Variance reduction for stochastic gradient
descent
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Finite-sum problem
We consider classic finite-sample average minimization:

min = min — Z
T ERP f( zERP N f

The gradient descent acts like follows:
n

Tyl = T — o vai(f) (GD)

i=1

® |teration cost is linear in n.
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Finite-sum problem
We consider classic finite-sample average minimization:

min = min — Z
xrERP f( IEIRP n f

The gradient descent acts like follows:
n

Thy1 :xk_zzvfi(x)

i=1

® |teration cost is linear in n.
® Convergence with constant « or line search.

— mi -
‘f §“}‘l Finite-sum problem


Mobile User

https://fmin.xyz
https://hse25.fmin.xyz
https://github.com/MerkulovDaniil/hse25
https://t.me/fminxyz

Finite-sum problem
We consider classic finite-sample average minimization:

min = min — Z
xrERP f( IEIRP n f

The gradient descent acts like follows:
n

Thy1 :xk_zzvfi(x)
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Finite-sum problem
We consider classic finite-sample average minimization:

min = min — Z
xrERP f IEIRP n f

The gradient descent acts like follows:
n
Qg
Tppr = Tp — ;vai(x) (GD)
=1
® |teration cost is linear in n.
® Convergence with constant « or line search.

Let's/ switch from the full gradient calculation to its unbiased estimator, when we randomly choose 7, index of point
at each iteration uniformly:

L1 = T — akvfik (1) (SGD)
With p(i, = 1) = % the stochastic gradient is an unbiased estimate of the gradient, given by:

= 30l = V) = 3 2950 = 1 3 VAe) = V)

i=1
This indicates that the expected value of the stochastic gradient is equal to the actual gradient of f(x).
‘f% fn.}‘; Finite-sum problem @0 O 3
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Results for Gradient Descent

Stochastic iterations are n times faster, but how many iterations are needed?

If V f is Lipschitz continuous then we have:

Assumption Deterministic Gradient Descent Stochastic Gradient Descent
PL O(log(1/e)) O(1/e)
Convex O(1/e) O(1/€?)
Non-Convex O(1/e) O(1/€%)

® Stochastic has low iteration cost but slow convergence rate.

‘f - EHA}‘; Finite-sum problem D0
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If V f is Lipschitz continuous then we have:

Assumption Deterministic Gradient Descent Stochastic Gradient Descent
PL O(log(1/e)) O(1/e)
Convex O(1/e) O(1/€?)
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® Stochastic has low iteration cost but slow convergence rate.
® Sublinear rate even in strongly-convex case.
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Results for Gradient Descent

Stochastic iterations are n times faster, but how many iterations are needed?

If V f is Lipschitz continuous then we have:

Assumption Deterministic Gradient Descent Stochastic Gradient Descent
PL O(log(1/e)) O(1/e)
Convex O(1/e) O(1/€?)
Non-Convex O(1/e) O(1/€%)

® Stochastic has low iteration cost but slow convergence rate.
® Sublinear rate even in strongly-convex case.
® Bounds are unimprovable under standard assumptions.
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Results for Gradient Descent

Stochastic iterations are n times faster, but how many iterations are needed?

If V f is Lipschitz continuous then we have:

Assumption Deterministic Gradient Descent Stochastic Gradient Descent
PL O(log(1/e)) O(1/e)
Convex O(1/e) O(1/€?)
Non-Convex O(1/e) O(1/€%)

® Stochastic has low iteration cost but slow convergence rate.
® Sublinear rate even in strongly-convex case.
® Bounds are unimprovable under standard assumptions.
® QOracle returns an unbiased gradient approximation with bounded variance.
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Results for Gradient Descent

Stochastic iterations are n times faster, but how many iterations are needed?

If V f is Lipschitz continuous then we have:

Assumption Deterministic Gradient Descent Stochastic Gradient Descent
PL O(log(1/e)) O(1/e)
Convex O(1/e) O(1/€?)
Non-Convex O(1/e) O(1/€%)

® Stochastic has low iteration cost but slow convergence rate.
® Sublinear rate even in strongly-convex case.
® Bounds are unimprovable under standard assumptions.
® QOracle returns an unbiased gradient approximation with bounded variance.
® Momentum and Quasi-Newton-like methods do not improve rates in stochastic case. Can only improve constant

factors (bottleneck is variance, not condition number).
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SGD with constant stepsize does not converge

‘f — min
Tz

Stochastic Gradient Descent. Batch = 2
; Loss value 0.03 60 w; 3.01, w; 3.84
Optimum .
5.5
6 g
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Finite-sum problem
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Main problem of SGD

0 RS .
fl@)=Slol+ — ;log(l + exp(—y,{a;, x))) — min

Strongly convex binary logistic regression. m=200, n=10, mu=1.

100 1 100 4 100 1
10724 10-1 10724
T 0 4 *>< 'T 4
—~ 107% ~ | -2 ] 10744
X L 1072 = 10
= = =
1075 - 1073 4 1076
1078 4 10-4 4 1078 4
0 25 50 75 100 0 25 50 75 100 0 100000200000300000400000
Iteration Iteration FLOPS
—— SGD  —— SGD batch10 —— SGD batch 50 —— SGD batch 100 —— GD
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Key idea of variance reduction XA, Y, -oen Y. ~ uid PX

Var 00:? Eng'

Principle: reducing variance of a sample of@ by using a sample from another random variable Y with known

expectation:
" Z,=a(X —Y)+E[]Y] FHAEM EY

'_IEEQ_]=0¢E[X]+(1—04)E[Y] ‘EZ.L - A(EX, EY)« & y

‘f - ?qyu} Variance reduction methods Q0
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Key idea of variance reduction

Principle: reducing variance of a sample of X by using a sample from another random variable Y with known
expectation:
Z,=a(X-Y)+E[Y]

* E[Z,]

=aE[X]+ (1 - o)E[Y]
® var(Z,) =

]
a? (var(X) +var(Y) — 2cov(X,Y))

‘f - Wy‘rﬁ Variance reduction methods Q0
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Key idea of variance reduction

Principle: reducing variance of a sample of X by using a sample from another random variable Y with known
expectation:
Z,=a(X-Y)+E[Y]

E[Z,]

et A

a? (var(X) +var(Y) — 2cov(X,Y))

no bias

aE[X]+ (1 —a)E[Y]
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Key idea of variance reduction

