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Finite-sum problem
We consider classic finite-sample average minimization:

min𝑥∈R𝑝 𝑓(𝑥) = min𝑥∈R𝑝 1𝑛 𝑛∑𝑖=1 𝑓𝑖(𝑥)
The gradient descent acts like follows: 𝑥𝑘+1 = 𝑥𝑘 − 𝛼𝑘𝑛 𝑛∑𝑖=1 ∇𝑓𝑖(𝑥) (GD)• Iteration cost is linear in 𝑛.

• Convergence with constant 𝛼 or line search.

Let’s/ switch from the full gradient calculation to its unbiased estimator, when we randomly choose 𝑖𝑘 index of point
at each iteration uniformly: 𝑥𝑘+1 = 𝑥𝑘 − 𝛼𝑘∇𝑓𝑖𝑘 (𝑥𝑘) (SGD)

With 𝑝(𝑖𝑘 = 𝑖) = 1𝑛 , the stochastic gradient is an unbiased estimate of the gradient, given by:

E[∇𝑓𝑖𝑘 (𝑥)] = 𝑛∑𝑖=1 𝑝(𝑖𝑘 = 𝑖)∇𝑓𝑖(𝑥) = 𝑛∑𝑖=1 1𝑛∇𝑓𝑖(𝑥) = 1𝑛 𝑛∑𝑖=1 ∇𝑓𝑖(𝑥) = ∇𝑓(𝑥)
This indicates that the expected value of the stochastic gradient is equal to the actual gradient of 𝑓(𝑥).

Finite-sum problem ´ a û 3
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Results for Gradient Descent

Stochastic iterations are 𝑛 times faster, but how many iterations are needed?

If ∇𝑓 is Lipschitz continuous then we have:

Assumption Deterministic Gradient Descent Stochastic Gradient Descent

PL 𝑂(log(1/𝜀)) 𝑂(1/𝜀)
Convex 𝑂(1/𝜀) 𝑂(1/𝜀2)

Non-Convex 𝑂(1/𝜀) 𝑂(1/𝜀2)
• Stochastic has low iteration cost but slow convergence rate.

• Sublinear rate even in strongly-convex case.• Bounds are unimprovable under standard assumptions.• Oracle returns an unbiased gradient approximation with bounded variance.• Momentum and Quasi-Newton-like methods do not improve rates in stochastic case. Can only improve constant
factors (bottleneck is variance, not condition number).

Finite-sum problem ´ a û 4
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SGD with constant stepsize does not converge

Figure 1: “Divergence”
Finite-sum problem ´ a û 5
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Main problem of SGD

𝑓(𝑥) = 𝜇2 ‖𝑥‖22 + 1𝑚 𝑚∑𝑖=1 log(1 + exp(−𝑦𝑖⟨𝑎𝑖, 𝑥⟩)) → min𝑥∈R𝑛

Finite-sum problem ´ a û 6
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Variance reduction methods
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Key idea of variance reduction

Principle: reducing variance of a sample of 𝑋 by using a sample from another random variable 𝑌 with known
expectation: 𝑍𝛼 = 𝛼(𝑋 − 𝑌 ) + E[𝑌 ]• E[𝑍𝛼] = 𝛼E[𝑋] + (1 − 𝛼)E[𝑌 ]

• var(𝑍𝛼) = 𝛼2 (var(𝑋) + var(𝑌 ) − 2cov(𝑋, 𝑌 ))

• If 𝛼 = 1: no bias• If 𝛼 < 1: potential bias (but reduced variance).

• Useful if 𝑌 is positively correlated with 𝑋.

Application to gradient estimation ?

• SVRG: Let 𝑋 = ∇𝑓𝑖𝑘 (𝑥(𝑘−1)) and 𝑌 = ∇𝑓𝑖𝑘 ( ̃𝑥), with 𝛼 = 1 and ̃𝑥 stored.• E[𝑌 ] = 1𝑛 ∑𝑛𝑖=1 ∇𝑓𝑖( ̃𝑥) full gradient at ̃𝑥;• 𝑋 − 𝑌 = ∇𝑓𝑖𝑘 (𝑥(𝑘−1)) − ∇𝑓𝑖𝑘 ( ̃𝑥)

Variance reduction methods ´ a û 8
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SAG (Stochastic average gradient, Schmidt, Le Roux, and Bach 2013)• Maintain table, containing gradient 𝑔𝑖 of 𝑓𝑖, 𝑖 = 1, … , 𝑛

