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Finite-sum problem lessg wma L
We consider classic finite-sample average minimization:
' TNy S 34\24&&( e
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The gradient descent acts like follows: V‘F (A i 2 V‘F (K)

n
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® Convergence with constant « or line search.
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Finite-sum problem
We consider classic finite-sample average minimization:

min /@) = min 1S5 g @@oo Od
The gradient descent acts like follows: \ { / / //

!
Tyl = T — f vai(‘r) (GD)
-1

® Convergence with constant « or line search.
® |teration cost is linear in n. For ImageNet n ~ 1.4 - 107, for WikiText n & 10%. For FineWeb n ~ 15 - 102

| Q- L5450
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Finite-sum problem
We consider classic finite-sample average minimization:

iy J2) =iy S0

TERP

The gradient descent acts like follows:
a n
Tyl = T — f vai(if) (GD)
i=1

® Convergence with constant « or line search.
® |teration cost is linear in n. For ImageNet n ~ 1.4 - 107, for WikiText n & 10%. For FineWeb n ~ 15 - 102

tokens.
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Finite-sum problem
We consider classic finite-sample average minimization:

min = min — Z
xrERP f IEIRP n f

The gradient descent acts like follows:

Th1 = ap— £ Y Vii(a) (6D)
i=1

® Convergence with constant « or line search.
® |teration cost is linear in n. For ImageNet n ~ 1.4 - 107, for WikiText n & 10%. For FineWeb n ~ 15 - 102

tokens.

Let's switch from the full gradient calculation to its unbiased estlmator when we randomly choose i), index of point

at each iteration uniformly: 7 . CTOX ACTU WCkuti
L1 = T — O‘Ié\vfik ()} @aunm (SGD)
With p(i), = i) = L, the stochastic gradient is an unbiased estimate of the gradient, given by:

BIVS, (2] = Y oplin = )9 F() = 30 9 h@) = L3 wpw) = vr f
i=1 =1 i=1

This indicates that the expected value of the stochastic gradient is equal to the actual gradient of f(z).
lfﬂ“‘}‘i Finite-sum problem 0 0
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Results for Gradient Descent E - FUERIUAS TULHOCR
PQU-LOKU-J

Stochastic iterations are n times faster, but how many iterations are needed?

If V f is Lipschitz continuous then we have:

Assumption  Deterministic Gradient Descent ~ Stochastic Gradient Descent

PL O (log(1/e))
Convex O(1/e)
Non-Convex €

‘f - fnﬂ Finite-sum problem D0
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Results for Gradient Descent

Stochastic iterations are n times faster, but how many iterations are needed?

If V f is Lipschitz continuous then we have:

Assumption  Deterministic Gradient Descent ~ Stochastic Gradient Descent

PL O (log(1/e)) (1/5
Convex O(1/e) O(1/e2 ‘(L
Non-Convex O (1/e) 1/€%) K
® Stochastic has low iteration cost but slow convergence rate. ‘l

(s&
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Results for Gradient Descent

Stochastic iterations are n times faster, but how many iterations are needed?

If V f is Lipschitz continuous then we have:

Assumption  Deterministic Gradient Descent ~ Stochastic Gradient Descent

PL O (log(1/e)) O(1/e)
Convex O (1/e) 0 (1/£%)
Non-Convex O (1/e) 0(1/£%)

® Stochastic has low iteration cost but slow convergence rate.
® Sublinear rate even in strongly-convex case.
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Results for Gradient Descent

Stochastic iterations are n times faster, but how many iterations are needed?

If V f is Lipschitz continuous then we have:

Assumption  Deterministic Gradient Descent ~ Stochastic Gradient Descent

PL O (log(1/e)) O(1/e)
Convex O (1/e) 0 (1/£%)
Non-Convex O (1/e) 0(1/£%)

® Stochastic has low iteration cost but slow convergence rate.
® Sublinear rate even in strongly-convex case.
® Bounds are unimprovable under standard assumptions.
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Results for Gradient Descent

Stochastic iterations are n times faster, but how many iterations are needed?

If V f is Lipschitz continuous then we have:

Assumption  Deterministic Gradient Descent ~ Stochastic Gradient Descent

PL O (log(1/e)) O(1/e)
Convex O (1/e) 0 (1/£%)
Non-Convex O (1/e) 0(1/£%)

® Stochastic has low iteration cost but slow convergence rate.
® Sublinear rate even in strongly-convex case.
® Bounds are unimprovable under standard assumptions.
® Qracle returns an unbiased gradient approximation with bounded variance.
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Results for Gradient Descent

Stochastic iterations are n times faster, but how many iterations are needed?