Principle: reducing variance of a sample of X by using a sample from another random variable Y with known
expectation:
Z,=a(X-Y)+E[Y]

® E[Z,] =aE[X]+ (1 - o)E[Y]
° var.({(a) = 32 (V‘ET(X) +var(Y) — 2cov(X,Y))

® If a < 1: potential bias (but reduced variance).
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Key idea of variance reduction

Principle: reducing variance of a sample of X by using a sample from another random variable Y with known
expectation:
Z,=a(X-Y)+E[Y]

® E[Z,] =aE[X]+ (1 —a)E[Y]
® var(Z,) = a? (var(X) + var(Y) — 2cov(X,Y))
® If o« =1: no bias
® If a < 1: potential bias (but reduced variance).
® Useful if Y is positively correlated with X.
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Key idea of variance reduction

Principle: reducing variance of a sample of X by using a sample from another random variable Y with known

expectation:
Z,=a(X-Y)+E[Y]

® E[Z,] =aE[X]+ (1 —a)E[Y]
® var(Z,) = a? (var(X) + var(Y) — 2cov(X,Y))
® If o« =1: no bias
® If a < 1: potential bias (but reduced variance).
® Useful if Y is positively correlated with X.

Application to gradient estimation ?

® SVRG: Let X = Vf; (#*"V) and Y = Vf; (), with a = 1 and Z stored.
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Key idea of variance reduction

Principle: reducing variance of a sample of X by using a sample from another random variable Y with known

expectation: ] )
Z,=a(X-Y)+E[Y] ,f@ =%2 ‘g‘;_ (") —*Wx‘:"‘e
=1

* E[Z,] = oE[X] + (1 — @)E[Y]

"
® var(Z,) = a? (var(X) + var(Y) — 2cov(X,Y)) v;(' (x\ = j— V‘FL (X)
® If o« =1: no bias 7] L=
® If a < 1: potential bias (but reduced variance).

® Useful if Y is positively correlated with X.
Application to gradient estimation ?

® SVRG: Let X = Vf; (z*"V)and Y = Vf; (), with a = 1 and Z stored.
° E[Y] = %le V f;(Z) full gradient at z;
= -

‘f - §ny1r; Variance reduction methods 0 O
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Key idea of variance reduction

Principle: reducing variance of a sample of X by using a sample from another random variable Y with known

expectation: ,
" Z, = a(X —Y)+E[Y] 6(22&
* E[Z,] = aE[X]+ (1 — a)E[Y]
° var.({(a) = ?2 (V‘ET(X) +var(Y) — 2cov(X,Y)) Kies, = X o KV‘FL (XK>
« = 1. no bias k

® If a < 1: potential bias (but reduced variance).
® Useful if Y is positively correlated with X.

Application to gradient estimation ?
® SVRG: Let X = Vf; (#*"V) and Y = Vf; (), with a = 1 and Z stored. QX SGD*
— 1 n 5 H 5. .
*EY]= >, V(I{i(la)v) full graleent at T; + ho&C’lﬁ'T
* X-Y=Vf (z )=V (%) OO W

CTAND: [V{;K(Xb‘v]fik&)f V’F@] '/ . rpaguen

(SVRE)  Xiey- Y ~ ol HoLane
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SAG (Stochastic average gradient, Schmidt, Le Roux, and Bach 2013)

® Maintain table, containing gradient g; of f;,, i=1,...,n
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SAG (Stochastic average gradient, Schmidt, Le Roux, and Bach 2013)

e Initialize (9, and gEO) = Vfi(m(())

13 8.6) i

=

‘f MM\ ance reduction methods
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SAG (Stochastic average gradient, Schmidt, Le Roux, and Bach 2013)
® Maintain table, containing gradient g; of f;,, i=1,...,n
® Initialize 2¥), and g§°> =Vfi@),i=1,..,n
® Atsteps k =1,2,3, ..., pick random i, € {1,...,n}, then let

glk szk( (k=1)) " (most recent gradient of fi)

) 1

= glk )i # iy, i.e., these stay the same

ol Q"’/\

_v&b‘_—

— A=(.)
<7

Set all other g(-

72 ZZZZ7 (..

p=ai”®

- ot, — 2 4
n = {5210 NP =300

| o)

‘f D \soance reduction methods @ 0
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SAG (Stochastic average gradient, Schmidt, Le Roux, and Bach 2013)
® Maintain table, containing gradient g; of f;,, i=1,...,n
® Initialize 2¥), and g§°> =Vfi@),i=1,..,n
® Atsteps k =1,2,3, ..., pick random i, € {1,...,n}, then let

gif) =V/fi, (1) (most recent gradient of fi)

Set all other g£k> = gEkfl)

® Update

. © # iy, i.e., these stay the same

1 n
(k) — p(k=1) _ . = Z (k)
T T akn 2 g;

— mi . .
‘f Wy‘rﬁ Variance reduction methods
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SAG (Stochastic average gradient, Schmidt, Le Roux, and Bach 2013)
® Maintain table, containing gradient g; of f;,, i=1,...,n
® Initialize 2¥), and g§0> =Vfi@),i=1,..,n
® Atsteps k =1,2,3, ..., pick random i, € {1,...,n}, then let

gif) =V/fi, (1) (most recent gradient of fi)

(k—=1)

Set all other g£k> =g, . © # iy, i.e., these stay the same

® Update
n
20 = 1) _ g, L3 g
n 4 3
=1

® SAG gradient estimates are no longer unbiased, but they have greatly reduced variance

— mi . .
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SAG (Stochastic average gradient, Schmidt, Le Roux, and Bach 2013)
® Maintain table, containing gradient g; of f;,, i=1,...,n
® Initialize 2¥), and g§°> =Vfi@),i=1,..,n
® Atsteps k =1,2,3, ..., pick random i, € {1,...,n}, then let

gif) =V/fi, (1) (most recent gradient of fi)

Set all other g£k> = ggkfm, 1 % iy, i.e., these stay the same
® Update
15~ ®
(k) — pk=1) _ o = \
® SAG gradient estimates are no longer unbiased, but they have greatly reduced variance
® [sn't it expensive to average all these gradients? Basically just as efficient as SGD, as long we're clever:
_‘.. CTO UMDCT6
_ Ly 1 gy, I~ (k1 KAS
R e A DY TA XQ)

i=1 KA-Ic

old table average a &’A
new table average p— y'l A’ N? T6
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SAG convergence

Assume that f(z) = %Z;l fi(x), where each f; is differentiable, and V f; is Lipschitz with constant L.

