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Convex sets

Convex sets ´ a û 2

Mobile User

https://fmin.xyz
https://hse25.fmin.xyz
https://github.com/MerkulovDaniil/hse25
https://t.me/fminxyz


Affine set

Suppose 𝑥1, 𝑥2 are two points in R!. Then the
line passing through them is defined as follows:𝑥 = 𝜃𝑥1 + (1 − 𝜃)𝑥2, 𝜃 ∈ R

The set 𝐴 is called affine if for any 𝑥1, 𝑥2
from 𝐴 the line passing through them also lies
in 𝐴, i.e.

∀𝜃 ∈ R, ∀𝑥1, 𝑥2 ∈ 𝐴 ∶ 𝜃𝑥1 + (1 − 𝜃)𝑥2 ∈ 𝐴
Ĺ Example• R𝑛 is an affine set.

• The set of solutions {𝑥 ∣ A𝑥 = b}
is also an affine set.

Figure 1: Illustration of a line between two vectors 𝑥1 and 𝑥2
Convex sets ´ a û 3
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Cone
A non-empty set 𝑆 is called a cone, if:∀𝑥 ∈ 𝑆, 𝜃 ≥ 0 → 𝜃𝑥 ∈ 𝑆
For any point in the cone, it also contains a
beam through this point.

Figure 2: Illustration of a coneConvex sets ´ a û 4
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Convex cone
The set 𝑆 is called a convex cone, if:

∀𝑥1, 𝑥2 ∈ 𝑆, 𝜃1, 𝜃2 ≥ 0 → 𝜃1𝑥1+𝜃2𝑥2 ∈ 𝑆
A Convex cone is just like a cone, but it is also
convex.

Ĺ Example• R𝑛

• Affine sets, containing 0• Ray• S𝑛+ - the set of symmetric positive
semi-definite matrices

Convex cone: set that contains all conic
combinations of points in the set

Figure 3: Illustration of a convex coneConvex sets ´ a û 5
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Line segment
Suppose 𝑥1, 𝑥2 are two points in R𝑛.
Then the line segment between them is defined
as follows:𝑥 = 𝜃𝑥1 + (1 − 𝜃)𝑥2, 𝜃 ∈ [0, 1]
A Convex set contains a line segment between
any two points in the set.

Figure 4: Illustration of a line segment between points 𝑥1, 𝑥2
Convex sets ´ a û 6
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Convex set
The set 𝑆 is called convex if for any 𝑥1, 𝑥2 from 𝑆 the line segment between
them also lies in 𝑆, i.e.∀𝜃 ∈ [0, 1], ∀𝑥1, 𝑥2 ∈ 𝑆 ∶ 𝜃𝑥1 + (1 − 𝜃)𝑥2 ∈ 𝑆

Figure 5: Top: examples of convex sets. Bottom: examples of non-convex sets.

Ĺ Example

An empty set and a set from
a single vector are convex by
definition.

Ĺ Example

Any affine set, a ray, or a line
segment are all convex sets.

Convex sets ´ a û 7
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Convex combination

Let 𝑥1, 𝑥2, … , 𝑥𝑘 ∈ 𝑆, then the point 𝜃1𝑥1 + 𝜃2𝑥2 + … + 𝜃𝑘𝑥𝑘 is called the convex combination of points𝑥1, 𝑥2, … , 𝑥𝑘 if
𝑘∑𝑖=1 𝜃𝑖 = 1, 𝜃𝑖 ≥ 0.

Convex sets ´ a û 8
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Convex hull
The set of all convex combinations of points from 𝑆 is called the convex hull of the set 𝑆.

conv(𝑆) = { 𝑘∑𝑖=1 𝜃𝑖𝑥𝑖 ∣ 𝑥𝑖 ∈ 𝑆, 𝑘∑𝑖=1 𝜃𝑖 = 1, 𝜃𝑖 ≥ 0}• The set conv(𝑆) is the smallest convex set containing 𝑆.

• The set 𝑆 is convex if and only if 𝑆 = conv(𝑆).

Figure 6: Top: convex hulls of the convex sets. Bottom: the convex hull of the non-convex sets.
Convex sets ´ a û 9
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Minkowski addition
The Minkowski sum of two sets of vectors 𝑆1 and 𝑆2 in Euclidean space is formed by adding each vector in 𝑆1 to
each vector in 𝑆2. 𝑆1 + 𝑆2 = {s1 + s2 | s1 ∈ 𝑆1, s2 ∈ 𝑆2}
Similarly, one can define a linear combination of the sets.

Ĺ Example

We will work in the R2 space. Let’s define:𝑆1 ∶= {𝑥 ∈ R2 ∶ 𝑥21 + 𝑥22 ≤ 1}
This is a unit circle centered at the origin. And:𝑆2 ∶= {𝑥 ∈ R2 ∶ −4 ≤ 𝑥1 ≤ −1, −3 ≤ 𝑥2 ≤ −1}
This represents a rectangle. The sum of the sets 𝑆1 and 𝑆2 will
form an enlarged rectangle 𝑆2 with rounded corners. The resulting
set will be convex.

Figure 7: 𝑆 = 𝑆1 + 𝑆2
Convex sets ´ a û 10
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Finding convexity

In practice, it is very important to understand whether a specific set is convex or not. Two approaches are used for
this depending on the context.• By definition.

• Show that 𝑆 is derived from simple convex sets using operations that preserve convexity.