If V f is Lipschitz continuous then we have:

Assumption  Deterministic Gradient Descent ~ Stochastic Gradient Descent

PL O (log(1/e)) O(1/e)
Convex O (1/e) 0 (1/£%)
Non-Convex O (1/e) 0(1/£%)

® Stochastic has low iteration cost but slow convergence rate.
® Sublinear rate even in strongly-convex case.
® Bounds are unimprovable under standard assumptions.
® Qracle returns an unbiased gradient approximation with bounded variance.
® Momentum and Quasi-Newton-like methods do not improve rates in stochastic case. Can only improve constant
factors (bottleneck is variance, not condition number).

‘f% 5“3'; Finite-sum problem 0 0
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Stochastic Gradient Descent (SGD)

Stochastic Gradient Descent (SGD)
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Typical behaviour

‘f — min
Tz

Stochastic Gradient Descent. Batch = 2
; Loss value 0.03 60 w; 3.01, w, 3.84
Optimum .
5.5
6 g
5.0 4
5 -
4.5 -
$ 44 > 4.0
3.5 1
34
3.0 A
2 4
2.5 A
1 : . : . : 2.0
0 1 2 3 4 5 6
w1

Stochastic Gradient Descent (SGD)
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Convergence Aunucugda
Lipschitz continiity implies: naeo.Sa\e(

F@ain) € F@) +(VH@), mn — ) + Slos it g

B,/ = Ml g0 hastic Gradient Descent (SGD) 900
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Convergence
Lipschitz continiity implies:

using (SGD): XK-fL = X — OLKV%k()(‘) —_— xk_q - K= = ,(k

‘f — min
Tz

F@nn) < F@0) 4 (V@) 2hga = 20) + 5l — 2l .
V‘F“,k‘(k

o L

f(@p) < f(2g) — ap(V f (), Vfik (z1)) + i 9 vaik (ze)I?

L{m.%e @CQLO tkc,ml\oga(:( cs 4] Quaa oyeHo Kk

& (-QHU(:S'""“ \ o g g
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Stochastic Gradient Descent (SGD) 0 O 7
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Convergence
Lipschitz continiity implies:

F@nn) < £+ (V@) 2hss = 20) + Sl —

using (SGD):
L
f(@p) < f(2g) — ap(V f (), Vfik. (1)) + aig\lvfik (zp)I?

Now let's take expectation with respect to i,

E[f(zp1)] S E[f(2r) — o (V (), Vi, (2x)) + aiéHVfik ()]

F6 - ot B9 (0>« £L 2 ik
2 he

‘f - ?’L"ﬁ Stochastic Gradient Descent (SGD) 0 O 7
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Convergence
Lipschitz continiity implies:

Feain) € F@) + (V@) 2hs = 2) + o g — ol

using (SGD):
L
f(@p) < f(2g) — ap(V f (), Vfik (1)) + aig\lvfik (zp)I?

Now let's take expectation with respect to i,
L
Elf @p1)] < E[f (z1) — an(V (@), Vi, (@) + a5 IV i, (22)7]

Using linearity of expectation: 40%(@

Ef (o) < ) — ak<w<xk> + 0 TRV, (n)l

B,/ = Ml g0 hastic Gradient Descent (SGD)
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Convergence
Lipschitz continiity implies:

Feain) € F@) + (V@) 2hs = 2) + o g — ol

using (SGD):
L
f(@p) < f(2g) — ap(V f (), Vfik (1)) + aig\lvfik (zp)I?

Now let's take expectation with respect to i,
L
Elf @p1)] < E[f (z1) — an(V (@), Vi, (@) + a5 IV i, (22)7]
Using linearity of expectation:

Elf (wpr1)] < fap) — a (V) B[V f;, (2)]) + aiglEHIVfik(xk)llz’]

weaL0

B,/ = Ml g0 hastic Gradient Descent (SGD)
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Smooth PL case with constant learning rate

.