• Initialize 𝑥(0), and 𝑔(0)𝑖 = ∇𝑓𝑖(𝑥(0)), 𝑖 = 1, … , 𝑛• At steps 𝑘 = 1, 2, 3, …, pick random 𝑖𝑘 ∈ {1, … , 𝑛}, then let𝑔(𝑘)𝑖𝑘 = ∇𝑓𝑖𝑘 (𝑥(𝑘−1)) (most recent gradient of 𝑓𝑖𝑘)
Set all other 𝑔(𝑘)𝑖 = 𝑔(𝑘−1)𝑖 , 𝑖 ≠ 𝑖𝑘, i.e., these stay the same• Update 𝑥(𝑘) = 𝑥(𝑘−1) − 𝛼𝑘 1𝑛 𝑛∑𝑖=1 𝑔(𝑘)𝑖• SAG gradient estimates are no longer unbiased, but they have greatly reduced variance• Isn’t it expensive to average all these gradients? Basically just as efficient as SGD, as long we’re clever:

𝑥(𝑘) = 𝑥(𝑘−1) − 𝛼𝑘 ⎛⎜⎜⎜⎜⎜⎝ 1𝑛𝑔(𝑘)𝑖 − 1𝑛𝑔(𝑘−1)𝑖 + 1𝑛 𝑛∑𝑖=1 𝑔(𝑘−1)𝑖⏟⏟⏟⏟⏟
old table average

⎞⎟⎟⎟⎟⎟⎠⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟
new table average

Variance reduction methods ´ a û 9
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SAG convergence

Assume that 𝑓(𝑥) = 1𝑛 ∑𝑛𝑖=1 𝑓𝑖(𝑥), where each 𝑓𝑖 is differentiable, and ∇𝑓𝑖 is Lipschitz with constant 𝐿.
Denote ̄𝑥(𝑘) = 1𝑘 ∑𝑘−1𝑙=0 𝑥(𝑙), the average iterate after 𝑘 − 1 steps.

Ĺ Theorem

SAG, with a fixed step size 𝛼 = 116𝐿 , and the initialization𝑔(0)𝑖 = ∇𝑓𝑖(𝑥(0)) − ∇𝑓(𝑥(0)), 𝑖 = 1, … , 𝑛
satisfies

E[𝑓( ̄𝑥(𝑘))] − 𝑓⋆ ≤ 48𝑛𝑘 [𝑓(𝑥(0)) − 𝑓⋆] + 128𝐿𝑘 ‖𝑥(0) − 𝑥⋆‖2
where the expectation is taken over random choices of indices.

Variance reduction methods ´ a û 10
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SAG convergence

• Result stated in terms of the average iterate ̄𝑥(𝑘), but also can be shown to hold for the best iterate 𝑥(𝑘)𝑏𝑒𝑠𝑡 seen so
far.

• This is 𝒪 ( 1𝑘 ) convergence rate for SAG. Compare to 𝒪 ( 1𝑘 ) rate for GD, and 𝒪 ( 1√𝑘 ) rate for SGD.• But, the constants are different! Bounds after k steps:

• GD: 𝐿‖𝑥(0)−𝑥⋆‖22𝑘• SAG: 48𝑛[𝑓(𝑥(0))−𝑓⋆]+128𝐿‖𝑥(0)−𝑥⋆‖2𝑘

• So the first term in SAG bound suffers from a factor of 𝑛; authors suggest smarter initialization to make𝑓(𝑥(0)) − 𝑓⋆ small (e.g., they suggest using the result of 𝑛 SGD steps).

Variance reduction methods ´ a û 11
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SAG convergence

Assume further that each 𝑓𝑖 is strongly convex with parameter 𝜇.
Ĺ Theorem

SAG, with a step size 𝛼 = 116𝐿 and the same initialization as before, satisfies

E[𝑓(𝑥(𝑘))] − 𝑓⋆ ≤ (1 − min( 𝜇16𝐿, 18𝑛))𝑘 (32 (𝑓(𝑥(0)) − 𝑓⋆) + 4𝐿𝑛 ‖𝑥(0) − 𝑥⋆‖2)
Notes:• This is linear convergence rate 𝒪(𝛾𝑘) for SAG. Compare this to 𝒪(𝛾𝑘) for GD, and only 𝒪 ( 1𝑘 ) for SGD.