Convex sets ´ a û 11
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Finding convexity by definition

𝑥1, 𝑥2 ∈ 𝑆, 0 ≤ 𝜃 ≤ 1 → 𝜃𝑥1 + (1 − 𝜃)𝑥2 ∈ 𝑆
Ĺ Example

Prove, that the set of symmetric positive definite matrices S𝑛++ = {X ∈ R𝑛×𝑛 ∣ X = X⊤, X ≻ 0} is convex.

Convex sets ´ a û 12
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Operations, that preserve convexity
The linear combination of convex sets is convex Let there be 2 convex sets 𝑆𝑥, 𝑆𝑦, let the set𝑆 = {𝑠 ∣ 𝑠 = 𝑐1𝑥 + 𝑐2𝑦, 𝑥 ∈ 𝑆𝑥, 𝑦 ∈ 𝑆𝑦, 𝑐1, 𝑐2 ∈ R}
Take two points from 𝑆: 𝑠1 = 𝑐1𝑥1 + 𝑐2𝑦1, 𝑠2 = 𝑐1𝑥2 + 𝑐2𝑦2 and prove that the segment between them𝜃𝑠1 + (1 − 𝜃)𝑠2, 𝜃 ∈ [0, 1] also belongs to 𝑆 𝜃𝑠1 + (1 − 𝜃)𝑠2

𝜃(𝑐1𝑥1 + 𝑐2𝑦1) + (1 − 𝜃)(𝑐1𝑥2 + 𝑐2𝑦2)
𝑐1(𝜃𝑥1 + (1 − 𝜃)𝑥2) + 𝑐2(𝜃𝑦1 + (1 − 𝜃)𝑦2)

𝑐1𝑥 + 𝑐2𝑦 ∈ 𝑆
Convex sets ´ a û 13
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The intersection of any (!) number of convex sets is convex
If the desired intersection is empty or contains one point, the property is proved by definition. Otherwise, take 2
points and a segment between them. These points must lie in all intersecting sets, and since they are all convex, the
segment between them lies in all sets and, therefore, in their intersection.

Figure 8: Intersection of halfplanes
Convex sets ´ a û 14
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The image of the convex set under affine mapping is convex

𝑆 ⊆ R𝑛 convex → 𝑓(𝑆) = {𝑓(𝑥) ∣ 𝑥 ∈ 𝑆} convex (𝑓(𝑥) = A𝑥 + b)
Examples of affine functions: extension, projection, transposition, set of solutions of linear matrix inequality{𝑥 ∣ 𝑥1𝐴1 + … + 𝑥𝑚𝐴𝑚 ⪯ 𝐵}. Here 𝐴𝑖, 𝐵 ∈ S𝑝 are symmetric matrices 𝑝 × 𝑝.
Note also that the prototype of the convex set under affine mapping is also convex.𝑆 ⊆ R𝑚 convex → 𝑓−1(𝑆) = {𝑥 ∈ R𝑛 ∣ 𝑓(𝑥) ∈ 𝑆} convex (𝑓(𝑥) = A𝑥 + b)

Convex sets ´ a û 15
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Example

Let 𝑥 ∈ R is a random variable with a given probability distribution of P(𝑥 = 𝑎𝑖) = 𝑝𝑖, where 𝑖 = 1, … , 𝑛, and𝑎1 < … < 𝑎𝑛. It is said that the probability vector of outcomes of 𝑝 ∈ R𝑛 belongs to the probabilistic simplex, i.e.𝑃 = {𝑝 ∣ 1𝑇 𝑝 = 1, 𝑝 ⪰ 0} = {𝑝 ∣ 𝑝1 + … + 𝑝𝑛 = 1, 𝑝𝑖 ≥ 0}.
Determine if the following sets of 𝑝 are convex:• P(𝑥 > 𝛼) ≤ 𝛽

• E|𝑥201| ≤ 𝛼E|𝑥|• E|𝑥2| ≥ 𝛼V𝑥 ≥ 𝛼

Convex sets ´ a û 16
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Example

Let 𝑥 ∈ R is a random variable with a given probability distribution of P(𝑥 = 𝑎𝑖) = 𝑝𝑖, where 𝑖 = 1, … , 𝑛, and𝑎1 < … < 𝑎𝑛. It is said that the probability vector of outcomes of 𝑝 ∈ R𝑛 belongs to the probabilistic simplex, i.e.𝑃 = {𝑝 ∣ 1𝑇 𝑝 = 1, 𝑝 ⪰ 0} = {𝑝 ∣ 𝑝1 + … + 𝑝𝑛 = 1, 𝑝𝑖 ≥ 0}.
Determine if the following sets of 𝑝 are convex:• P(𝑥 > 𝛼) ≤ 𝛽• E|𝑥201| ≤ 𝛼E|𝑥|

• E|𝑥2| ≥ 𝛼V𝑥 ≥ 𝛼

Convex sets ´ a û 16
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Convex functions

Convex functions ´ a û 17
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Jensen’s inequality
The function 𝑓(𝑥), which is defined on the
convex set 𝑆 ⊆ R𝑛, is called convex on 𝑆, if:
𝑓(𝜆𝑥1 + (1 − 𝜆)𝑥2) ≤ 𝜆𝑓(𝑥1) + (1 − 𝜆)𝑓(𝑥2)
for any 𝑥1, 𝑥2 ∈ 𝑆 and 0 ≤ 𝜆 ≤ 1.
If the above inequality holds as strict inequality𝑥1 ≠ 𝑥2 and 0 < 𝜆 < 1, then the function is
called strictly convex on 𝑆.