1 Nycrs f — L-rnagkas cyHkuus, yaosneteopsiowas ycnosuto Monska- J'Ioacmesmqa (PL) c xoHcTaHTOl
p > 0, a ANCAEPCIs CTOXaCTUYECKOrO FPAAMEHTA OFpaHnyeHa: IE[||Vf x;,)|?] < 2. Torma cToxacTuueckmii
“TPaAVEHTHBI CMYCK € NOCTOSIHHBLIM LWAroM ¢ < i rapaHTupyeT =~

E[f(zi) = f] < (1= 20)"{f (o) f](L"“mmx%Ll

We start from inequality (1):

E[f(2g1)] < flay) — ag[VF(p)]* + ang[vaik ()]

B,/ = Ml g0 hastic Gradient Descent (SGD) 900
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Smooth PL case with constant learning rate

Mycts f — L-rnapkas dyHkuus, ynoenetsopsitowas ycnosuto [Nonsika-Slosicuesnya (PL) ¢ koHcTanTol
@ > 0, a Ancnepcus cToxacTudeckoro rpapnenTa orpatuyena: K[|V f;(z,)[?] < 2. Torga croxacTudeckuii

rPaAMEHTHbIV CMYCK C NOCTOSIHHLIM LWaroM o < ﬁ rapaHTupyer

Lo%a

Bl f(e) = 1 < (1= 2000 f(z0) = f]+ =1

We start from inequality (1):

‘f — min
Tz

E[f(2g1)] < flay) — ag[VF(p)]* + Q%E[vaik ()]

PL: |V f (i) I?>20(f(zk)—f7)

Stochastic Gradient Descent (SGD) 0 O
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Smooth PL case with constant learning rate

Mycts f — L-rnapkas dyHkuus, ynoenetsopsitowas ycnosuto [Nonsika-Slosicuesnya (PL) ¢ koHcTanTol
@ > 0, a Ancnepcus cToxacTudeckoro rpapnenTa orpatuyena: K[|V f;(z,)[?] < 2. Torga croxacTudeckuii

rPaAMEHTHbIV CMYCK C NOCTOSIHHLIM LWaroM o < ﬁ rapaHTupyer

Lo%a

Bl f(e) = 1 < (1= 2000 f(z0) = f]+ =1

We start from inequality (1):

‘f — min
Tz

E[f(2g1)] < flay) — ag[VF(p)]* + Q%E[vaik ()]

. 2 . L
PLAV fla)P22u(f(en)—f") < Fz) — 200u(f(z) — ) +a%§1E[IIszk(afk)||2]

Stochastic Gradient Descent (SGD) 0 O
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Smooth PL case with constant learning rate

e ~
1 MNycts f — L-rnagkas dyHkuns, yposnetsopsiowas ycnosuto lNonsika-Jlosicuesnya (PL) ¢ koncTanToid
@ > 0, a Ancnepcus cToxacTudeckoro rpapnenTa orpatuyena: K[|V f;(z,)[?] < 2. Torga croxacTudeckuii

rPaAMEHTHbIV CMYCK C NOCTOSIHHLIM LWaroM o < ﬁ rapaHTupyer

Lo%a

Bl f(e) = 1 < (1= 2000 f(z0) = f]+ =1

We start from inequality (1):
L
Elf (@r)] < f(@) = | V@)l + G SENV fi, (@0)]]
LATSRIZBI ) < ()~ 2ou( f() — ) + 3 SRV, (@)l]

Subtract f*

B,/ = Ml g0 hastic Gradient Descent (SGD) 900
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Smooth PL case with constant learning rate

i TMycts f — L-rnagkas dyHkuus, yaosneTsopsiowas ycnosuo Monsika-Sloscuesnya (PL) ¢ koHcTaHTOV

@ > 0, a Ancnepcus cToxacTudeckoro rpapnenTa orpatuyena: K[|V f;(z,)[?] < 2. Torga croxacTudeckuii

rPaAMEHTHbIV CMYCK C NOCTOSIHHLIM LWaroM o < ﬁ rapaHTupyer

Blf(zx) = 7] < (1= 200 {f ) — £+ “.

We start from inequality (1):
L
Elf (@r)] < f(@) = | V@)l + G SENV fi, (@0)]]
LATSRIZBI ) < ()~ 2ou( f() — ) + 3 SRV, (@)l]

Subtroct J° Elf ()] = < (f(2g) = f°) = 200 0(f () — f7) + aigE[vazk(xk)”ﬂ

B,/ = Ml g0 hastic Gradient Descent (SGD) 900
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Smooth PL case with constant learning rate

i TMycts f — L-rnagkas dyHkuus, yaosneTsopsiowas ycnosuo Monsika-Sloscuesnya (PL) ¢ koHcTaHTOV

@ > 0, a Ancnepcus cToxacTudeckoro rpapnenTa orpatuyena: K[|V f;(z,)[?] < 2. Torga croxacTudeckuii

rPaAMEHTHbIV CMYCK C NOCTOSIHHLIM LWaroM o < ﬁ rapaHTupyer

Blf(zx) = 7] < (1= 200 {f ) — £+ “.