_ k—1 .
Denote zF) = %Zzzo 2, the average iterate after k — 1 steps.

d=wnst — Cmge‘wt

i Theorem
CXD&Q,‘UJL J;E
SAG, with a fixed step size|a = —L_| and the initialization
16L (gn> SC P demo
gEO) =Vf(@) —Vf@®), i=1,..,n
e <
satisfies = =

- ~~
E[f(i’(k))] - f* S/%Tn[f(xw)) — f*\]/H- %Hx(o) _ x*HQ

where the expectation is taken over random chorces of |nd|ce;\
KOHCTAHI

TA X>XE, 2y L€D
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SAG convergence

® Result stated in terms of the average iterate £(®), but also can be shown to hold for the best iterate
far.
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SAG convergence

® Result stated in terms of the average iterate £(®), but also can be shown to hold for the best iterate
far.
® Thisis O (%) convergence rate for SAG. Compare to (%) rate for GD, and O (ﬁ) rate for SGD.
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SAG convergence

® Result stated in terms of the average iterate £(®), but also can be shown to hold for the best iterate

far.
® Thisis O (%) convergence rate for SAG. Compare to (%) rate for GD, and O (ﬁ) rate for SGD.

® But, the constants are different! Bounds after k steps:
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SAG convergence

® Result stated in terms of the average iterate £(®), but also can be shown to hold for the best iterate

far.
® Thisis O (%) convergence rate for SAG. Compare to (%) rate for GD, and O (ﬁ) rate for SGD.

® But, the constants are different! Bounds after k steps:
|2

2(0)
o GD: L2 —2"7 o
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SAG convergence

® Result stated in terms of the average iterate z(*), but also can be shown to hold for the best iterate

far.
® Thisis O (%) convergence rate for SAG. Compare to (%) rate for GD, and O (ﬁ)

® But, the constants are different! Bounds after k steps:
LHE(O)*l‘*\P
® GD:
48 [( 0))—f*]+128L ]!
° SAG T Tt k Tt

rate for SGD.

*H2

— mi . .
‘f 5\'1;!; Variance reduction methods

(k) seen so
best

11


Mobile User

https://fmin.xyz
https://hse25.fmin.xyz
https://github.com/MerkulovDaniil/hse25
https://t.me/fminxyz

SAG convergence

(k)

far.
This is O (%) convergence rate for SAG. Compare to (%) rate for GD, and O (ﬁ) rate for SGD.
But, the constants are different! Bounds after k steps:

o gD Llz'%—ar)?

2%

o SAG: 8nlf(=® ))—f*1+128L)2(0) —a* |
So the first term in SAG bound suffers from a factor of n; authors suggest smarter initialization to make
f(z®) — £* small (e.g., they suggest using the result of n SGD steps).
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SAG convergence £ NUMLuHsU moade

ngGD

Assume further that each f; is strongly convex with parameter p.

— Kb

i Theorem

1

SAG, with a step sizd @ = and the same initialization as before, satisfies

16L
k
®)] — f* < (1 — mi Li)) (§ Oy _ ) 4 2L <o>,*2)
Bl ) - £ < (1-min ({52 o)) (5 (F0) - £) + el o]
i n oA
Notes: %L < & (oL = én
® This is |i?ﬁa;r conve;lgﬁnce rate O(7*) for SAG. Compare this Y (7*) for GD, and only @ (4 ) for SGD.
DA Ri 6 OAT
Q\(ﬁau.ﬂ@b CJXOﬂ(AMoQTb
OnpegeseTd oNnpeqelLIs
Lo AL TPURU KON - bou
W LA
‘f%inyu} Variance reduction methods W 3 DO

+ QOUMOLD KAK i s¢D

12


Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

https://fmin.xyz
https://hse25.fmin.xyz
https://github.com/MerkulovDaniil/hse25
https://t.me/fminxyz

SAG convergence

Assume further that each f; is strongly convex with parameter p.
i Theorem

SAG, with a step size a = ﬁ and the same initialization as before, satisfies

el 5 < (1= min (o)) (30 = 1)+ 40 )

Notes:

® This is linear convergence rate O(7*) for SAG. Compare this to O(7*) for GD, and only @ (4 ) for SGD.

® |ike GD, we say SAG is adaptive to strong convexity.
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SAG convergence

Assume further that each f; is strongly convex with parameter p.
i Theorem

SAG, with a step size a = ﬁ and the same initialization as before, satisfies

sir] =< (1= (5t ) ) (5 00—+ S0 )

Notes:

® This is linear convergence rate O(7*) for SAG. Compare this to O(7*) for GD, and only @ (4 ) for SGD.

® |ike GD, we say SAG is adaptive to strong convexity.
® Proofs of these results not easy: 15 pages, computed-aided!
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SAG convergence notes

® Note, that the method in vanilla formulation is not applicable to the large neural networks training, due to the
memory requirements.
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SAG convergence notes

® Note, that the method in vanilla formulation is not applicable to the large neural networks training, due to the
memory requirements.
® |n practice you can use backtracking strategy to estimate Lipschitz constant.
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SAG convergence notes

® Note, that the method in vanilla formulation is not applicable to the large neural networks training, due to the
memory requirements.

® |n practice you can use backtracking strategy to estimate Lipschitz constant.
® Choose initial L
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SAG convergence notes

® Note, that the method in vanilla formulation is not applicable to the large neural networks training, due to the
memory requirements.

® |n practice you can use backtracking strategy to estimate Lipschitz constant.
® Choose initial L
® Increase L, until the following satisfies

. N, L .
Fip (@H0) < £y (20) + Vi (2F) @8 = 2%) 4 flatt — 2k)3
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SAG convergence notes

® Note, that the method in vanilla formulation is not applicable to the large neural networks training, due to the
memory requirements.
® |n practice you can use backtracking strategy to estimate Lipschitz constant.

® Choose initial L
® Increase L, until the following satisfies

. N, L .
Fip (@H0) < £y (20) + Vi (2F) @8 = 2%) 4 flatt — 2k)3

® Decrease L between iterations
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SAG convergence notes

® Note, that the method in vanilla formulation is not applicable to the large neural networks training, due to the
memory requirements.