Figure 9: Difference between convex and non-convex function

Convex functions ´ a û 18

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

https://fmin.xyz
https://hse25.fmin.xyz
https://github.com/MerkulovDaniil/hse25
https://t.me/fminxyz


Jensen’s inequality

Ĺ Theorem

Let 𝑓(𝑥) be a convex function on a convex set 𝑋 ⊆ R𝑛 and let 𝑥𝑖 ∈ 𝑋, 1 ≤ 𝑖 ≤ 𝑚, be arbitrary points from𝑋. Then 𝑓 ( 𝑚∑𝑖=1 𝜆𝑖𝑥𝑖) ≤ 𝑚∑𝑖=1 𝜆𝑖𝑓(𝑥𝑖)
for any 𝜆 = [𝜆1, … , 𝜆𝑚] ∈ Δ𝑚 - probability simplex.

Proof
1. First, note that the point ∑𝑚𝑖=1 𝜆𝑖𝑥𝑖 as a convex combination of points from the convex set 𝑋 belongs to 𝑋.

2. We will prove this by induction. For 𝑚 = 1, the statement is obviously true, and for 𝑚 = 2, it follows from the
definition of a convex function.

Convex functions ´ a û 19
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Jensen’s inequality
3. Assume it is true for all 𝑚 up to 𝑚 = 𝑘, and we will prove it for 𝑚 = 𝑘 + 1. Let 𝜆 ∈ Δ𝑘 + 1 and

𝑥 = 𝑘+1∑𝑖=1 𝜆𝑖𝑥𝑖 = 𝑘∑𝑖=1 𝜆𝑖𝑥𝑖 + 𝜆𝑘+1𝑥𝑘+1.
Assuming 0 < 𝜆𝑘+1 < 1, as otherwise, it reduces to previously considered cases, we have𝑥 = 𝜆𝑘+1𝑥𝑘+1 + (1 − 𝜆𝑘+1) ̄𝑥,
where ̄𝑥 = ∑𝑘𝑖=1 𝛾𝑖𝑥𝑖 and 𝛾𝑖 = 𝜆𝑖1−𝜆𝑘+1 ≥ 0, 1 ≤ 𝑖 ≤ 𝑘.

4. Since 𝜆 ∈ Δ𝑘+1, then 𝛾 = [𝛾1, … , 𝛾𝑘] ∈ Δ𝑘. Therefore ̄𝑥 ∈ 𝑋 and by the convexity of 𝑓(𝑥) and the induction
hypothesis:

𝑓 (𝑘+1∑𝑖=1 𝜆𝑖𝑥𝑖) = 𝑓 (𝜆𝑘+1𝑥𝑘+1 + (1 − 𝜆𝑘+1) ̄𝑥) ≤ 𝜆𝑘+1𝑓(𝑥𝑘+1) + (1 − 𝜆𝑘+1)𝑓( ̄𝑥) ≤ 𝑘+1∑𝑖=1 𝜆𝑖𝑓(𝑥𝑖)
Thus, initial inequality is satisfied for 𝑚 = 𝑘 + 1 as well.

Convex functions ´ a û 20

Mobile User

Mobile User

Mobile User

https://fmin.xyz
https://hse25.fmin.xyz
https://github.com/MerkulovDaniil/hse25
https://t.me/fminxyz


Jensen’s inequality
3. Assume it is true for all 𝑚 up to 𝑚 = 𝑘, and we will prove it for 𝑚 = 𝑘 + 1. Let 𝜆 ∈ Δ𝑘 + 1 and

𝑥 = 𝑘+1∑𝑖=1 𝜆𝑖𝑥𝑖 = 𝑘∑𝑖=1 𝜆𝑖𝑥𝑖 + 𝜆𝑘+1𝑥𝑘+1.
Assuming 0 < 𝜆𝑘+1 < 1, as otherwise, it reduces to previously considered cases, we have𝑥 = 𝜆𝑘+1𝑥𝑘+1 + (1 − 𝜆𝑘+1) ̄𝑥,
where ̄𝑥 = ∑𝑘𝑖=1 𝛾𝑖𝑥𝑖 and 𝛾𝑖 = 𝜆𝑖1−𝜆𝑘+1 ≥ 0, 1 ≤ 𝑖 ≤ 𝑘.
4. Since 𝜆 ∈ Δ𝑘+1, then 𝛾 = [𝛾1, … , 𝛾𝑘] ∈ Δ𝑘. Therefore ̄𝑥 ∈ 𝑋 and by the convexity of 𝑓(𝑥) and the induction

hypothesis:

𝑓 (𝑘+1∑𝑖=1 𝜆𝑖𝑥𝑖) = 𝑓 (𝜆𝑘+1𝑥𝑘+1 + (1 − 𝜆𝑘+1) ̄𝑥) ≤ 𝜆𝑘+1𝑓(𝑥𝑘+1) + (1 − 𝜆𝑘+1)𝑓( ̄𝑥) ≤ 𝑘+1∑𝑖=1 𝜆𝑖𝑓(𝑥𝑖)
Thus, initial inequality is satisfied for 𝑚 = 𝑘 + 1 as well.