We start from inequality (1):
Bl (r4n)] < f(0) — VS @I + 03 SEIIVS, ()1
LIS IS < () — 2 f(g) — 1) + 0 SEIIV;, ()]
Sub3 B (1)) — 1 < (Fla) — ) — 2001 f(g) — ) + o TRV, ()]

e < (1= 20,0)[f(2) = ] + a2 SEIIV S, ()17

B,/ = Ml g0 hastic Gradient Descent (SGD) 900
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Smooth PL case with constant learning rate

i TMycts f — L-rnagkas dyHkuus, yaosneTsopsiowas ycnosuo Monsika-Sloscuesnya (PL) ¢ koHcTaHTOV

@ > 0, a Ancnepcus cToxacTudeckoro rpapnenTa orpatuyena: K[|V f;(z,)[?] < 2. Torga croxacTudeckuii

rPaAMEHTHbIV CMYCK C NOCTOSIHHLIM LWaroM o < ﬁ rapaHTupyer

Blf(zx) = 7] < (1= 200 {f ) — £+ “.

We start from inequality (1):
Bl (r4n)] < f(0) — VS @I + 03 SEIIVS, ()1
LIS IS < () — 2 f(g) — 1) + 0 SEIIV;, ()]
Sub3 B (1)) — 1 < (Fla) — ) — 2001 f(g) — ) + o TRV, ()]
e < (1= 20,0)[f(2) = ] + a2 SEIIV S, ()17
Bounded variance: E[|V £, ()] <0?

B,/ = Ml g0 hastic Gradient Descent (SGD) 900
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Smooth PL case with constant learning rate

i TMycts f — L-rnagkas dyHkuus, yaosneTsopsiowas ycnosuo Monsika-Sloscuesnya (PL) ¢ koHcTaHTOV

@ > 0, a Ancnepcus cToxacTudeckoro rpapnenTa orpatuyena: K[|V f;(z,)[?] < 2. Torga croxacTudeckuii

rPaAMEHTHbIV CMYCK C NOCTOSIHHLIM LWaroM o < ﬁ rapaHTupyer

Blf(zx) = 7] < (1= 200 {f ) — £+ “.

We start from inequality (1):
Bl (r4n)] < f(0) — VS @I + 03 SEIIVS, ()1
LIS IS < () — 2 f(g) — 1) + 0 SEIIV;, ()]
Sub3 B (1)) — 1 < (Fla) — ) — 2001 f(g) — ) + o TRV, ()]
e < (1= 20,0)[f(2) = ] + a2 SEIIV S, ()17
Lo?a?

ounded variance: x 2 0'2 %
Sounded vance: EIV 1200 P1<0® < (1= 2ag0)[ (o) — 1]+ =5,

B,/ = Ml g0 hastic Gradient Descent (SGD) 900


Mobile User

https://fmin.xyz
https://hse25.fmin.xyz
https://github.com/MerkulovDaniil/hse25
https://t.me/fminxyz

Convergence. Smooth PL case.

i TMycts f — L-rnagkas dyHkuus, yaosneTsopsiowas ycnosuo Monsika-Sloscuesnya (PL) ¢ koHcTaHTOV
@ > 0, a Ancnepcus cToxacTuyeckoro rpapnenTa orpatudena: K[|V f;(z,)]?] < o2, Torga croxactudeckuii
- | — _ 2ktl
rpajmeHTHBIN cnyck C ybbiBatownm warom|ay, = Zh(kr )7 |FaPaHTupyer
Lo?
Elf(x,) — f] < ——
. . . . _ _2k+1 :
1. Consider decreasing stepsize strategy with o, = a2 We obtain
B,/ = Ml g0 hastic Gradient Descent (SGD) 900
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Convergence. Smooth PL case.

. ~
1 MNycts f — L-rnagkas dyHkuns, yposnetsopsiowas ycnosuto lNonsika-Jlosicuesnya (PL) ¢ koncTanToid
p > 0, a Ancnepcus cToxacTuyeckoro rpapnenTa orpatuyena: K[|V f;(z,)[?] < 2. Torga croxactudeckuii
o _ 2kl
rPaAueHTHBIM Cyck C YBLIBAIOWWMM WAroM «y, = 5.5y rapaHTupyet

L 2
Ef(w) = 1< 3o

1. Consider decreasing stepsize strategy with o, = % we obtain
_ _(kt1)2 2k41 _ K2
L2 l= G002 T )2 ~ (12
S
1

B,/ = Ml g0 hastic Gradient Descent (SGD) 900
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Convergence. Smooth PL case.