® |n practice you can use backtracking strategy to estimate Lipschitz constant.
® Choose initial L
® Increase L, until the following satisfies

. N, L .
Fip (@H0) < £y (20) + Vi (2F) @8 = 2%) 4 flatt — 2k)3

® Decrease L between itergtigns
® Since stochastic gradien V f(2*) you can use its norm to track convergence (which is not true for
SGD!)
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SAG convergence notes

® Note, that the method in vanilla formulation is not applicable to the large neural networks training, due to the
memory requirements.
® |n practice you can use backtracking strategy to estimate Lipschitz constant.

® Choose initial L
® Increase L, until the following satisfies

. N, L .
Fip (@H0) < £y (20) + Vi (2F) @8 = 2%) 4 flatt — 2k)3

® Decrease L between iterations
® Since stochastic gradient g(x*) — V f(2*) you can use its norm to track convergence (which is not true for
SGD!)

® For the generalized linear models (this includes LogReg, LLS) you need to store much less memory @ (n) instead

of O (pn). 6
3"“’“’"’0‘ Skjv\&

" <e\( wa)
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SAG non-uniform sampling

® The step size v, and the convergence rate of the method are determined by the constant L for f(x), where
L = max;;,, L;, L; is the Lipschitz constant for the function f;
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SAG non-uniform sampling

® The step size v, and the convergence rate of the method are determined by the constant L for f(x), where
L = max;;,, L;, L; is the Lipschitz constant for the function f;

® When selecting components with a probability proportional to L;, the constant L can be reduced from max; L,
toL=> . L;/N:

i

S0
=
&

g(z)

With this approach, the component with a larger value of L, is selected more often.
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SAG non-uniform sampling

® The step size v, and the convergence rate of the method are determined by the constant L for f(x), where
L = max;;.,, L;, L; is the Lipschitz constant for the function f;

® When selecting components with a probability proportional to L;, the constant L can be reduced from max; L,
toL=> . L;/N:

oe) = -3 fil#)
i=1

With this approach, the component with a larger value of L, is selected more often.

® To ensure convergence, component selection should be carried out according to the rule: with probability 0.5,
select from a uniform distribution, with probability 0.5, select with probabilities L,/ Zj L;.
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SAG non-uniform sampling

® The step size v, and the convergence rate of the method are determined by the constant L for f(x), where
L = max;;.,, L;, L; is the Lipschitz constant for the function f;

® When selecting components with a probability proportional to L, the constant L can be reduced from max; L

to L = >, Li/N:
O3 @)
i=1

g(z)

With this approach, the component with a larger value of L, is selected more often.

® To ensure convergence, component selection should be carried out according to the rule: with probability 0.5,
select from a uniform distribution, with probability 0.5, select with probabilities L,/ Zj L;.

® To generate with probabilities L,/ Z]. L;, there is an algorithm with complexity O(log V).
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Stochastic Variance Reduced Gradient (SVRG)

e Initialize: 7 € R¢
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Stochastic Variance Reduced Gradient (SVRG)

® Initialize: ¥ € R?
® For i, =1to# of epochs
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Stochastic Variance Reduced Gradient (SVRG)

® Initialize: ¥ € R?
® Fori,,.,=1to# of epochs

epoc

® Compute all gradients V f;(%); store Vf(%) = & Z?Zl Vf:(Z) (ﬂof\fo \3

T n
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Stochastic Variance Reduced Gradient (SVRG)

® Initialize: ¥ € R?
® For i, =1to# of epochs
® Compute all gradients V f;(%); store Vf(%) = & Z?Zl Vf:(Z)

—n
® |nitialize xq = &

— mi . .
‘f ?qyu} Variance reduction methods

15


Mobile User

https://fmin.xyz
https://hse25.fmin.xyz
https://github.com/MerkulovDaniil/hse25
https://t.me/fminxyz

Stochastic Variance Reduced Gradient (SVRG)

® Initialize: & € R?

® For i, =1to# of epochs
® Compute all gradients V f;(Z); store Vf(Z) = %Z?Zl V1i(Z)
® |nitialize xq = &
® Fort = 1to length of epochs (m)
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Stochastic Variance Reduced Gradient (SVRG)

® Initialize: & € R?
® For i, =1to# of epochs
® Compute all gradients V f;(Z); store V f(Z) = %Z?Zl Vf:(Z)
® Initialize zy =
® Fort = 1to length of epochs (m)
® Pick 4, € {1,...,n} uniformly at random
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Stochastic Variance Reduced Gradient (SVRG)

® Initialize: & € R?
® For i, =1to# of epochs
® Compute all gradients V f;(Z); store V f(Z) = %Z?Zl Vf:(Z)
® Initialize zy =
® Fort = 1to length of epochs (m)
® Pick 4, € {1,...,n} uniformly at random

*zy =z, —a|Vfi, (@, 1) = VS, (&) + V()]
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Stochastic Variance Reduced Gradient (SVRG)

® Initialize: & € R?
® For i, =1to# of epochs
® Compute all gradients V f;(Z); store V f(Z) = %Z?Zl Vf:(Z)
® Initialize zy =
® Fort = 1to length of epochs (m)
® Pick 4, € {1,...,n} uniformly at random

*zy =z, —a|Vfi, (@, 1) = VS, (&) + V()]
® Update & = z,,
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Stochastic Variance Reduced Gradient (SVRG)

® Initialize: & € R?
® For i, =1to# of epochs
® Compute all gradients V f;(Z); store V f(Z) = %Z?Zl Vf:(Z)
® Initialize zy =
® Fort = 1to length of epochs (m)
® Pick 4, € {1,...,n} uniformly at random

*zy =z, —a|Vfi, (@, 1) = VS, (&) + V()]
® Update & = z,,
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Stochastic Variance Reduced Gradient (SVRG) waf™

VR6 ~ GD

8 weaane
200%xuU

® Initialize: ¥ € R?
® For i, =1to# of epochs
® Compute all gradients V f;(%); store Vf(%) = & Z?Zl Vf:(Z)

T n
® |nitialize xq = &
® Fort = 1to length of epochs (m)
® Pick i, € {1,...,n} uniformly at random
*zy =z, —a|Vfi, (@, 1) = VS, (&) + V()]
® Update & = z,,