Convex functions ´ a û 20

Mobile User

https://fmin.xyz
https://hse25.fmin.xyz
https://github.com/MerkulovDaniil/hse25
https://t.me/fminxyz


Examples of convex functions

• 𝑓(𝑥) = 𝑥𝑝, 𝑝 > 1, 𝑥 ∈ R+• 𝑓(𝑥) = ‖𝑥‖𝑝, 𝑝 > 1, 𝑥 ∈ R𝑛• 𝑓(𝑥) = 𝑒𝑐𝑥, 𝑐 ∈ R, 𝑥 ∈ R• 𝑓(𝑥) = − ln𝑥, 𝑥 ∈ R++• 𝑓(𝑥) = 𝑥 ln𝑥, 𝑥 ∈ R++• The sum of the largest 𝑘 coordinates 𝑓(𝑥) = 𝑥(1) + … + 𝑥(𝑘), 𝑥 ∈ R𝑛• 𝑓(𝑋) = 𝜆𝑚𝑎𝑥(𝑋), 𝑋 = 𝑋𝑇• 𝑓(𝑋) = − log det𝑋, 𝑋 ∈ 𝑆𝑛++
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Epigraph
For the function 𝑓(𝑥), defined on 𝑆 ⊆ R𝑛, the following
set:

epi 𝑓 = {[𝑥, 𝜇] ∈ 𝑆 × R ∶ 𝑓(𝑥) ≤ 𝜇}
is called epigraph of the function 𝑓(𝑥).

Ĺ Convexity of the epigraph is the convexity of the
function

For a function 𝑓(𝑥), defined on a convex set 𝑋, to
be convex on 𝑋, it is necessary and sufficient that
the epigraph of 𝑓 is a convex set.

Figure 10: Epigraph of a function
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Convexity of the epigraph is the convexity of the function
1. Necessity: Assume 𝑓(𝑥) is convex on 𝑋. Take any two arbitrary points [𝑥1, 𝜇1] ∈ epi𝑓 and [𝑥2, 𝜇2] ∈ epi𝑓 .

Also take 0 ≤ 𝜆 ≤ 1 and denote 𝑥𝜆 = 𝜆𝑥1 + (1 − 𝜆)𝑥2, 𝜇𝜆 = 𝜆𝜇1 + (1 − 𝜆)𝜇2. Then,𝜆 [𝑥1𝜇1] + (1 − 𝜆) [𝑥2𝜇2] = [𝑥𝜆𝜇𝜆] .
From the convexity of the set 𝑋, it follows that 𝑥𝜆 ∈ 𝑋. Moreover, since 𝑓(𝑥) is a convex function,𝑓(𝑥𝜆) ≤ 𝜆𝑓(𝑥1) + (1 − 𝜆)𝑓(𝑥2) ≤ 𝜆𝜇1 + (1 − 𝜆)𝜇2 = 𝜇𝜆
Inequality above indicates that [𝑥𝜆𝜇𝜆] ∈ epi𝑓 . Thus, the epigraph of 𝑓 is a convex set.

2. Sufficiency: Assume the epigraph of 𝑓 , epi𝑓 , is a convex set. Then, from the membership of the points [𝑥1, 𝜇1]
and [𝑥2, 𝜇2] in the epigraph of 𝑓 , it follows that

[𝑥𝜆𝜇𝜆] = 𝜆 [𝑥1𝜇1] + (1 − 𝜆) [𝑥2𝜇2] ∈ epi𝑓
for any 0 ≤ 𝜆 ≤ 1, i.e., 𝑓(𝑥𝜆) ≤ 𝜇𝜆 = 𝜆𝜇1 + (1 − 𝜆)𝜇2. But this is true for all 𝜇1 ≥ 𝑓(𝑥1) and 𝜇2 ≥ 𝑓(𝑥2),
particularly when 𝜇1 = 𝑓(𝑥1) and 𝜇2 = 𝑓(𝑥2). Hence we arrive at the inequality𝑓(𝑥𝜆) = 𝑓(𝜆𝑥1 + (1 − 𝜆)𝑥2) ≤ 𝜆𝑓(𝑥1) + (1 − 𝜆)𝑓(𝑥2).
Since points 𝑥1 ∈ 𝑋 and 𝑥2 ∈ 𝑋 can be arbitrarily chosen, 𝑓(𝑥) is a convex function on 𝑋.
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Example: norm cone
Let a norm ‖ ⋅ ‖ be defined in the space 𝑈 . Consider the set:𝐾 ∶= {(𝑥, 𝑡) ∈ 𝑈 × R+ ∶ ‖𝑥‖ ≤ 𝑡}
which represents the epigraph of the function 𝑥 ↦ ‖𝑥‖. This set is called the cone norm. According to the statement
above, the set 𝐾 is convex. ţCode for the figures

Figure 11: Norm cones for different 𝑝 - norms
Convex functions ´ a û 24

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

https://colab.research.google.com/github/MerkulovDaniil/optim/blob/master/assets/Notebooks/Norm_cones.ipynb
https://fmin.xyz
https://hse25.fmin.xyz
https://github.com/MerkulovDaniil/hse25
https://t.me/fminxyz


Sublevel set

Figure 12: Sublevel set of a function with respect to level 𝛽

For the function 𝑓(𝑥), defined on 𝑆 ⊆ R𝑛, the following
set: ℒ𝛽 = {𝑥 ∈ 𝑆 ∶ 𝑓(𝑥) ≤ 𝛽}
is called sublevel set or Lebesgue set of the function 𝑓(𝑥).

Note, that if the function 𝑓(𝑥) is convex, then its sublevel
sets are convex for any 𝛽 ∈ R.
While the converse is not true. (For example, consider
the function 𝑓(𝑥) = √|𝑥|)

Convex functions ´ a û 25
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Reduction to a line𝑓 ∶ 𝑆 → R is convex if and only if 𝑆 is a convex set and the function 𝑔(𝑡) = 𝑓(𝑥 + 𝑡𝑣) defined on {𝑡 ∣ 𝑥 + 𝑡𝑣 ∈ 𝑆} is
convex for any 𝑥 ∈ 𝑆, 𝑣 ∈ R𝑛, which allows checking convexity of the scalar function to establish convexity of the
vector function.

If you find a direction 𝑣 for which 𝑔(𝑡) is not convex, then 𝑓 is not convex.