. ~

1 MNycts f — L-rnagkas dyHkuns, yposnetsopsiowas ycnosuto lNonsika-Jlosicuesnya (PL) ¢ koncTanToid
p > 0, a Ancnepcus cToxacTuyeckoro rpapnenTa orpatuyena: K[|V f;(z,)[?] < 2. Torga croxactudeckuii
rPaAueHTHBIM Cyck C YBLIBAIOWWMM WAroM «y, = 5.5y rapaHTupyet

L 2
Ef(w) = 1< 3o

1. Consider decreasing stepsize strategy with o, = % we obtain
120 =B 2kt _ B E e k2 o, Lok +1)?
[.f(mk:+1) f] = (k+1)2[f($k) f]+ 8uz(k+1)4

B,/ = Ml g0 hastic Gradient Descent (SGD)
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Convergence. Smooth PL case.

rpagueHTHbIN CNyCcK C YBbIBAOWMM Warom q;, = m rapaHTupyet
Lo?

E[f(zy) — f] < m

.
1 MNycts f — L-rnagkas dyHkuns, yposnetsopsiowas ycnosuto lNonsika-Jlosicuesnya (PL) ¢ koncTanToid
p > 0, a Ancnepcus cToxacTuyeckoro rpapnenTa orpatuyena: K[|V f;(z,)[?] < 2. Torga croxactudeckuii

2kt \ve obtain

1. Consider decreasing stepsize strategy with o, = St 12
R T () — ] € () — f
(k+1)2
(2h+1)?<(2k42)*=4(k+1)* < k? [f(2)
(k+1)2

B,/ = Ml g0 hastic Gradient Descent (SGD)

y o%(2k +1)2
I

_f*]+ (Lk+1 l (kﬂ)
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Convergence. Smooth PL case.

. ~

1 MNycts f — L-rnagkas dyHkuns, yposnetsopsiowas ycnosuto lNonsika-Jlosicuesnya (PL) ¢ koncTanToid
p > 0, a Ancnepcus cToxacTuyeckoro rpapnenTa orpatuyena: K[|V f;(z,)[?] < 2. Torga croxactudeckuii
rPaAueHTHBIM Cyck C YBLIBAIOWWMM WAroM «y, = 5.5y rapaHTupyet

L 2
Ef(w) = 1< 3o

1. Consider decreasing stepsize strategy with o, = 25&152 we obtain
2op= e -k =i L e R L Lotk +1)?
[.f(mk:+1) f]— (k+1)2[f($k) f]+ 8/12(]64—1)4
k2 Lo?

(2k+1)2<(2k+2)2=4(k+1)?

N

2. Multiplying both sides by (k + 1)2 and letting dp(k) = K2 E[f(z,) — f*] we get

0.2
(4 18] )~ 11 < RE ) — 11+ 5
Lo?
(k1) < 8y(0k) + 5
0 O

B,/ = Ml g0 hastic Gradient Descent (SGD)
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Convergence. Smooth PL case.

3. Summing up previous inequality from ¢ = 0 to k and using the fact that 5f(0) =0 we get

which gives the stated rate.

B,/ = Ml g0 hastic Gradient Descent (SGD)

10
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Convergence. Smooth PL case.

3. Summing up previous inequality from ¢ = 0 to k and using the fact that 5f(0) =0 we get
Lo?

2

Opli+ 1) S 8p(0) + o

which gives the stated rate.

B,/ = Ml g0 hastic Gradient Descent (SGD)

10
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Convergence. Smooth PL case.

3. Summing up previous inequality from ¢ = 0 to k and using the fact that 5f(0) =0 we get

which gives the stated rate.

B,/ = Ml g0 hastic Gradient Descent (SGD)

10
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Convergence. Smooth PL case.

3. Summing up previous inequality from ¢ = 0 to k and using the fact that 5f(0) =0 we get

. . Lo?
k
> (6560 +1) = 6,4(1) Z
=0
Lo? (k+1)

dy(k+1) —d,(0) < 22
5 (0= 0 ]C(K)'F* -

which gives the stated rate.

‘f - Wy‘rﬁ Stochastic Gradient Descent (SGD) P00 O 10
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Convergence. Smooth PL case.

