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Recap of Gradient Descent convergence
Gradient Descent: min

𝑥∈R𝑛
𝑓(𝑥) 𝑥𝑘+1 = 𝑥𝑘 − 𝛼𝑘∇𝑓(𝑥𝑘)

convex (non-smooth) smooth (non-convex) smooth & convex smooth & strongly convex (or PL)

𝑓(𝑥𝑘) − 𝑓∗ ∼ 𝒪 ( 1√
𝑘

) ‖∇𝑓(𝑥𝑘)‖2 ∼ 𝒪 ( 1
𝑘 ) 𝑓(𝑥𝑘) − 𝑓∗ ∼ 𝒪 ( 1

𝑘 ) ‖𝑥𝑘 − 𝑥∗‖2 ∼ 𝒪 ((1 − 𝜇
𝐿)

𝑘
)

𝑘𝜀 ∼ 𝒪 ( 1
𝜀2 ) 𝑘𝜀 ∼ 𝒪 (1

𝜀 ) 𝑘𝜀 ∼ 𝒪 (1
𝜀 ) 𝑘𝜀 ∼ 𝒪 (𝜘 log 1

𝜀 )

For smooth strongly convex we have:

𝑓(𝑥𝑘) − 𝑓∗ ≤ (1 − 𝜇
𝐿)

𝑘
(𝑓(𝑥0) − 𝑓∗).

Note also, that for any 𝑥, since 𝑒−𝑥 is convex and 1 − 𝑥 is
its tangent line at 𝑥 = 0, we have:

1 − 𝑥 ≤ 𝑒−𝑥

Finally we have

𝜀 = 𝑓(𝑥𝑘𝜀 ) − 𝑓∗ ≤ (1 − 𝜇
𝐿)

𝑘𝜀 (𝑓(𝑥0) − 𝑓∗)

≤ exp(−𝑘𝜀
𝜇
𝐿) (𝑓(𝑥0) − 𝑓∗)

𝑘𝜀 ≥ 𝜘 log 𝑓(𝑥0) − 𝑓∗

𝜀 = 𝒪 (𝜘 log 1
𝜀 )

Question: Can we do faster, than this using the first-order information? Yes, we can.
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Lower bounds

convex (non-smooth) smooth (non-convex)1 smooth & convex2 smooth & strongly convex (or PL)

𝒪 ( 1√
𝑘

) 𝒪 ( 1
𝑘2 ) 𝒪 ( 1

𝑘2 ) 𝒪 ((1 − √ 𝜇
𝐿)

𝑘
)

𝑘𝜀 ∼ 𝒪 ( 1
𝜀2 ) 𝑘𝜀 ∼ 𝒪 ( 1√𝜀) 𝑘𝜀 ∼ 𝒪 ( 1√𝜀) 𝑘𝜀 ∼ 𝒪 (√𝜘 log 1

𝜀 )

1Carmon, Duchi, Hinder, Sidford, 2017
2Nemirovski, Yudin, 1979
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Black box iteration

The iteration of gradient descent:

𝑥𝑘+1 = 𝑥𝑘 − 𝛼𝑘∇𝑓(𝑥𝑘)
= 𝑥𝑘−1 − 𝛼𝑘−1∇𝑓(𝑥𝑘−1) − 𝛼𝑘∇𝑓(𝑥𝑘)
⋮

= 𝑥0 −
𝑘

∑
𝑖=0

𝛼𝑘−𝑖∇𝑓(𝑥𝑘−𝑖)

Consider a family of first-order methods, where

𝑥𝑘+1 ∈ 𝑥0 + span {∇𝑓(𝑥0), ∇𝑓(𝑥1), … , ∇𝑓(𝑥𝑘)} 𝑓 - smooth
𝑥𝑘+1 ∈ 𝑥0 + span {𝑔0, 𝑔1, … , 𝑔𝑘} , where 𝑔𝑖 ∈ 𝜕𝑓(𝑥𝑖) 𝑓 - non-smooth

(1)

In order to construct a lower bound, we need to find a function 𝑓 from corresponding class such that any method
from the family 1 will work at least as slow as the lower bound.