Convex functions ´ a û 26
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Operations that preserve convexity

Figure 13: Pointwise maximum (supremum) of convex functions is
convex

• Pointwise maximum (supremum) of any number of
functions: If 𝑓1(𝑥), … , 𝑓𝑚(𝑥) are convex, then𝑓(𝑥) = max{𝑓1(𝑥), … , 𝑓𝑚(𝑥)} is convex.

• Non-negative sum of the convex functions:𝛼𝑓(𝑥) + 𝛽𝑔(𝑥), (𝛼 ≥ 0, 𝛽 ≥ 0).• Composition with affine function 𝑓(𝐴𝑥 + 𝑏) is convex,
if 𝑓(𝑥) is convex.• If 𝑓(𝑥, 𝑦) is convex on 𝑥 for any 𝑦 ∈ 𝑌 :𝑔(𝑥) = sup𝑦∈𝑌 𝑓(𝑥, 𝑦) is convex.• If 𝑓(𝑥) is convex on 𝑆, then 𝑔(𝑥, 𝑡) = 𝑡𝑓(𝑥/𝑡) - is
convex with 𝑥/𝑡 ∈ 𝑆, 𝑡 > 0.• Let 𝑓1 ∶ 𝑆1 → R and 𝑓2 ∶ 𝑆2 → R, where
range(𝑓1) ⊆ 𝑆2. If 𝑓1 and 𝑓2 are convex, and 𝑓2 is
increasing, then 𝑓2 ∘ 𝑓1 is convex on 𝑆1.

Convex functions ´ a û 27
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Maximum eigenvalue of a matrix is a convex function

Ĺ Example

Show, that 𝑓(𝐴) = 𝜆𝑚𝑎𝑥(𝐴) - is convex, if 𝐴 ∈ 𝑆𝑛.

Convex functions ´ a û 28
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Strong convexity criteria

Strong convexity criteria ´ a û 29
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First-order differential criterion of convexity
The differentiable function 𝑓(𝑥) defined on the convex set𝑆 ⊆ R𝑛 is convex if and only if ∀𝑥, 𝑦 ∈ 𝑆:𝑓(𝑦) ≥ 𝑓(𝑥) + ∇𝑓𝑇 (𝑥)(𝑦 − 𝑥)
Let 𝑦 = 𝑥 + Δ𝑥, then the criterion will become more tractable:𝑓(𝑥 + Δ𝑥) ≥ 𝑓(𝑥) + ∇𝑓𝑇 (𝑥)Δ𝑥

Figure 14: Convex function is greater or equal than Taylor
linear approximation at any point

Strong convexity criteria ´ a û 30
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Second-order differential criterion of convexity

Twice differentiable function 𝑓(𝑥) defined on the convex set 𝑆 ⊆ R𝑛 is convex if and only if ∀𝑥 ∈ int(𝑆) ≠ ∅:∇2𝑓(𝑥) ⪰ 0
In other words, ∀𝑦 ∈ R𝑛: ⟨𝑦, ∇2𝑓(𝑥)𝑦⟩ ≥ 0

Strong convexity criteria ´ a û 31
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Strong convexity𝑓(𝑥), defined on the convex set 𝑆 ⊆ R𝑛, is called 𝜇-strongly
convex (strongly convex) on 𝑆, if:
𝑓(𝜆𝑥1+(1−𝜆)𝑥2) ≤ 𝜆𝑓(𝑥1)+(1−𝜆)𝑓(𝑥2)−𝜇2 𝜆(1−𝜆)‖𝑥1−𝑥2‖2
for any 𝑥1, 𝑥2 ∈ 𝑆 and 0 ≤ 𝜆 ≤ 1 for some 𝜇 > 0.

Figure 15: Strongly convex function is greater or equal than
Taylor quadratic approximation at any point

Strong convexity criteria ´ a û 32
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First-order differential criterion of strong convexity
Differentiable 𝑓(𝑥) defined on the convex set 𝑆 ⊆ R𝑛 is 𝜇-strongly convex if and only if ∀𝑥, 𝑦 ∈ 𝑆:𝑓(𝑦) ≥ 𝑓(𝑥) + ∇𝑓𝑇 (𝑥)(𝑦 − 𝑥) + 𝜇2 ‖𝑦 − 𝑥‖2

Let 𝑦 = 𝑥 + Δ𝑥, then the criterion will become more tractable:𝑓(𝑥 + Δ𝑥) ≥ 𝑓(𝑥) + ∇𝑓𝑇 (𝑥)Δ𝑥 + 𝜇2 ‖Δ𝑥‖2
Ĺ Theorem

Let 𝑓(𝑥) be a differentiable function on a convex set 𝑋 ⊆ R𝑛. Then 𝑓(𝑥) is strongly convex on 𝑋 with a
constant 𝜇 > 0 if and only if 𝑓(𝑥) − 𝑓(𝑥0) ≥ ⟨∇𝑓(𝑥0), 𝑥 − 𝑥0⟩ + 𝜇2 ‖𝑥 − 𝑥0‖2
for all 𝑥, 𝑥0 ∈ 𝑋.