Notes:

® Two gradient evaluations per inner step.
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Stochastic Variance Reduced Gradient (SVRG)

® Initialize: & € R?
® For i, =1 to# of epochs
® Compute all gradients V f;(Z); store V f(Z) = %Z?Zl Vf:(Z)
® Initialize zy =
® Fort = 1to length of epochs (m)
® Pick 4, € {1,...,n} uniformly at random

*zy =z, —a|Vfi, (@, 1) = VS, (&) + V()]
® Update & = z,,

Notes:

® Two gradient evaluations per inner step.
® Two parameters: length of epochs + step-size a.
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Stochastic Variance Reduced Gradient (SVRG)

® Initialize: & € R?
® For i, =1 to# of epochs
® Compute all gradients V f;(Z); store V f(Z) = %Z?Zl Vf:(Z)
® Initialize zy =
® Fort = 1to length of epochs (m)
® Pick 4, € {1,...,n} uniformly at random

*zy =z, —a|Vfi, (@, 1) = VS, (&) + V()]
® Update & = z,,

Notes:

® Two gradient evaluations per inner step.
® Two parameters: length of epochs + step-size a.
® Linear convergence rate, simple proof.

A ——
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Adagrad (Duchi, Hazan, and Singer 2010)

Very popular adaptive method. Let ¢(¥) = Vi, (1)), and update for j = 1,...,p:

k _ k
v§>:v§“ 1+(g;_ ))2
(k)
x(.k) = x(,kil) _ agji
J J (k)
v te

Notes:

® AdaGrad does not require tuning the learning rate: o > 0 is a fixed constant, and the learning rate decreases
naturally over iterations.

B /= min g rivity or scaling 900
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Adagrad (Duchi, Hazan, and Singer 2010)

Very popular adaptive method. Let ¢(¥) = Vi, (1)), and update for j = 1,...,p:

(k) _ k=1 (k)2
vy =05+ (gj )
(k)
x(.k) = ;E(,kil) _ agji
J J (k)
v te

Notes:

® AdaGrad does not require tuning the learning rate: o > 0 is a fixed constant, and the learning rate decreases
naturally over iterations.
® The learning rate of rare informative features diminishes slowly.

B /= min g rivity or scaling 900
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Adagrad (Duchi, Hazan, and Singer 2010)

Very popular adaptive method. Let ¢(¥) = Vi, (1)), and update for j = 1,...,p:

(k) _ k=1 (k)\2
vy =05+ (gj )
(k)
x(.k) = x(,kil) _ agji
J J (k)
v; +e€

Notes:

® AdaGrad does not require tuning the learning rate: o > 0 is a fixed constant, and the learning rate decreases
naturally over iterations.

® The learning rate of rare informative features diminishes slowly.

® (Can drastically improve over SGD in sparse problems.

B /= min g rivity or scaling 900
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Adagrad (Duchi, Hazan, and Singer 2010)

Very popular adaptive method. Let ¢(¥) = Vi, (1)), and update for j = 1,...,p:

(k) _ k=1 (k)\2
vy =05+ (gj )
(k)
x(.k) = ([(,kil) _ agji
J J (k)
v; +e€

Notes:

® AdaGrad does not require tuning the learning rate: o > 0 is a fixed constant, and the learning rate decreases
naturally over iterations.

® The learning rate of rare informative features diminishes slowly.
® (Can drastically improve over SGD in sparse problems.

® Main weakness is the monotonic accumulation of gradients in the denominator. AdaDelta, Adam, AMSGrad, etc.
improve on this, popular in training deep neural networks.

B /= min g rivity or scaling
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Adagrad (Duchi, Hazan, and Singer 2010)
Very popular adaptive method. Let ¢(¥) = Vi, (1)), and update for j = 1,...,p:

k _ (k
v§->:vl? 1+(g;_ ))2

J
(k)
(k) _ (k=1) _ 9
1};1@) +e€

Notes:

® AdaGrad does not require tuning the learning rate: o > 0 is a fixed constant, and the learning rate decreases
naturally over iterations.

® The learning rate of rare informative features diminishes slowly.
® (Can drastically improve over SGD in sparse problems.

® Main weakness is the monotonic accumulation of gradients in the denominator. AdaDelta, Adam, AMSGrad, etc.
improve on this, popular in training deep neural networks.

The constant ¢ is typically set to 1070 to ensure that we do not suffer from division by zero or overly large step
sizes.
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RMSProp (Tieleman and Hinton, 2012)

An enhancement of AdaGrad that addresses its aggressive, monotonically decreasing learning rate. Uses a moving
average of squared gradients to adjust the learning rate for each weight. Let g(*) = Vfik (z*=1) and update rule for
j=1,...,p: " )

o =0 4 (1= )(g)?

(k) _ (k1) _ 95‘“
/ ! (k)

v; +€

Notes:

® RMSProp divides the learning rate for a weight by a running average of the magnitudes of recent gradients for
that weight.

‘f - fn‘}'; Adaptivity or scaling P00 O 18


Mobile User

https://fmin.xyz
https://hse25.fmin.xyz
https://github.com/MerkulovDaniil/hse25
https://t.me/fminxyz

RMSProp (Tieleman and Hinton, 2012)

An enhancement of AdaGrad that addresses its aggressive, monotonically decreasing learning rate. Uses a moving
average of squared gradients to adjust the learning rate for each weight. Let g(*) = Vfik (z*=1) and update rule for
j=1,...,p: " )

o =0 4 (1= )(g)?

(k)

g0 1 9
J J (k) N
v; €
Notes:
® RMSProp divides the learning rate for a weight by a running average of the magnitudes of recent gradients for
that weight.
® Allows for a more nuanced adjustment of learning rates than AdaGrad, making it suitable for non-stationary
problems.
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RMSProp (Tieleman and Hinton, 2012)

An enhancement of AdaGrad that addresses its aggressive, monotonically decreasing learning rate. Uses a moving
average of squared gradients to adjust the learning rate for each weight. Let g(*) = Vfik (z*=1) and update rule for

j=1,...,p:

k k-1 k
o =y (1= 7)(g)")?
(k)
x;-k) = J:g-k*l) — aigj

)

J+e

Notes:

® RMSProp divides the learning rate for a weight by a running average of the magnitudes of recent gradients for
that weight.