• Like GD, we say SAG is adaptive to strong convexity.• Proofs of these results not easy: 15 pages, computed-aided!

Variance reduction methods ´ a û 12
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SAG convergence notes

• Note, that the method in vanilla formulation is not applicable to the large neural networks training, due to the
memory requirements.

• In practice you can use backtracking strategy to estimate Lipschitz constant.

• Choose initial 𝐿0• Increase 𝐿, until the following satisfies𝑓𝑖𝑘 (𝑥𝑘+1) ≤ 𝑓𝑖𝑘 (𝑥𝑘) + ∇𝑓𝑖𝑘 (𝑥𝑘)(𝑥𝑘+1 − 𝑥𝑘) + 𝐿2 ‖𝑥𝑘+1 − 𝑥𝑘‖22• Decrease 𝐿 between iterations

• Since stochastic gradient 𝑔(𝑥𝑘) → ∇𝑓(𝑥𝑘) you can use its norm to track convergence (which is not true for
SGD!)• For the generalized linear models (this includes LogReg, LLS) you need to store much less memory 𝒪 (𝑛) instead
of 𝒪 (𝑝𝑛). 𝑓𝑖(𝑤) = 𝜑(𝑤𝑇 𝑥𝑖) ↔ ∇𝑓𝑖(𝑤) = 𝜑′(𝑤𝑇 𝑥𝑖)𝑥𝑖

Variance reduction methods ´ a û 13
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SAG non-uniform sampling• The step size 𝛼𝑘 and the convergence rate of the method are determined by the constant 𝐿 for 𝑓(𝑥), where𝐿 = max1≤𝑖≤𝑛 𝐿𝑖, 𝐿𝑖 is the Lipschitz constant for the function 𝑓𝑖

• When selecting components with a probability proportional to 𝐿𝑖, the constant 𝐿 can be reduced from max𝑖 𝐿𝑖
to 𝐿̄ = ∑𝑖 𝐿𝑖/𝑁 : 𝑔(𝑥) = 1𝑛 𝑛∑𝑖=1 𝑓𝑖(𝑥)

= 1𝑛 𝑛∑𝑖=1
𝐿𝑖∑𝑗=1 𝑓𝑖(𝑥)𝐿𝑖= 1∑𝑘 𝐿𝑘 𝑛∑𝑖=1

𝐿𝑖∑𝑗=1 (∑𝑘 𝐿𝑘𝑛 𝑓𝑖(𝑥)𝐿𝑖 )
With this approach, the component with a larger value of 𝐿𝑖 is selected more often.• To ensure convergence, component selection should be carried out according to the rule: with probability 0.5,
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Stochastic Variance Reduced Gradient (SVRG)

• Initialize: ̃𝑥 ∈ R𝑑

• For 𝑖𝑒𝑝𝑜𝑐ℎ = 1 to # of epochs

• Compute all gradients ∇𝑓𝑖( ̃𝑥); store ∇𝑓( ̃𝑥) = 1𝑛 ∑𝑛𝑖=1 ∇𝑓𝑖( ̃𝑥)• Initialize 𝑥0 = ̃𝑥• For t = 1 to length of epochs (m)

• Pick 𝑖𝑡 ∈ {1, … , 𝑛} uniformly at random• 𝑥𝑡 = 𝑥𝑡−1 − 𝛼 [∇𝑓𝑖𝑡 (𝑥𝑡−1) − ∇𝑓𝑖𝑡 (𝑥̃) + ∇𝑓(𝑥̃)]

• Update ̃𝑥 = 𝑥𝑚

Notes:

• Two gradient evaluations per inner step.• Two parameters: length of epochs + step-size 𝛼.• Linear convergence rate, simple proof.
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Adaptivity or scaling
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Adagrad (Duchi, Hazan, and Singer 2010)

Very popular adaptive method. Let 𝑔(𝑘) = ∇𝑓𝑖𝑘 (𝑥(𝑘−1)), and update for 𝑗 = 1, … , 𝑝:𝑣(𝑘)𝑗 = 𝑣𝑘−1𝑗 + (𝑔(𝑘)𝑗 )2
𝑥(𝑘)𝑗 = 𝑥(𝑘−1)𝑗 − 𝛼 𝑔(𝑘)𝑗√𝑣(𝑘)𝑗 + 𝜖

Notes:• AdaGrad does not require tuning the learning rate: 𝛼 > 0 is a fixed constant, and the learning rate decreases
naturally over iterations.