Strong convexity criteria ´ a û 33
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First-order differential criterion of strong convexity
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First-order differential criterion of strong convexity
Differentiable 𝑓(𝑥) defined on the convex set 𝑆 ⊆ R𝑛 is 𝜇-strongly convex if and only if ∀𝑥, 𝑦 ∈ 𝑆:𝑓(𝑦) ≥ 𝑓(𝑥) + ∇𝑓𝑇 (𝑥)(𝑦 − 𝑥) + 𝜇2 ‖𝑦 − 𝑥‖2
Let 𝑦 = 𝑥 + Δ𝑥, then the criterion will become more tractable:𝑓(𝑥 + Δ𝑥) ≥ 𝑓(𝑥) + ∇𝑓𝑇 (𝑥)Δ𝑥 + 𝜇2 ‖Δ𝑥‖2

Ĺ Theorem

Let 𝑓(𝑥) be a differentiable function on a convex set 𝑋 ⊆ R𝑛. Then 𝑓(𝑥) is strongly convex on 𝑋 with a
constant 𝜇 > 0 if and only if 𝑓(𝑥) − 𝑓(𝑥0) ≥ ⟨∇𝑓(𝑥0), 𝑥 − 𝑥0⟩ + 𝜇2 ‖𝑥 − 𝑥0‖2
for all 𝑥, 𝑥0 ∈ 𝑋.
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Proof of first-order differential criterion of strong convexity

Necessity: Let 0 < 𝜆 ≤ 1. According to the definition of a strongly convex function,𝑓(𝜆𝑥 + (1 − 𝜆)𝑥0) ≤ 𝜆𝑓(𝑥) + (1 − 𝜆)𝑓(𝑥0) − 𝜇2 𝜆(1 − 𝜆)‖𝑥 − 𝑥0‖2

or equivalently, 𝑓(𝑥) − 𝑓(𝑥0) − 𝜇2 (1 − 𝜆)‖𝑥 − 𝑥0‖2 ≥ 1𝜆 [𝑓(𝜆𝑥 + (1 − 𝜆)𝑥0) − 𝑓(𝑥0)] =
= 1𝜆[𝑓(𝑥0 + 𝜆(𝑥 − 𝑥0)) − 𝑓(𝑥0)] = 1𝜆 [𝜆⟨∇𝑓(𝑥0), 𝑥 − 𝑥0⟩ + 𝑜(𝜆)] =

= ⟨∇𝑓(𝑥0), 𝑥 − 𝑥0⟩ + 𝑜(𝜆)𝜆 .
Thus, taking the limit as 𝜆 ↓ 0, we arrive at the initial statement.
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Proof of first-order differential criterion of strong convexity
Sufficiency: Assume the inequality in the theorem is satisfied for all 𝑥, 𝑥0 ∈ 𝑋. Take 𝑥0 = 𝜆𝑥1 + (1 − 𝜆)𝑥2, where𝑥1, 𝑥2 ∈ 𝑋, 0 ≤ 𝜆 ≤ 1. According to the inequality, the following inequalities hold:

𝑓(𝑥1) − 𝑓(𝑥0) ≥ ⟨∇𝑓(𝑥0), 𝑥1 − 𝑥0⟩ + 𝜇2 ‖𝑥1 − 𝑥0‖2,𝑓(𝑥2) − 𝑓(𝑥0) ≥ ⟨∇𝑓(𝑥0), 𝑥2 − 𝑥0⟩ + 𝜇2 ‖𝑥2 − 𝑥0‖2.
Multiplying the first inequality by 𝜆 and the second by 1 − 𝜆 and adding them, considering that𝑥1 − 𝑥0 = (1 − 𝜆)(𝑥1 − 𝑥2), 𝑥2 − 𝑥0 = 𝜆(𝑥2 − 𝑥1),
and 𝜆(1 − 𝜆)2 + 𝜆2(1 − 𝜆) = 𝜆(1 − 𝜆), we get

𝜆𝑓(𝑥1) + (1 − 𝜆)𝑓(𝑥2) − 𝑓(𝑥0) − 𝜇2 𝜆(1 − 𝜆)‖𝑥1 − 𝑥2‖2 ≥⟨∇𝑓(𝑥0), 𝜆𝑥1 + (1 − 𝜆)𝑥2 − 𝑥0⟩ = 0.
Thus, inequality from the definition of a strongly convex function is satisfied. It is important to mention, that 𝜇 = 0
stands for the convex case and corresponding differential criterion.
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Second-order differential criterion of strong convexity

Twice differentiable function 𝑓(𝑥) defined on the convex set 𝑆 ⊆ R𝑛 is called 𝜇-strongly convex if and only if∀𝑥 ∈ int(𝑆) ≠ ∅: ∇2𝑓(𝑥) ⪰ 𝜇𝐼
In other words: ⟨𝑦, ∇2𝑓(𝑥)𝑦⟩ ≥ 𝜇‖𝑦‖2

Ĺ Theorem

Let 𝑋 ⊆ R𝑛 be a convex set, with int𝑋 ≠ ∅. Furthermore, let 𝑓(𝑥) be a twice continuously differentiable
function on 𝑋. Then 𝑓(𝑥) is strongly convex on 𝑋 with a constant 𝜇 > 0 if and only if⟨𝑦, ∇2𝑓(𝑥)𝑦⟩ ≥ 𝜇‖𝑦‖2
for all 𝑥 ∈ 𝑋 and 𝑦 ∈ R𝑛.
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Proof of second-order differential criterion of strong convexity

The target inequality is trivial when 𝑦 = 0𝑛, hence we assume 𝑦 ≠ 0𝑛.
Necessity: Assume initially that 𝑥 is an interior point of 𝑋. Then 𝑥 + 𝛼𝑦 ∈ 𝑋 for all 𝑦 ∈ R𝑛 and sufficiently small 𝛼.
Since 𝑓(𝑥) is twice differentiable,𝑓(𝑥 + 𝛼𝑦) = 𝑓(𝑥) + 𝛼⟨∇𝑓(𝑥), 𝑦⟩ + 𝛼22 ⟨𝑦, ∇2𝑓(𝑥)𝑦⟩ + 𝑜(𝛼2).