® Allows for a more nuanced adjustment of learning rates than AdaGrad, making it suitable for non-stationary
problems.

® Commonly used in training neural networks, particularly in recurrent neural networks.
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Adadelta (Zeiler, 2012)

An extension of RMSProp that seeks to reduce its dependence on a manually set global learning rate. Instead of
accumulating all past squared gradients, Adadelta limits the window of accumulated past gradients to some fixed size
w. Update mechanism does not require learning rate a:

J 9;
v.(jk) +e€
(k) (k=1) _ ~(k)
J Zj J
k k ~(k
Axf! = pAal ™ 4+ (1 p)(5)?

Notes:

® Adadelta adapts learning rates based on a moving window of gradient updates, rather than accumulating all past
gradients. This way, learning rates adjusted are more robust to changes in model’s dynamics.
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Adadelta (Zeiler, 2012)

An extension of RMSProp that seeks to reduce its dependence on a manually set global learning rate. Instead of
accumulating all past squared gradients, Adadelta limits the window of accumulated past gradients to some fixed size
w. Update mechanism does not require learning rate a:

Notes:

® Adadelta adapts learning rates based on a moving window of gradient updates, rather than accumulating all past
gradients. This way, learning rates adjusted are more robust to changes in model’s dynamics.
® The method does not require an initial learning rate setting, making it easier to configure.
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Adadelta (Zeiler, 2012)

An extension of RMSProp that seeks to reduce its dependence on a manually set global learning rate. Instead of
accumulating all past squared gradients, Adadelta limits the window of accumulated past gradients to some fixed size
w. Update mechanism does not require learning rate a:

Notes:

® Adadelta adapts learning rates based on a moving window of gradient updates, rather than accumulating all past
gradients. This way, learning rates adjusted are more robust to changes in model’s dynamics.

® The method does not require an initial learning rate setting, making it easier to configure.

® Often used in deep learning where parameter scales differ significantly across layers.
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Adam (Kingma and Ba, 2014) ! 2

Combines elements from both AdaGrad and RMSProp. It considers an exponentially decaying average of past

Notes:
® |t corrects the bias towards zero in the initial

gradients and squared gradients.
moments seen in other methods like RMSProp,

) Blmﬁk_l) +(1—= Bl)gﬁ-k)

EMA: my =
k k—1 k
o = B 4 (1) (4)")
(k) making the estimates more accurate.
m.
. o j
Bias correction: m; = - ﬁ’“
1
(k)
v
= J
J 1— /815 X
m.
Update: xg.k) = z;’“l) —a J
'Ej +e€

B /= min g rivity or scaling
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Adam (Kingma and Ba, 2014) ! 2

Combines elements from both AdaGrad and RMSProp. It considers an exponentially decaying average of past

Notes:
® |t corrects the bias towards zero in the initial

gradients and squared gradients.
moments seen in other methods like RMSProp,

") Blmﬁk_l) +(1- Bl)gﬁ-k)

EMA: m; =
k k—1 k
v = Byof T 4 (1= By) (4) ) |
(k) making the estimates more accurate.
Bias correction:  im; — 1mjﬁk ® OpfHa M3 CaMbIX LMTUPYEMbIX HAay4HbIX paboT B Mupe
k)
v
P p— -
J 1— ,32 )
m ..
Update: x;k) = z;kfl) —« J
v+ €

B /= min g rivity or scaling
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Adam (Kingma and Ba, 2014) ! 2

Combines elements from both AdaGrad and RMSProp. It considers an exponentially decaying average of past

gradients and squared gradients.

EMA: m{ = gm ™+ (1-8))g,"
k k-1 k)2
o = B+ 05 (o)
m®)

Bias correction:  m; = J -
1—p7
(k

)

~ Uy

v; = 1—/35

Update: x; = —«

Adaptivity or scaling

‘f — min
2oz

Notes:

® |t corrects the bias towards zero in the initial
moments seen in other methods like RMSProp,
making the estimates more accurate.

® OpHa U3 caMbIX LNTUPYEMbIX Hay4YHbIX paboT B Mupe

® B 2018-2019 rogax BbIWAN CTaTby, YKa3bliBaloLWMe Ha
oWwnbKy B OPUTMHANLHON CTaTbe

20
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Adam (Kingma and Ba, 2014) ! 2

Combines elements from both AdaGrad and RMSProp. It considers an exponentially decaying average of past

gradients and squared gradients.

. (k) _ (k—1) (k) Notes:
EMA: M= Blmj + 51)9]- ) ® |t corrects the bias towards zero in the initial
v;k) = 521);]“*1) +(1—8,) (g;k)) moments seen in other methods like RMSProp,
o ®) making the estimates more accurate.
Bias correction: 71, = - _jﬁk : gpé%algzg:lagnblx LUMTUPYEMBIX Hay4YHbIX paboT B Mupe
i - rofax BbILAM CTaTbl, yKa3blBatoLMe Ha
R q;;k) owunbKy B OpUrMHaNbLHON cTaTbe
v = 1— 3k ® He cxopnTcs 4Ns HEKOTOPbLIX NPOCTLIX 33434 (paxe
2 . BbIMYK/bIX)
Update: x;k) = m;kfl) — o= J
V:+ €

B /= min g rivity or scaling
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Adam (Kingma and Ba, 2014) ! 2

Combines elements from both AdaGrad and RMSProp. It considers an exponentially decaying average of past

gradients and squared gradients.

k k— k
EMA i = gim Y+ (1= B
k k—1 k
o = gl Y (1 8y) (o)
)
Bias correction: ., = —2 -
J 1— 51,
(k)
v
0, = —2
J 1— /815 A
m.
Update: x;.k) = w;kfl) —a J
V;+e€

B /= min g rivity or scaling

Notes:
® |t corrects the bias towards zero in the initial

moments seen in other methods like RMSProp,
making the estimates more accurate.

