convexity

Sufficiency: Assume the inequality in the theorem is satisfied for all z, 2z, € X. Take z( = Azxy + (1 — A)zy, where
Z1,T9 € X, 0 <A < 1. According to the inequality, the following inequalities hold:

F@r) = (o) = (V flay) a1 — o) + o — aol?,

Fwa) = (o) = (V (), w5 —wg) + e — ol

Multiplying the first inequality by A and the second by 1 — X\ and adding them, considering that
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Proof of first-order differential criterion of strong convexity

Sufficiency: Assume the inequality in the theorem is satisfied for all z, 2z, € X. Take z( = Azxy + (1 — A)zy, where

Z1,T9 € X, 0 <A < 1. According to the inequality, the following inequalities hold:

F@r) = (o) = (V flay) a1 — o) + o — aol?,

Fwa) = (o) = (V (), w5 —wg) + e — ol

Multiplying the first inequality by A and the second by 1 — X\ and adding them, considering that

T — x5 = (1= A)(T; —23), To—z5= N2y —79),

and A(1—=X)2 +22(1—2) = A(1—)), we get

— mi L
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Proof of first-order differential criterion of strong convexity

Sufficiency: Assume the inequality in the theorem is satisfied for all z, 2z, € X. Take z( = Azxy + (1 — A)zy, where
Z1,T9 € X, 0 <A < 1. According to the inequality, the following inequalities hold:

F@r) = (o) = (V flay) a1 — o) + o — aol?,

Fwa) = (o) = (V (), w5 —wg) + e — ol

Multiplying the first inequality by A and the second by 1 — X\ and adding them, considering that

T — x5 = (1= A)(T; —23), To—z5= N2y —79),

and A(1—=X)2 +22(1—2) = A(1—)), we get

M) + (1= N f(a) = flag) = EML= Ny = >
(Vf(2g), Azy + (1 = AN)zy — 24) = 0.

Thus, inequality from the definition of a strongly convex function is satisfied. It is important to mention, that 1 =0
stands for the convex case and corresponding differential criterion.
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Second-order differential criterion of strong convexity

Twice differentiable function f(x) defined on the convex set S C R™ is called p-strongly convex if and only if
Vz € int(S) # 0
V2 f(@) = pl

In other words:
(y, V2 f(x)y) > plyl?
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Second-order differential criterion of strong convexity

Twice differentiable function f(x) defined on the convex set S C R™ is called p-strongly convex if and only if
Vz € int(S) # 0
V2 f(@) = pl TARR
In other words: MH—£1°‘)I(~
(v, V2 f(2)y) > plyl?
Xe X ;

L
i Theorem \V\t X' WP"“‘QQQ M\’(’g(’l zé).(*rﬁe(abe)(

Let X C R™ be a convex set, witF@tE7é (. Furthermore, let f(z) be a twice continuously differentiable
function on X. Then f(z) is strongly convex on X with a constant y >O-f-amd-onty-if

(y, V2 f(z)y) = ply|? \7"{' (x) Z |\LI

for all z € X and y € R™.

v -pI >
pro TS

‘f - Wy‘rﬁ Strong convexity criteria P00 O 36


Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

https://fmin.xyz
https://hse25.fmin.xyz
https://github.com/MerkulovDaniil/hse25
https://t.me/fminxyz

Proof of second-order differential criterion of strong convexity

The target inequality is trivial when y = 0,,, hence we assume y # 0,,.

Necessity: Assume initially that = is an interior point of X. Then x + ay € X for all y € R™ and sufficiently small a.
Since f(z) is twice differentiable,

flz+ay) = f(z) +a(Viz),y) + %(y» V2 f(@)y) + o(a®).
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Proof of second-order differential criterion of strong convexity

The target inequality is trivial when y = 0,,, hence we assume y # 0,,.

Necessity: Assume initially that = is an interior point of X. Then x + ay € X for all y € R™ and sufficiently small a.
Since f(z) is twice differentiable,

flz+ay) = f(z) +a(Viz),y) + %(y» V2 f(@)y) + o(a®).

Based on the first-order criterion of strong convexity, we have

S 0. V2 f(@)y) +0(a?) = f(z + ay) — f(x) — a(V(x).y) = Sallyl?.

This inequality reduces to the target inequality after dividing both sides by a? and taking the limit as o | 0.