• The learning rate of rare informative features diminishes slowly.• Can drastically improve over SGD in sparse problems.• Main weakness is the monotonic accumulation of gradients in the denominator. AdaDelta, Adam, AMSGrad, etc.
improve on this, popular in training deep neural networks.• The constant 𝜖 is typically set to 10−6 to ensure that we do not suffer from division by zero or overly large step
sizes.

Adaptivity or scaling ´ a û 17

Mobile User

https://fmin.xyz
https://hse25.fmin.xyz
https://github.com/MerkulovDaniil/hse25
https://t.me/fminxyz


Adagrad (Duchi, Hazan, and Singer 2010)

Very popular adaptive method. Let 𝑔(𝑘) = ∇𝑓𝑖𝑘 (𝑥(𝑘−1)), and update for 𝑗 = 1, … , 𝑝:𝑣(𝑘)𝑗 = 𝑣𝑘−1𝑗 + (𝑔(𝑘)𝑗 )2
𝑥(𝑘)𝑗 = 𝑥(𝑘−1)𝑗 − 𝛼 𝑔(𝑘)𝑗√𝑣(𝑘)𝑗 + 𝜖

Notes:• AdaGrad does not require tuning the learning rate: 𝛼 > 0 is a fixed constant, and the learning rate decreases
naturally over iterations.• The learning rate of rare informative features diminishes slowly.

• Can drastically improve over SGD in sparse problems.• Main weakness is the monotonic accumulation of gradients in the denominator. AdaDelta, Adam, AMSGrad, etc.
improve on this, popular in training deep neural networks.• The constant 𝜖 is typically set to 10−6 to ensure that we do not suffer from division by zero or overly large step
sizes.

Adaptivity or scaling ´ a û 17

Mobile User

https://fmin.xyz
https://hse25.fmin.xyz
https://github.com/MerkulovDaniil/hse25
https://t.me/fminxyz


Adagrad (Duchi, Hazan, and Singer 2010)

Very popular adaptive method. Let 𝑔(𝑘) = ∇𝑓𝑖𝑘 (𝑥(𝑘−1)), and update for 𝑗 = 1, … , 𝑝:𝑣(𝑘)𝑗 = 𝑣𝑘−1𝑗 + (𝑔(𝑘)𝑗 )2
𝑥(𝑘)𝑗 = 𝑥(𝑘−1)𝑗 − 𝛼 𝑔(𝑘)𝑗√𝑣(𝑘)𝑗 + 𝜖

Notes:• AdaGrad does not require tuning the learning rate: 𝛼 > 0 is a fixed constant, and the learning rate decreases
naturally over iterations.• The learning rate of rare informative features diminishes slowly.• Can drastically improve over SGD in sparse problems.

• Main weakness is the monotonic accumulation of gradients in the denominator. AdaDelta, Adam, AMSGrad, etc.
improve on this, popular in training deep neural networks.• The constant 𝜖 is typically set to 10−6 to ensure that we do not suffer from division by zero or overly large step
sizes.

Adaptivity or scaling ´ a û 17

Mobile User

https://fmin.xyz
https://hse25.fmin.xyz
https://github.com/MerkulovDaniil/hse25
https://t.me/fminxyz


Adagrad (Duchi, Hazan, and Singer 2010)

Very popular adaptive method. Let 𝑔(𝑘) = ∇𝑓𝑖𝑘 (𝑥(𝑘−1)), and update for 𝑗 = 1, … , 𝑝:𝑣(𝑘)𝑗 = 𝑣𝑘−1𝑗 + (𝑔(𝑘)𝑗 )2
𝑥(𝑘)𝑗 = 𝑥(𝑘−1)𝑗 − 𝛼 𝑔(𝑘)𝑗√𝑣(𝑘)𝑗 + 𝜖

Notes:• AdaGrad does not require tuning the learning rate: 𝛼 > 0 is a fixed constant, and the learning rate decreases
naturally over iterations.• The learning rate of rare informative features diminishes slowly.• Can drastically improve over SGD in sparse problems.• Main weakness is the monotonic accumulation of gradients in the denominator. AdaDelta, Adam, AMSGrad, etc.
improve on this, popular in training deep neural networks.

• The constant 𝜖 is typically set to 10−6 to ensure that we do not suffer from division by zero or overly large step
sizes.