® OpHa U3 caMbIX LNTUPYEMbIX Hay4YHbIX paboT B Mupe
® B 2018-2019 rogax BbIWAN CTaTby, YKa3bliBaloLWMe Ha

OLWNDOKY B OPUrMHANBLHON CTaTbe

® He cxopnTcst Anst HEKOTOPbIX NPOCTbIX 3agaq (faxke

BbIMYK/bIX)

L4 I'quemy-To O4€Hb Xopowo pa60TaeT ANA HEKOTOPbIX

CNOXHbIX 3a4ad
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Adam (Kingma and Ba, 2014) ! 2

Combines elements from both AdaGrad and RMSProp. It considers an exponentially decaying average of past

gradients and squared gradients.

k k— k
EMA: m = gml Y 4+ (1- B)gy”

k k-1 k)2
v = Byu ™+ (1= 55) (9")

(k)

m.
Bias correction:  m; = J -
1— gk
1
(k)
v
0, = —2
J 1— /815
m.
Update: x;.k) = w;kfl) —a—
\/177- +€

!Adam: A Method for Stochastic Optimization
20n the Convergence of Adam and Beyond

B /= min g rivity or scaling

Notes:

It corrects the bias towards zero in the initial
moments seen in other methods like RMSProp,
making the estimates more accurate.

® OpHa U3 caMbIX LNTUPYEMbIX Hay4YHbIX paboT B Mupe
® B 2018-2019 rogax BbIWAN CTaTby, YKa3bliBaloLWMe Ha

OLWNBKY B OPUrMHanbHON CTaTbe

He cxopuTcs pns HekoTopbIx NpOCThIX 33434 (paxe
BbIMYK/bIX)

Moyemy-To o4eHb xOpowo paboTaeT Ans HEKOTOPbIX
CNOXHBIX 33434

lopasgo nyywe paboTaeT Ans A3bIKOBLIX MOAENEId,

4eM A/ 3a4a4 KOMMbIOTEPHOIO 3peHus - nodemy?
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AdamW (Loshchilov & Hutter, 2017)

Addresses a common issue with ¢, regularization in adaptive optimizers like Adam. Standard ¢, regularization adds
Alz|? to the loss, resulting in a gradient term Az. In Adam, this term gets scaled by the adaptive learning rate

(, [0; + e), coupling the weight decay to the gradient magnitudes.

AdamW decouples weight decay from the gradient adaptation step.

Update rule:
m§k> = ﬁ1m§'k_1> + (1 - 51)9@
vt = Byel TV (1= By)(g)")?
(k) (k)
=M b= Y
J 1— llc J 1— /85
z;k) = mg-k_l — 4 )\x
\/0 ;T €
Notes:

® The weight decay term /\w§~k71) is added after the adaptive gradient step.

B /= min g rivity or scaling
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AdamW (Loshchilov & Hutter, 2017)

Addresses a common issue with ¢, regularization in adaptive optimizers like Adam. Standard ¢, regularization adds
Alz|? to the loss, resulting in a gradient term Az. In Adam, this term gets scaled by the adaptive learning rate

(, [0; + e), coupling the weight decay to the gradient magnitudes.

AdamW decouples weight decay from the gradient adaptation step.

Update rule:
k k—1 k
" =B1m§' >+(1—ﬁ1)g§- )
k k—1 k
o = BT + (1= B,) (g
(k) (k)
=M b= Y
J 1— llc J 1— /85
x;k) = mg-k_l — + )\x
,/ it €
Notes:

® The weight decay term /\w§~k71) is added after the adaptive gradient step.

® Widely adopted in training transformers and other large models. Default choice for huggingface trainer.
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A lot of them

Rosenbrock Function.
Adaptive stochastic gradient algorithms.
Learning rate 0.003

——— Fromage
—— AdamW
—— NAG-GS
—— Lion
Optimal solution
2500

2000
f(w)1500

1000
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How to compare them? AlgoPerf benchmark

‘f - nin Adaptivity or scaling
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e YckopeHue obyyeHns NanoGPT - 125M @fminxyz
o] olimd
\
‘\
\
401 ‘\
\
\
\
‘\
737 \ Pad embedds + GELU -> RelLU? +
g } [3xIr + Rotary embedds + Ir cooldown| QKNorm + 0 init for projection
; e
% Removed Ir warmup +|  "TTtee—a__ [Upgraded PyTorch from 2.4.1 to 2.5.0]
S 25 Muon modification | — = TTTTe--__ 77 py ‘
% . Momentum warmup + Shortcuts +
2 0] \ | Tanh logit capping
o 1
N \
uE) 1
&

-
w
L

10 A

T

(U-net + 2x Ir}/
(Distributed the overhead of Muon| > \

[Untied embed and Im_head + 0 init for heady—\"/ Attention window warmup +
e hyperparameter tweaks

(Bfloat16 activations}\4
FlexAttention

-

~
~
~

N

S
i Q
B/~ min ity or scaling

N

& o )

%
%
%


Mobile User

https://github.com/KellerJordan/modded-nanogpt
https://fmin.xyz
https://hse25.fmin.xyz
https://github.com/MerkulovDaniil/hse25
https://t.me/fminxyz

Shampoo (Gupta, Anil, et al., 2018; Anil et al., 2020)

Stands for Stochastic Hessian-Approximation Matrix Preconditioning for Optimization Of deep networks. It's a
method inspired by second-order optimization designed for large-scale deep learning.

Core Idea: Approximates the full-matrix AdaGrad pre conditioner using efficient matrix structures, specifically
Kronecker products.

For a weight matrix W € R™*"™, the update involves preconditioning using approximations of the statistics matrices
L~Y, G.G{ and R~ ", GI'G), where G| are the gradients.

Simplified concept:

1. Compute gradient G.

Notes:
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Shampoo (Gupta, Anil, et al., 2018; Anil et al., 2020)

Stands for Stochastic Hessian-Approximation Matrix Preconditioning for Optimization Of deep networks. It's a
method inspired by second-order optimization designed for large-scale deep learning.

Core Idea: Approximates the full-matrix AdaGrad pre conditioner using efficient matrix structures, specifically
Kronecker products.

For a weight matrix W € R™*"™, the update involves preconditioning using approximations of the statistics matrices
L~Y, G.G{ and R~ ", GI'G), where G| are the gradients.

Simplified concept:

1. Compute gradient G.
2. Update statistics L, = 8L;_; + (1 — 8)G,,GF and R, = BR,,_, + (1 — B)GLG,,.

Notes:

B /= min g rivity or scaling 900
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Shampoo (Gupta, Anil, et al., 2018; Anil et al., 2020)

Stands for Stochastic Hessian-Approximation Matrix Preconditioning for Optimization Of deep networks. It's a
method inspired by second-order optimization designed for large-scale deep learning.