3. Summing up previous inequality from ¢ = 0 to k and using the fact that 5f(0) =0 we get

Lo?
2

Fi+1) < 8p(0) + 2M

k

> (6560 +1) = 6,4(1) Z

=0

5,k +1) — 6,(0) < M

22
Ok + 0Pl — 1 < 220D Q«i)

" (Xk*b {2 .2 ‘,7@,\

which gives the stated rate.

‘f - Wy‘rﬁ Stochastic Gradient Descent (SGD) P00 O 10
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Convergence. Smooth PL case.

3. Summing up previous inequality from ¢ = 0 to k and using the fact that 5f(0) =0 we get

. . Lo?

k

> (6560 +1) = 6,4(1) Z

=0

5,k +1) — 6,(0) < M

which gives the stated rate.

B,/ = Ml g0 hastic Gradient Descent (SGD)
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Convergence. Smooth convex case (bounded variance)

Auxiliary notation
For a (possibly) non-constant stepsize sequence (c;),>( define the stepsize-weighted average

Ty, o Zatm‘t, k> 1
Zt 0

Everywhere below f* = min, f(z) and * € argmin,, f(x)

B,/ = Ml g0 hastic Gradient Descent (SGD)

11
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Smooth convex case with constant learning rate

1 Nycte f — Boinyknas dyHkums (He obsizaTenbHo rnafkasl), a AUCMEPCUS CTOXAaCTMHYECKOTO rpajueHTa
orpaHunyeHa E[”szk(xk)”ﬂ < 02 Vk. Ecnn SGD ucnonbayer noctosHubii war o, = o > 0, 10
ans noboro k > 1 PP\O‘O?QIU:L

a2 2
E[f(Z,) — ] < w v o / CNOCTO D HHGIN
e
wa o

rhe Ty = ¢ Zt 0
Mpn BbIbOPE nocmaworoﬁ%)%ﬂ (3aBucsiwero ot k) nmeem
-4

ey - 1< b=l o

‘f - ;nyul Stochastic Gradient Descent (SGD) 0 0
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Smooth convex case with constant learning rate
1. HauyHém c pa3noxeHusi KBagpaTa pacCTosAHWA L0 MUHUMYMa:

|k — 21 = o, — oV (2) — 27 = |z — 22 = 2a(V f;, (23), 2

B,/ = Ml g0 hastic Gradient Descent (SGD)

—a*) + ?|VF;, (zp)].
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Smooth convex case with constant learning rate
1. Hauném c pasnoxenus kBagpaTa paccTOsiHUS 4O MUHUMYMa:
|k — 21 = o, — oV (2) — 27 = |z — 22 = 2a(V f;, (23), 2
2. Bepém ycnosroe matoxugatue no i, (obosnauum E[-| = E[-|z,]), ncnonsayem ceoiictso
Ey[Vf;, (x))] = Vf(x},), orpanusentocte ancnepcun By [[V f; (x)[*] < 0® u seinyknocts f (kotopas gaér
(Vf(y), zp —a*) > fay) — )

Ek[Hl’kH - x*”z] = |z — 2** — 2a(V f(z}), 7 — 27) + O‘Q]Ek[”vfik (%)HQ]

‘? ‘F(Q (vg()‘t)x xb— lzy — 2> = 2a(f(z),) — f*) + ?a>.
- (), x> < § - 6

< (169

—a*) + ?|VF;, (zp)].

‘f — min
Tz

Stochastic Gradient Descent (SGD)
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Smooth convex case with constant learning rate
1. HauyHém c pa3noxeHusi KBagpaTa pacCTosAHWA L0 MUHUMYMa:

|k — 21 = |z, — oV (@) — 27 = o — 2|2 = 2a(V f;, (2), 2 — 27) + |V, ()]

2. Bepém ycnosroe matoxugatue no i, (obosnauum E[-| = E[-|z,]), ncnonsayem ceoiictso
Ey[Vf;, (z)] = V f(x), orpannyentocts aucnepcun EL[|V ;. (x1)]?] < 02 v BoinyknocTs f (koTopasi maér

(Vf(xy),z, —a*) = fzy) — f):
Ek[HIkH - x*”z] = |z — 2** — 2a(V f(z}), 7 — 27) + O‘Q]Ek[”vfik (%)HQ]
< o — 2| = 2a(f(zg) = f*) + a?0®