If z € X but z ¢ intX, consider a sequence {z}} such that x; € intX and x;, — x as k — co. Then, we arrive at
the target inequality after taking the limit.
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Proof of second-order differential criterion of strong convexity

Sufficiency: Using Taylor's formula with the Lagrange remainder and the target inequality, we obtain for x +y € X:

Fla+ ) — () = (V(@),9) = 50, V2@ + av)y) = ]I,

where 0 < v < 1. Therefore,

‘f - Wy‘rﬁ Strong convexity criteria D0 0
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Proof of second-order differential criterion of strong convexity

Sufficiency: Using Taylor's formula with the Lagrange remainder and the target inequality, we obtain for x +y € X:
1 B
fa+y) = f@) ~ (Vf@), ) = 5, V2 F + ag)y) = Syl

where 0 < o« < 1. Therefore,

Fa+y) = f(2) = (V). p) + Syl

Consequently, by the first-order criterion of strong convexity, the function f(x) is strongly convex with a constant p.
It is important to mention, that p = 0 stands for the convex case and corresponding differential criterion.
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Convex and concave function

f=c =0 <@
7t = f*-—r- F=
vt>0

i Example

Show, that|f(z) = ¢"x + b |s convex and concave.

f®- &,mamw) ~ f®- Zomé,re,,a

e

%(»aw%b vq() <© =0
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Simplest strongly convex function \_/‘F ='-ﬂ\7‘ A’/’N
Mo (7 (‘@ Wredef o ah
S A(v“xt (x)) $ Lo (7 1()

i Example
Show, that f(z) = " Az, where A > 0 - is convex on R™. Is it strongly convex? KOHCTAHT A
l\v{‘(ﬂ - V’(:(a)“ L ”\(‘ﬂ" e gkociu
SynKyeu
A {Qp‘ z0o {k°"(CT§HTA
o Aunwug
-F - ZHV\- 1,9&91),2#(1& ’((i:)

i A>o =S f- cunspo

betn Y
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Convexity and continuity
Let f(x) - be a convex function on a convex set S C R".

Then f(x) is continuous Vz € ri(S). 2
i Proper convex function
Function f : R®™ — R is said to be proper convex

function if it never takes on the value —oo and not
identically equal to oc.

i Indicator function

00, x€ES,
9s(z) = 0, x=¢8

is a proper convex function.

?Please, read here about difference between interior and relative interior.

— mi L
‘f fnﬂ Strong convexity criteria
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Convexity and continuity
Let f(x) - be a convex function on a convex set S C R".
Then f(x) is continuous Vz € ri(S). 2

. .
1 Proper convex function

Function f : R®™ — R is said to be proper convex
—— e

function if it never takes on the value —o0 and not

identically equal to co. po——@ O— wp

|

(
{oo7 o£s, 8 *

0, x=¢5,

1
\
1 Indicator functio (

is a proper convex function.

?Please, read here about difference between interior and relative interior.

‘f — min
2oz

Strong convexity criteria

i Closed function

Function f : R™ — R is said to be closed if for each
« € R, the sublevel set is closed.

Equivalently, if the epigraph is closed, then the func-
tion f is closed.

f(=) f(=)
) Closed
Convex function convex function
0 x 0 z

Figure 16: The concept of a closed function is introduced to avoid
such breaches at the border.
P00 O 41
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Facts about convexity

® f(x)is called (strictly, strongly) concave if the function —f(z) - is (strictly, strongly) convex.
® Jensen's inequality for the convex functions:

f (iaﬂi) < iazf<'rz)
i=1 i=1

n

fora; >0; > «a, =1 (probability simplex)
i=1

For the infinite dimension case:

If the integrals exist and p(z) >0, [p(z)dz =1.
5

® |f the function f(z) and the set .S are convex, then any local minimum 2* = argmigl f(z) will be the global one.
xE
Strong convexity guarantees the uniqueness of the solution.
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Other forms of convexity

Log-concavity: log f concave; not closed under addition!
Exponential convexity: [f(x; + ;)] = 0, for zq,..., z,
Operator convexity: f(AX + (1 —\)Y)
Quasiconvexity: f(Az + (1 — N)y) < max{f(z), f(y)}
Pseudoconvexity: (Vf(y),z —y) >0 — f(z) > f(y)
Discrete convexity: f : Z™ — Z; “convexity + matroid theory.”