Adaptivity or scaling ´ a û 17

Mobile User

https://fmin.xyz
https://hse25.fmin.xyz
https://github.com/MerkulovDaniil/hse25
https://t.me/fminxyz


Adagrad (Duchi, Hazan, and Singer 2010)

Very popular adaptive method. Let 𝑔(𝑘) = ∇𝑓𝑖𝑘 (𝑥(𝑘−1)), and update for 𝑗 = 1, … , 𝑝:𝑣(𝑘)𝑗 = 𝑣𝑘−1𝑗 + (𝑔(𝑘)𝑗 )2
𝑥(𝑘)𝑗 = 𝑥(𝑘−1)𝑗 − 𝛼 𝑔(𝑘)𝑗√𝑣(𝑘)𝑗 + 𝜖

Notes:• AdaGrad does not require tuning the learning rate: 𝛼 > 0 is a fixed constant, and the learning rate decreases
naturally over iterations.• The learning rate of rare informative features diminishes slowly.• Can drastically improve over SGD in sparse problems.• Main weakness is the monotonic accumulation of gradients in the denominator. AdaDelta, Adam, AMSGrad, etc.
improve on this, popular in training deep neural networks.• The constant 𝜖 is typically set to 10−6 to ensure that we do not suffer from division by zero or overly large step
sizes.

Adaptivity or scaling ´ a û 17

Mobile User

https://fmin.xyz
https://hse25.fmin.xyz
https://github.com/MerkulovDaniil/hse25
https://t.me/fminxyz


RMSProp (Tieleman and Hinton, 2012)

An enhancement of AdaGrad that addresses its aggressive, monotonically decreasing learning rate. Uses a moving
average of squared gradients to adjust the learning rate for each weight. Let 𝑔(𝑘) = ∇𝑓𝑖𝑘 (𝑥(𝑘−1)) and update rule for𝑗 = 1, … , 𝑝: 𝑣(𝑘)𝑗 = 𝛾𝑣(𝑘−1)𝑗 + (1 − 𝛾)(𝑔(𝑘)𝑗 )2

𝑥(𝑘)𝑗 = 𝑥(𝑘−1)𝑗 − 𝛼 𝑔(𝑘)𝑗√𝑣(𝑘)𝑗 + 𝜖
Notes:• RMSProp divides the learning rate for a weight by a running average of the magnitudes of recent gradients for

that weight.

• Allows for a more nuanced adjustment of learning rates than AdaGrad, making it suitable for non-stationary
problems.• Commonly used in training neural networks, particularly in recurrent neural networks.
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Adadelta (Zeiler, 2012)
An extension of RMSProp that seeks to reduce its dependence on a manually set global learning rate. Instead of
accumulating all past squared gradients, Adadelta limits the window of accumulated past gradients to some fixed size𝑤. Update mechanism does not require learning rate 𝛼:𝑣(𝑘)𝑗 = 𝛾𝑣(𝑘−1)𝑗 + (1 − 𝛾)(𝑔(𝑘)𝑗 )2

̃𝑔(𝑘)𝑗 = √Δ𝑥(𝑘−1)𝑗 + 𝜖√𝑣(𝑘)𝑗 + 𝜖 𝑔(𝑘)𝑗𝑥(𝑘)𝑗 = 𝑥(𝑘−1)𝑗 − ̃𝑔(𝑘)𝑗Δ𝑥(𝑘)𝑗 = 𝜌Δ𝑥(𝑘−1)𝑗 + (1 − 𝜌)( ̃𝑔(𝑘)𝑗 )2
Notes:• Adadelta adapts learning rates based on a moving window of gradient updates, rather than accumulating all past

gradients. This way, learning rates adjusted are more robust to changes in model’s dynamics.

• The method does not require an initial learning rate setting, making it easier to configure.• Often used in deep learning where parameter scales differ significantly across layers.
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Adam (Kingma and Ba, 2014) 1 2

Combines elements from both AdaGrad and RMSProp. It considers an exponentially decaying average of past
gradients and squared gradients.