Core Idea: Approximates the full-matrix AdaGrad pre conditioner using efficient matrix structures, specifically
Kronecker products.

For a weight matrix W € R™*"™, the update involves preconditioning using approximations of the statistics matrices
L~Y, G.G{ and R~ ", GI'G), where G| are the gradients.

Simplified concept:

1. Compute gradient G.
2. Update statistics L, = 8L;_; + (1 — 8)G,,GF and R, = BR,,_, + (1 — B)GLG,,.
3. Compute preconditioners P; = L;1/4 and Pp = R;1/4. (Inverse matrix root)

Notes:

B /= min g rivity or scaling 900
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Shampoo (Gupta, Anil, et al., 2018; Anil et al., 2020)

Stands for Stochastic Hessian-Approximation Matrix Preconditioning for Optimization Of deep networks. It's a
method inspired by second-order optimization designed for large-scale deep learning.

Core Idea: Approximates the full-matrix AdaGrad pre conditioner using efficient matrix structures, specifically
Kronecker products.

For a weight matrix W € R™*"™, the update involves preconditioning using approximations of the statistics matrices
L~Y, G.G{ and R~ ", GI'G), where G| are the gradients.

Simplified concept:

1. Compute gradient G.

2. Update statistics L, = 8L;_; + (1 — 8)G,,GF and R, = BR,,_, + (1 — B)GLG,,.
3. Compute preconditioners P; = L;1/4 and Pp = R;1/4. (Inverse matrix root)

4. Update: W, = W, — aP; G Pg.

Notes:

B /= min g rivity or scaling 900
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Shampoo (Gupta, Anil, et al., 2018; Anil et al., 2020)

Stands for Stochastic Hessian-Approximation Matrix Preconditioning for Optimization Of deep networks. It's a
method inspired by second-order optimization designed for large-scale deep learning.

Core Idea: Approximates the full-matrix AdaGrad pre conditioner using efficient matrix structures, specifically
Kronecker products.

For a weight matrix W € R™*"™, the update involves preconditioning using approximations of the statistics matrices
L~Y, G.G{ and R~ ", GI'G), where G| are the gradients.

Simplified concept:

1. Compute gradient G.

2. Update statistics L, = 8L;_; + (1 — 8)G,,GF and R, = BR,,_, + (1 — B)GLG,,.
3. Compute preconditioners P; = L;1/4 and Pp = R;1/4. (Inverse matrix root)

4. Update: W, = W, — aP; G Pg.

Notes:

® Aims to capture curvature information more effectively than first-order methods.

B /= min g rivity or scaling 900
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Shampoo (Gupta, Anil, et al., 2018; Anil et al., 2020)

Stands for Stochastic Hessian-Approximation Matrix Preconditioning for Optimization Of deep networks. It's a
method inspired by second-order optimization designed for large-scale deep learning.

Core Idea: Approximates the full-matrix AdaGrad pre conditioner using efficient matrix structures, specifically
Kronecker products.

For a weight matrix W € R™*"™, the update involves preconditioning using approximations of the statistics matrices
L~Y, G.G{ and R~ ", GI'G), where G| are the gradients.

Simplified concept:

1. Compute gradient G.

2. Update statistics L, = 8L;_; + (1 — 8)G,,GF and R, = BR,,_, + (1 — B)GLG,,.
3. Compute preconditioners P; = L;1/4 and Pp = R;1/4. (Inverse matrix root)

4. Update: W, = W, — aP; G Pg.

Notes:

® Aims to capture curvature information more effectively than first-order methods.
® Computationally more expensive than Adam but can converge faster or to better solutions in terms of steps.

B /= min g rivity or scaling 900
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Shampoo (Gupta, Anil, et al., 2018; Anil et al., 2020)

Stands for Stochastic Hessian-Approximation Matrix Preconditioning for Optimization Of deep networks. It's a
method inspired by second-order optimization designed for large-scale deep learning.

Core Idea: Approximates the full-matrix AdaGrad pre conditioner using efficient matrix structures, specifically
Kronecker products.

For a weight matrix W € R™*"™, the update involves preconditioning using approximations of the statistics matrices
L~Y, G.G{ and R~ ", GI'G), where G| are the gradients.
Simplified concept:
1. Compute gradient G.
2. Update statistics L, = 8L;_; + (1 — 8)G,,GF and R, = BR,,_, + (1 — B)GLG,,.
3. Compute preconditioners P; = L;1/4 and Pp = R;1/4. (Inverse matrix root)
4. Update: W, = W, — aP; G Pg.
Notes:

® Aims to capture curvature information more effectively than first-order methods.

® Computationally more expensive than Adam but can converge faster or to better solutions in terms of steps.

® Requires careful implementation for efficiency (e.g., efficient computation of inverse matrix roots, handling large
matrices).

B /= min g rivity or scaling 900
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Shampoo (Gupta, Anil, et al., 2018; Anil et al., 2020)
Stands for Stochastic Hessian-Approximation Matrix Preconditioning for Optimization Of deep networks. It's a

method inspired by second-order optimization designed for large-scale deep learning.

Core Idea: Approximates the full-matrix AdaGrad pre conditioner using efficient matrix structures, specifically
Kronecker products.

For a weight matrix W € R™*"™, the update involves preconditioning using approximations of the statistics matrices
L~Y, G.G{ and R~ ", GI'G), where G| are the gradients.
Simplified concept:
1. Compute gradient G.
2. Update statistics L, = 8L;_; + (1 — 8)G,,GF and R, = BR,,_, + (1 — B)GLG,,.
3. Compute preconditioners P; = L;1/4 and Pp = R;1/4. (Inverse matrix root)
4. Update: W, = W, — aP; G Pg.
Notes:
® Aims to capture curvature information more effectively than first-order methods.
® Computationally more expensive than Adam but can converge faster or to better solutions in terms of steps.
® Requires careful implementation for efficiency (e.g., efficient computation of inverse matrix roots, handling large

matrices).
® Variants exist for different tensor shapes (e.g., convolutional layers).
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Muon

Wi =W, — n(Gth)’l/“Gt(GtTGt)’l/“
=W, —nUS2UT)V4USVT)(VS>VT)-1/4
=W, —qUS2PUTYUSVT) (VS Y2VT)
=W, —qUS /28912y T
=W, —qUVT

3Deriving Muon
B /= min g rivity or scaling
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