Based on the first-order criterion of strong convexity, we have𝛼22 ⟨𝑦, ∇2𝑓(𝑥)𝑦⟩ + 𝑜(𝛼2) = 𝑓(𝑥 + 𝛼𝑦) − 𝑓(𝑥) − 𝛼⟨∇𝑓(𝑥), 𝑦⟩ ≥ 𝜇2 𝛼2‖𝑦‖2.
This inequality reduces to the target inequality after dividing both sides by 𝛼2 and taking the limit as 𝛼 ↓ 0.
If 𝑥 ∈ 𝑋 but 𝑥 ∉ int𝑋, consider a sequence {𝑥𝑘} such that 𝑥𝑘 ∈ int𝑋 and 𝑥𝑘 → 𝑥 as 𝑘 → ∞. Then, we arrive at
the target inequality after taking the limit.
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Strong convexity criteria ´ a û 37
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Proof of second-order differential criterion of strong convexity

Sufficiency: Using Taylor’s formula with the Lagrange remainder and the target inequality, we obtain for 𝑥 + 𝑦 ∈ 𝑋:𝑓(𝑥 + 𝑦) − 𝑓(𝑥) − ⟨∇𝑓(𝑥), 𝑦⟩ = 12⟨𝑦, ∇2𝑓(𝑥 + 𝛼𝑦)𝑦⟩ ≥ 𝜇2 ‖𝑦‖2,
where 0 ≤ 𝛼 ≤ 1. Therefore,

𝑓(𝑥 + 𝑦) − 𝑓(𝑥) ≥ ⟨∇𝑓(𝑥), 𝑦⟩ + 𝜇2 ‖𝑦‖2.
Consequently, by the first-order criterion of strong convexity, the function 𝑓(𝑥) is strongly convex with a constant 𝜇.
It is important to mention, that 𝜇 = 0 stands for the convex case and corresponding differential criterion.

Strong convexity criteria ´ a û 38
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Convex and concave function

Ĺ Example

Show, that 𝑓(𝑥) = 𝑐⊤𝑥 + 𝑏 is convex and concave.

Strong convexity criteria ´ a û 39
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Simplest strongly convex function

Ĺ Example

Show, that 𝑓(𝑥) = 𝑥⊤𝐴𝑥, where 𝐴 ⪰ 0 - is convex on R𝑛. Is it strongly convex?

Strong convexity criteria ´ a û 40
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Convexity and continuity
Let 𝑓(𝑥) - be a convex function on a convex set 𝑆 ⊆ R𝑛.
Then 𝑓(𝑥) is continuous ∀𝑥 ∈ ri(𝑆). a

Ĺ Proper convex function

Function 𝑓 ∶ R𝑛 → R is said to be proper convex
function if it never takes on the value −∞ and not
identically equal to ∞.

Ĺ Indicator function

𝛿𝑆(𝑥) = {∞, 𝑥 ∈ 𝑆,0, 𝑥 ∉ 𝑆,
is a proper convex function.

aPlease, read here about difference between interior and relative interior.

Ĺ Closed function

Function 𝑓 ∶ R𝑛 → R is said to be closed if for each𝛼 ∈ R, the sublevel set is closed.
Equivalently, if the epigraph is closed, then the func-
tion 𝑓 is closed.

Figure 16: The concept of a closed function is introduced to avoid
such breaches at the border.

Strong convexity criteria ´ a û 41
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Facts about convexity• 𝑓(𝑥) is called (strictly, strongly) concave if the function −𝑓(𝑥) - is (strictly, strongly) convex.• Jensen’s inequality for the convex functions:

𝑓 ( 𝑛∑𝑖=1 𝛼𝑖𝑥𝑖) ≤ 𝑛∑𝑖=1 𝛼𝑖𝑓(𝑥𝑖)
for 𝛼𝑖 ≥ 0; 𝑛∑𝑖=1 𝛼𝑖 = 1 (probability simplex)
For the infinite dimension case:

𝑓 ⎛⎜⎝∫𝑆 𝑥𝑝(𝑥)𝑑𝑥⎞⎟⎠ ≤ ∫𝑆 𝑓(𝑥)𝑝(𝑥)𝑑𝑥
If the integrals exist and 𝑝(𝑥) ≥ 0, ∫𝑆 𝑝(𝑥)𝑑𝑥 = 1.• If the function 𝑓(𝑥) and the set 𝑆 are convex, then any local minimum 𝑥∗ = argmin𝑥∈𝑆 𝑓(𝑥) will be the global one.

Strong convexity guarantees the uniqueness of the solution.
Strong convexity criteria ´ a û 42
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Other forms of convexity

• Log-convexity: log 𝑓 is convex; Log convexity implies convexity.• Log-concavity: log 𝑓 concave; not closed under addition!• Exponential convexity: [𝑓(𝑥𝑖 + 𝑥𝑗)] ⪰ 0, for 𝑥1, … , 𝑥𝑛• Operator convexity: 𝑓(𝜆𝑋 + (1 − 𝜆)𝑌 )• Quasiconvexity: 𝑓(𝜆𝑥 + (1 − 𝜆)𝑦) ≤ max{𝑓(𝑥), 𝑓(𝑦)}• Pseudoconvexity: ⟨∇𝑓(𝑦), 𝑥 − 𝑦⟩ ≥ 0 ⟶ 𝑓(𝑥) ≥ 𝑓(𝑦)• Discrete convexity: 𝑓 ∶ Z𝑛 → Z; “convexity + matroid theory.”