EMA: 𝑚(𝑘)𝑗 = 𝛽1𝑚(𝑘−1)𝑗 + (1 − 𝛽1)𝑔(𝑘)𝑗𝑣(𝑘)𝑗 = 𝛽2𝑣(𝑘−1)𝑗 + (1 − 𝛽2) (𝑔(𝑘)𝑗 )2
Bias correction: 𝑚̂𝑗 = 𝑚(𝑘)𝑗1 − 𝛽𝑘1̂𝑣𝑗 = 𝑣(𝑘)𝑗1 − 𝛽𝑘2
Update: 𝑥(𝑘)𝑗 = 𝑥(𝑘−1)𝑗 − 𝛼 𝑚̂𝑗√ ̂𝑣𝑗 + 𝜖

Notes:• It corrects the bias towards zero in the initial
moments seen in other methods like RMSProp,
making the estimates more accurate.

• Одна из самых цитируемых научных работ в мире• В 2018-2019 годах вышли статьи, указывающие на
ошибку в оригинальной статье• Не сходится для некоторых простых задач (даже
выпуклых)• Почему-то очень хорошо работает для некоторых
сложных задач• Гораздо лучше работает для языковых моделей,
чем для задач компьютерного зрения - почему?

1Adam: A Method for Stochastic Optimization
2On the Convergence of Adam and Beyond
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AdamW (Loshchilov & Hutter, 2017)
Addresses a common issue with ℓ2 regularization in adaptive optimizers like Adam. Standard ℓ2 regularization adds𝜆‖𝑥‖2 to the loss, resulting in a gradient term 𝜆𝑥. In Adam, this term gets scaled by the adaptive learning rate(√ ̂𝑣𝑗 + 𝜖), coupling the weight decay to the gradient magnitudes.

AdamW decouples weight decay from the gradient adaptation step.
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Notes:• The weight decay term 𝜆𝑥(𝑘−1)𝑗 is added after the adaptive gradient step.

• Widely adopted in training transformers and other large models. Default choice for huggingface trainer.
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How to compare them? AlgoPerf benchmark
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NanoGPT speedrun

Figure 2: î Источник
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Shampoo (Gupta, Anil, et al., 2018; Anil et al., 2020)
Stands for Stochastic Hessian-Approximation Matrix Preconditioning for Optimization Of deep networks. It’s a
method inspired by second-order optimization designed for large-scale deep learning.

Core Idea: Approximates the full-matrix AdaGrad pre conditioner using efficient matrix structures, specifically
Kronecker products.

For a weight matrix 𝑊 ∈ R𝑚×𝑛, the update involves preconditioning using approximations of the statistics matrices𝐿 ≈ ∑𝑘 𝐺𝑘𝐺𝑇𝑘 and 𝑅 ≈ ∑𝑘 𝐺𝑇𝑘 𝐺𝑘, where 𝐺𝑘 are the gradients.

Simplified concept:

1. Compute gradient 𝐺𝑘.

2. Update statistics 𝐿𝑘 = 𝛽𝐿𝑘−1 + (1 − 𝛽)𝐺𝑘𝐺𝑇𝑘 and 𝑅𝑘 = 𝛽𝑅𝑘−1 + (1 − 𝛽)𝐺𝑇𝑘 𝐺𝑘.
3. Compute preconditioners 𝑃𝐿 = 𝐿−1/4𝑘 and 𝑃𝑅 = 𝑅−1/4𝑘 . (Inverse matrix root)
4. Update: 𝑊𝑘+1 = 𝑊𝑘 − 𝛼𝑃𝐿𝐺𝑘𝑃𝑅.

Notes:

• Aims to capture curvature information more effectively than first-order methods.• Computationally more expensive than Adam but can converge faster or to better solutions in terms of steps.• Requires careful implementation for efficiency (e.g., efficient computation of inverse matrix roots, handling large
matrices).• Variants exist for different tensor shapes (e.g., convolutional layers).
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Muon 3

𝑊𝑡+1 = 𝑊𝑡 − 𝜂(𝐺𝑡𝐺⊤𝑡 )−1/4𝐺𝑡(𝐺⊤𝑡 𝐺𝑡)−1/4= 𝑊𝑡 − 𝜂(𝑈𝑆2𝑈⊤)−1/4(𝑈𝑆𝑉 ⊤)(𝑉 𝑆2𝑉 ⊤)−1/4= 𝑊𝑡 − 𝜂(𝑈𝑆−1/2𝑈⊤)(𝑈𝑆𝑉 ⊤)(𝑉 𝑆−1/2𝑉 ⊤)= 𝑊𝑡 − 𝜂𝑈𝑆−1/2𝑆𝑆−1/2𝑉 ⊤= 𝑊𝑡 − 𝜂𝑈𝑉 ⊤

3Deriving Muon
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