3. Mepexocum uner ¢ f(x),) Bneso n Bepém nonHoe MaToxuaaHue:

20E[f(xy) — f*] < Ellzy — 2*%] = Ellwgyy — 27*] + o0,

‘f - fn‘}'; Stochastic Gradient Descent (SGD) P00 O 13
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Smooth convex case with constant learning rate
1. HauyHém c pa3noxeHusi KBagpaTa pacCTosAHWA L0 MUHUMYMa:

|21 — 2 = o, — aV i (2)) — 2" = |l — 27 = 20(V S, (21), 2, — @) + 2|V f; (2,)]%.
2. Bepém ycnosroe matoxugatue no i, (obosnauum E[-| = E[-|z,]), ncnonsayem ceoiictso
Ey[Vf;, (z)] = V f(x), orpannyentocts aucnepcun EL[|V ;. (x1)]?] < 02 v BoinyknocTs f (koTopasi maér
Vi), xp, —a*) = flag) — )
Ek[HIkH - x*”z] = |z — 2** — 2a(V f(z}), 7 — 27) + O‘Q]Ek[”vfik (%)HQ]
<z — 2> = 2a(f(xy) — [*) + a?0?

3. Mepexocum uner ¢ f(x),) Bneso n Bepém nonHoe MaToxuaaHue:

20E[f(xy) — f*] < Ellzy — 2*%] = Ellwgyy — 27*] + o0,

4. Cymmupyem (Teneckonupyem) not =0,..., k— 1:

k—1 k-1
> 20Ef(z,) — £ <Y (Elle, — 2] = Ellz — 2 |2]) + Y a2o?
t=0 t=0

t=
=E[lzo — «*|?] - El|lz, — 2*[*] + ka?0?

<|lzg — 2% + ka?0?

o
—

o

‘f - fn‘}'; Stochastic Gradient Descent (SGD) P00 O 13
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Smooth convex case with constant learning rate

5. Henum Ha 2ak:
<

k-1

x> =

~ ~ ~.

t=

B,/ = Ml g0 hastic Gradient Descent (SGD)

*HQ

S H) - )< oIy

2

2

[e72)

14
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Smooth convex case with constant learning rate
5. Henum Ha 2ak:

‘f — min
Tz

Stochastic Gradient Descent (SGD)

S THf () — £]

< |lzg — =

*HQ

2ak

[e72)
2.

~

L
&
2.0 k

2

2
46

14
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Smooth convex case with constant learning rate
5. Henum Ha 2ak:

LS By - ) < o o
JL = 20k 2

. W 9
6. Wcnonbsys Bbinyknocts f u HepaseHcTBO VeHcena Ans ycpeaHéHHoll Toukn Ty = 3 tho

1k71 1k
BU@) <B | > )| = >l

BolunTas f* ns obenx vacreii, nonydaem:

_ a1 .
Elf(@) = f1< ¢ () = 1]
=0
7. Obbegunsisi (5) n (6), nonyHaem NCKOMYIO OLLEHKY:
oo — o2 ao?

E[f(zy) — f*] < Toak + 5

B,/ = Ml g0 hastic Gradient Descent (SGD)

¢
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Smooth convex case with decreasing learning rate

Q. =

Qg

1
’ O< Si
il @0 =7

—  \0

o _ ao
1 [lpn Tex »ke NpeAnonoXxeHusx, HO CO CNafoM wWwarg oy, = TRt

Elf(zy) = f7] <

5lzo — 2*|®

4agVk

+ Sano
0 Vk

5 log(k+1)

‘f — min
Tz

Stochastic Gradient Descent (SGD)
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‘f — min
Tz

Mini-batch SGD

Mini-batch SGD
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Mini-batch SGD

Approach 1: Control the sample size
The deterministic method uses all n gradients:

Vf(zy) = - Z Vi)

(Qk%“m'w Vfin(zy) = >

A common variant is to use a larger sample B, (“mini-batch”):

|Bk| > Vi) Zw-m),

i€By,

particularly useful for vectorization and parallelization.
For example, with 16 cores set |B,| = 16 and compute 16 gradients at once.

B /= min e batch SGD

R i Mot

g

17
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Mini-Batching as Gradient Descent with Error

The SG method with a sample B;, (“mini-batch”) uses iterations:

1
Tpy1 = Tp — oy, (lBk| Z Vfi(%)) :

i€ By,
Let's view this as a “gradient method with error:
Ty =2 — o (V(z) + ep),

where ¢, is the difference between the approximate and true gradient.