3

— mi L
‘f 51'1;!; Strong convexity criteria

Log-convexity: log f is convex; Log convexity implies convexity.
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Polyak- Lojasiewicz condition. Linear convergence of gradient descent without
convexity . - 3"“"@“ \pa Uk 0
PL inequality holds if the following condition is satisfied for some u > 0, J @! o
2 ) Wu pe
IVS@I uts(e) — 1)va
It is interesting, that the Gradient Descent algorithm has
The following functions satisfy the PL condition but are not convex. ®Link to the code

fz) = 22 4 3sin’(z)

Function, that satisfies
Polyak- Lojasiewicz condition

—— f(x) = x2 + 3sin?(x)

-3 -2 -1 0 1 2 3

— mi L
‘f 51'1;!; Strong convexity criteria

44


Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

https://colab.research.google.com/github/MerkulovDaniil/optim/blob/master/assets/Notebooks/PL_function.ipynb
https://fmin.xyz
https://hse25.fmin.xyz
https://github.com/MerkulovDaniil/hse25
https://t.me/fminxyz

Polyak- Lojasiewicz condition. Linear convergence of gradient descent without

convexity
PL inequality holds if the following condition is satisfied for some u > 0,

IVF(@)? 2uf (@) - £)Va
It is interesting, that the Gradient Descent algorithm has

The following functions satisfy the PL condition but are not convex. ®Link to the code

(y —sinx)?
2

f(z) = 2% + 3sin’(z) fla,y) =

Function, that satisfies Non-convex PL function
Polyak- Lojasiewicz condition

—— f(x) =x? + 3sin?(x)

2.0
35
3.0
25
2.0
15
10
05

-3 -2 -1 0 1 2 3

— mi L X
‘f ;‘ﬂyll} Strong convexity criteria
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‘f — min
Tz

Convexity in ML

Convexity in ML
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Linear Least Squares aka Linear Regression X 3‘:

Linear least squares. Linear least squares.

5 [0 R 2

Function value
)
.
<.
.,
Function value

-10.0 -75 -50 -25 00 25 50 75 100 -100 =75 =50 -25 00 25 50 75 100
x x

Figure 19: Illustration

In a least-squares, or linear regression, problem, we have measurements X € R"*™ and y € R™ and seek a vector
0 € R™ such that X6 is close to y. Closeness is defined as the sum of the squared differences:

m
> (@0—y,)* = |X0—y|3 — min
=1

For example, we might have a dataset of m users, each represented by n features. Each row z] of X is the features
for user 4, while the corresponding entry y; of y is the measurement we want to predict from ], such as ad spending.

The prediction is given by z] 0.
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Linear Least Squares aka Linear Rigression ! ,F (g) = 1 "X Q‘J": =

o apusiagob : % £ X8-4, X9-47

| . ) X9-y)>=
l;Flszhés)pribleE::':;;i \it:sngl}ggr;v;iw.vo d—F, Jj . 2 ( Xe ‘j)d( d)

‘f - fu.}‘; Convexity in ML P00 O 47


Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

https://colab.research.google.com/github/MerkulovDaniil/optim/blob/master/assets/Notebooks/Real_world_LLS_exercise.ipynb
https://fmin.xyz
https://hse25.fmin.xyz
https://github.com/MerkulovDaniil/hse25
https://t.me/fminxyz

w9 - nOAHOO PAHTA
Linear Least Squares aka Linear Regression ! X6 Q X

m<é N { m =

= ' m>W0n
| i
— .4 = ' =Nn
rgk =" . p=Xyg 1 T
[ | T
g (X <N O e fun XK nemer
1. Is this problem convex? Strongly convex/7 R “‘” ; nxn Pt
2. What do you t@‘n’l; about the convergence of Gradient Descent for this problem? ()e' X) -n
.F _ V\KU\QS; Ko I 4 onTusyn I T‘d
UE oD Bl det XX =0
|

I _ >0
=9 o0 YN0 Jok. '

w g6
. “:MH “d ,) ll f enyicAhs
v caoo qu \ ) a F" egun WHeIL

NOK A NEH6 (e
1Take a look at the example of real-world data linear least squares problem MHQJ.&‘,M
‘f%min Convexity in ML
2,9,z 'y in
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Linear Least Squares aka Linear Regression !

e HO) = 510yl 2100
men .
+1(®) = XX« >§I

1. Is this problem convex? Strongly convex? o
2. What do you think about the convergence of Gradient Descent for this problem?