Strong convexity criteria ´ a û 43
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Polyak- Lojasiewicz condition. Linear convergence of gradient descent without
convexity
PL inequality holds if the following condition is satisfied for some 𝜇 > 0,‖∇𝑓(𝑥)‖2 ≥ 𝜇(𝑓(𝑥) − 𝑓∗)∀𝑥
It is interesting, that the Gradient Descent algorithm has
The following functions satisfy the PL condition but are not convex. ţLink to the code𝑓(𝑥) = 𝑥2 + 3 sin2(𝑥)

Figure 17: PL function

𝑓(𝑥, 𝑦) = (𝑦 − sin𝑥)22

Figure 18: PL function

Strong convexity criteria ´ a û 44
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Convexity in ML

Convexity in ML ´ a û 45
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Linear Least Squares aka Linear Regression

Figure 19: Illustration

In a least-squares, or linear regression, problem, we have measurements 𝑋 ∈ R𝑚×𝑛 and 𝑦 ∈ R𝑚 and seek a vector𝜃 ∈ R𝑛 such that 𝑋𝜃 is close to 𝑦. Closeness is defined as the sum of the squared differences:

𝑚∑𝑖=1(𝑥⊤𝑖 𝜃 − 𝑦𝑖)2 = ‖𝑋𝜃 − 𝑦‖22 → min𝜃∈R𝑛
For example, we might have a dataset of 𝑚 users, each represented by 𝑛 features. Each row 𝑥⊤𝑖 of 𝑋 is the features
for user 𝑖, while the corresponding entry 𝑦𝑖 of 𝑦 is the measurement we want to predict from 𝑥⊤𝑖 , such as ad spending.
The prediction is given by 𝑥⊤𝑖 𝜃.

Convexity in ML ´ a û 46
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Linear Least Squares aka Linear Regression 1

1. Is this problem convex? Strongly convex?

2. What do you think about the convergence of Gradient Descent for this problem?

1Take a look at the ţexample of real-world data linear least squares problem

Convexity in ML ´ a û 47
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Linear Least Squares aka Linear Regression 1

1. Is this problem convex? Strongly convex?
2. What do you think about the convergence of Gradient Descent for this problem?

1Take a look at the ţexample of real-world data linear least squares problem
Convexity in ML ´ a û 47
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Linear Least Squares aka Linear Regression 1

1. Is this problem convex? Strongly convex?
2. What do you think about the convergence of Gradient Descent for this problem?

1Take a look at the ţexample of real-world data linear least squares problem
Convexity in ML ´ a û 47
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𝑙2-regularized Linear Least Squares

In the underdetermined case, it is often desirable to restore the strong convexity of the objective function by adding
an 𝑙2-penality, also known as Tikhonov regularization, 𝑙2-regularization, or weight decay.‖𝑋𝜃 − 𝑦‖22 + 𝜇2 ‖𝜃‖22 → min𝜃∈R𝑛
Note: With this modification, the objective is 𝜇-strongly convex again.
Take a look at the ţcode

Convexity in ML ´ a û 48
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Most important difference between convexity and strong convexity𝑓(𝑥) = 12𝑚‖𝐴𝑥 − 𝑏‖22 + 𝜇2 ‖𝑥‖22 → min𝑥∈R𝑛, 𝐴 ∈ R𝑚×𝑛, 𝑏 ∈ R𝑚

Figure 20: Convex problem does not have convergence in domain
Convexity in ML ´ a û 49
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Most important difference between convexity and strong convexity𝑓(𝑥) = 12𝑚‖𝐴𝑥 − 𝑏‖22 + 𝜇2 ‖𝑥‖22 → min𝑥∈R𝑛, 𝐴 ∈ R𝑚×𝑛, 𝑏 ∈ R𝑚

Figure 21: But if you add even small amount of regularization, you will ensure convergence in domain
Convexity in ML ´ a û 50
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Most important difference between convexity and strong convexity𝑓(𝑥) = 12𝑚‖𝐴𝑥 − 𝑏‖22 + 𝜇2 ‖𝑥‖22 → min𝑥∈R𝑛, 𝐴 ∈ R𝑚×𝑛, 𝑏 ∈ R𝑚

Figure 22: Another way to ensure convergence in the previous problem is to switch the dimension values
Convexity in ML ´ a û 51
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You have to have strong convexity (or PL) to ensure convergence with a high
precision

Figure 23: Only small precision is achievable with sublinear convergence

Convexity in ML ´ a û 52
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You have to have strong convexity (or PL) to ensure convergence with a high
precision

Figure 24: Strong convexity ensures linear convergence

Convexity in ML ´ a û 53
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Any local minimum is a global minimum for Deep Linear Networks 2

We consider the following optimization problem:

min𝑊1,…,𝑊𝐿 𝐿(𝑊1, … , 𝑊𝐿) = 12‖𝑊𝐿𝑊𝐿−1 ⋯ 𝑊1𝑋 − 𝑌 ‖2𝐹 ,
where𝑋 ∈ R𝑑𝑥×𝑛 is the data/input matrix,𝑌 ∈ R𝑑𝑦×𝑛 is the “label”/output matrix.

Ĺ Theorem

Let 𝑘 = min(𝑑𝑥, 𝑑𝑦) be the “width” of the network, and define𝑉 = {(𝑊1, … , 𝑊𝐿) ∣ rank(Π𝑖𝑊𝑖) = 𝑘}.
Then, every critical point of 𝐿(𝑊) in 𝑉 is a global minimum, while every critical point in the complement 𝑉 𝑐
is a saddle point.

2Global optimality conditions for deep neural networks
Convexity in ML ´ a û 54
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