If you use o, = % then using the descent lemma, this algorithm has:

P < ) = 52 IV + gz lel?

for any error e,

B S omin e ich SGD
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Effect of Error on Convergence Rate

Our progress bound with o, = % and error in the gradient of ¢, is:

P < @) = 5 I F @I + grlenl®

B /= min e batch SGD
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Npea SGD wn 6artuein

Aanpre "febies

n

B /= min e batch SGD
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Npea SGD wn 6artuein

A, AanHble

AL 4\»\

B /= min e batch SGD

b, ot (8O
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Npea SGD wn 6artuein

ZJlaHHbIE

B /= min e batch SGD

1 baTtu

2 batg
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Npes SGD wn batuen

ZJlaHHbIE

B /= min e batch SGD

1 baTtu

2 batg

3 batu
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Npea SGD wn 6artuein

B /— min

laHHbie

Mini-batch SGD

1 baTtu

2 batg

3 batu

4 batuy

- DIroxa

20


Mobile User

https://fmin.xyz
https://hse25.fmin.xyz
https://github.com/MerkulovDaniil/hse25
https://t.me/fminxyz

Main problem of SGD

0 RS .
fl@)=Slol+ — ;log(l + exp(—y,{a;, x))) — min

Strongly convex binary logistic regression. m=200, n=10, mu=1.

100 1 100 4 100 1
10724 10-1 10724
T 0 4 *>< 'T 4
—~ 107% ~ | -2 ] 10744
X L 1072 = 10
= = =
1075 - 1073 4 1076
1078 4 10-4 4 1078 4
0 25 50 75 100 0 25 50 75 100 0 100000200000300000400000
Iteration Iteration FLOPS
—— SGD  —— SGD batch10 —— SGD batch 50 —— SGD batch 100 —— GD

B /= min e batch SGD ®0 o0
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OcHoBHble pe3ynbratbl cxogumoctun SGD

Myctb f - L-rnagkas [-CunbHO BbinyKiasi PYHKUMS, @ ANCMEPCUst CTOXaCTUYECKOro MPajneHTa KOHeYHa
(E[|Vf;(z)]?] < 0?). Torpa TpaekTopus CTOXaCTUHECKOTO FPafNeHTHOro Crycka C MOCTOSHHBIM LIaroMm
a<g, OyzeT rapaHTUpoBaTh:

2a

E[f(2g1) = F71 < (1= 2ap)*[f(z0) — f]+

‘f — min
Tz

Mini-batch SGD P00 O

22


Mobile User

https://fmin.xyz
https://hse25.fmin.xyz
https://github.com/MerkulovDaniil/hse25
https://t.me/fminxyz

OcHoBHble pe3ynbratbl cxogumoctun SGD

1 Nycts f - L-rnagkas p-cunbHo Bbinyknasi yHKLWS, a AMCMEPCASt CTOXAaCTUHECKOrO rpaueHTa KOHEHHa
(E[|Vf;(z)]?] < 0?). Torpa TpaekTopus CTOXaCTUHECKOTO FPafNeHTHOro Crycka C MOCTOSHHBIM LIaroMm
a< ﬁ OyzeT rapaHTUpoBaTh:

Lo?a
k
B[f(xy1) = 7] < (1= 2ap)"[f () — f] + m
i Nycts f - L-rnagkas p-cunbHo Bbinyknash yHKLWS, a AMCNEPCASt CTOXAaCTUHECKOrO rpaueHTa KOHEHHa

(IE[HVf (z)|?] < 0?). Torma cToxacTuueckuii rpagMeHTHbIA WYM C yMeHbLIAIOWMMCS WaroM oy, =

m 6yp,eT CXOAnNTbhCA Cy6)1|/|He|/|HO

. Lo?
E[f(zgeq) — f] < 22k+1)

‘f — min
Tz

Mini-batch SGD P00 O
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Conclusions

® SGD with fixed learning rate does not converge even for PL (strongly convex) case

B /= min e batch SGD
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Conclusions

® SGD with fixed learning rate does not converge even for PL (strongly convex) case
® SGD achieves sublinear convergence with rate O (%) for PL-case.

B /= min e batch SGD
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Conclusions

® SGD with fixed learning rate does not converge even for PL (strongly convex) case
® SGD achieves sublinear convergence with rate O (%) for PL-case.
® Nesterov/Polyak accelerations do not improve convergence rate

B /= min e batch SGD
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Conclusions

SGD with fixed learning rate does not converge even for PL (strongly convex) case
SGD achieves sublinear convergence with rate O (%) for PL-case.

Nesterov/Polyak accelerations do not improve convergence rate

Two-phase Newton-like method achieves O (%) without strong convexity.

B /= min e batch SGD
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