_— (th ) = A

@ Q2 ?Q,'Ui‘l* Q&%U& a(d.ﬂfl ub%blnaaou yxﬂaw ?
CUNGHO il VKAV O
@

A LSS
L 7

o A L LA

1Take a look at the example of real-world data linear least squares problem
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l,-regularized Linear Least Squares

In the underdetermined case, it is often desirable to restore the strong convexity of the objective function by adding
an ly-penality, also known as Tikhonov regularization, [,-regularization, or weight decay.

o2 Bz :
|X6 —ylz + 516z — min

Note: With this modification, the objective is p-strongly convex again.

Take a look at the ®code

‘f - fnﬂ Convexity in ML
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Most important difference between convexity and strong convexity me D

0 .
flx) = S|z|2 —» min, A€R™"™ phecR™
/ 2 2 zER™ LOIV\zk‘\Aﬁ

Convex least squares regression. m=50. n=100.
quares regression. m=50. n=100. =0

£
*: 10° A e § 100 4
I x o
= ! S
g 1076 A i % 1073 A
10" 5 &5
0 50 100 0 50 100 0 50 100
Iteration Iteration Iteration
E
100~ = 2 100 4
I x o
= ! S
S 107° - B 5 1077 4
10! 5 5
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Time Time Time

— GDO0.2

Figure 20: Convex problem does not have convergence in domain

‘f - ;nyu} Convexity in ML L )
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Most important difference between convexity and strong convexity

1x) — £

‘f — min
Tz

1
@) = 5—-|Av—bj3 + Elel3 — min, AeRrm™beR™

Strongly convex least squares regression. m=50. n=100.¢mu=0.1.
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0 200 400 600
Iteration
103 4
1071 4
0 1 2
Time
Figure 21:

Convexity in ML

But if you add even small amount of regularization, you will ensure convergence in domain

Ixe = x|l

Ixc = x|l

102
10—1 4
0 200 400 600
Iteration
102
107! 1
0 1 2
Time
— GD 0.2

Gradient Norm

Gradient Norm

100 4
10—3 4
0 200 400 600
Iteration
100 4
1073 4
0 1 2
Time
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Most important difference between convexity and strong convexity

‘f — min
Tz

1
@) = 5—-|Av—bj3 + Elel3 — min, AeRrm™beR™

Strongly convex least squares regression. m=100.
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|
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Time

lIXie = x|

e =x
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Gradient Norm

Gradient Norm

n=50. mu=0.
—

m>N
CLLGH.
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Figure 22: Another way to ensure convergence in the previous problem is to switch the dimension values

Convexity in ML
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You have to have strong convexity (or PL) to ensure convergence with a high

. .
precision
100 4
“
|
= 1072 1
T T T
0 1000 2000
Iteration
_ 100 4
“
1
S 10721
T T
0 1 2
Time

‘f — min
Tz

Convexity in ML

Ixie = x|

I = x"1
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10t 4
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Convex binary logistic regression. mu=0.
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Figure 23: Only small precision is achievable with sublinear convergence
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You have to have strong convexity (or PL) to ensure convergence with a high

.« .
precision
Strongly convex binary logistic regressior.
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Convexity in ML

Figure 24: Strong convexity ensures linear convergence

DO

53


Mobile User

Mobile User

https://fmin.xyz
https://hse25.fmin.xyz
https://github.com/MerkulovDaniil/hse25
https://t.me/fminxyz

Any local minimum is a global minimum for Deep Linear Networks 2

We consider the following optimization problem: \/\/\/\/
min  L(W,,..., W)=

1
SIVLW, WX = Y3,

Wy, Wy,
where '\\ ,Lbl us
Ke. nu
X € RY%*" is the data/input matrix, He "i( d Q& ¢ ) 3’
Y € R%W*™ is the “label”/output matrix. Kotopou \{ NOK. JULH u-“a-bl 9!@&-
i Theorem ’Iha(aﬂBH{)ll‘

Let k = min(d,,,d,) be the "width" of the network, and define

-0 V ={(Wy,...,Wp) | rank(IL,W;) = k}.

Then, every critical point of L(W) in V is a global minimum, while every critical point in the complement V¢
is a saddle point.

2Global optimality conditions for deep neural networks
‘f - Wy"} Convexity in ML
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