Lower bounds 5

https://fmin.xyz
https://hse25.fmin.xyz
https://github.com/MerkulovDaniil/hse25
https://t.me/fminxyz


Black box iteration

The iteration of gradient descent:

𝑥𝑘+1 = 𝑥𝑘 − 𝛼𝑘∇𝑓(𝑥𝑘)
= 𝑥𝑘−1 − 𝛼𝑘−1∇𝑓(𝑥𝑘−1) − 𝛼𝑘∇𝑓(𝑥𝑘)
⋮

= 𝑥0 −
𝑘

∑
𝑖=0

𝛼𝑘−𝑖∇𝑓(𝑥𝑘−𝑖)

Consider a family of first-order methods, where

𝑥𝑘+1 ∈ 𝑥0 + span {∇𝑓(𝑥0), ∇𝑓(𝑥1), … , ∇𝑓(𝑥𝑘)} 𝑓 - smooth
𝑥𝑘+1 ∈ 𝑥0 + span {𝑔0, 𝑔1, … , 𝑔𝑘} , where 𝑔𝑖 ∈ 𝜕𝑓(𝑥𝑖) 𝑓 - non-smooth

(1)

In order to construct a lower bound, we need to find a function 𝑓 from corresponding class such that any method
from the family 1 will work at least as slow as the lower bound.

Lower bounds 5

https://fmin.xyz
https://hse25.fmin.xyz
https://github.com/MerkulovDaniil/hse25
https://t.me/fminxyz


Black box iteration

The iteration of gradient descent:

𝑥𝑘+1 = 𝑥𝑘 − 𝛼𝑘∇𝑓(𝑥𝑘)
= 𝑥𝑘−1 − 𝛼𝑘−1∇𝑓(𝑥𝑘−1) − 𝛼𝑘∇𝑓(𝑥𝑘)
⋮

= 𝑥0 −
𝑘

∑
𝑖=0

𝛼𝑘−𝑖∇𝑓(𝑥𝑘−𝑖)

Consider a family of first-order methods, where

𝑥𝑘+1 ∈ 𝑥0 + span {∇𝑓(𝑥0), ∇𝑓(𝑥1), … , ∇𝑓(𝑥𝑘)} 𝑓 - smooth
𝑥𝑘+1 ∈ 𝑥0 + span {𝑔0, 𝑔1, … , 𝑔𝑘} , where 𝑔𝑖 ∈ 𝜕𝑓(𝑥𝑖) 𝑓 - non-smooth

(1)

In order to construct a lower bound, we need to find a function 𝑓 from corresponding class such that any method
from the family 1 will work at least as slow as the lower bound.

Lower bounds 5

https://fmin.xyz
https://hse25.fmin.xyz
https://github.com/MerkulovDaniil/hse25
https://t.me/fminxyz


Smooth case

Theorem

There exists a function 𝑓 that is 𝐿-smooth and convex such that any method 1 satisfies for any 𝑘 ∶ 1 ≤ 𝑘 ≤ 𝑛−1
2 :

𝑓(𝑥𝑘) − 𝑓∗ ≥ 3𝐿‖𝑥0 − 𝑥∗‖2
2

32(𝑘 + 1)2

• No matter what gradient method you provide, there is always a function 𝑓 that, when you apply your gradient
method on minimizing such 𝑓 , the convergence rate is lower bounded as 𝒪 ( 1

𝑘2 ).
• The key to the proof is to explicitly build a special function 𝑓 .
• Note, that this bound 𝒪 ( 1

𝑘2 ) does not match the rate of gradient descent 𝒪 ( 1
𝑘 ). Two options possible:

a. The lower bound is not tight.
b. The gradient method is not optimal for this problem.

Lower bounds 6
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Nesterov’s worst function
• Let 𝑛 = 2𝑘 + 1 and 𝐴 ∈ R𝑛×𝑛.
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⎢
⎢
⎢
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⎥
⎥
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𝑛 +
𝑛−1
∑
𝑖=1

(𝑥𝑖 − 𝑥𝑖+1)2,

Therefore, 𝑥𝑇 𝐴𝑥 ≥ 0. It is also easy to see that
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Example, when 𝑛 = 3:
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⎦
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Nesterov’s worst function
• Define the following 𝐿-smooth convex function: 𝑓(𝑥) = 𝐿

4 ( 1
2 𝑥𝑇 𝐴𝑥 − 𝑒𝑇

1 𝑥) = 𝐿
8 𝑥𝑇 𝐴𝑥 − 𝐿

4 𝑒𝑇
1 𝑥.

• The optimal solution 𝑥∗ satisfies 𝐴𝑥∗ = 𝑒1, and solving this system of equations gives:

⎡
⎢
⎢
⎢
⎢
⎣

2 −1 0 0 ⋯ 0
−1 2 −1 0 ⋯ 0
0 −1 2 −1 ⋯ 0
0 0 −1 2 ⋯ 0
⋮ ⋮ ⋮ ⋮ ⋱ ⋮
0 0 0 0 ⋯ 2

⎤
⎥
⎥
⎥
⎥
⎦

⎡
⎢⎢⎢
⎣

𝑥∗
1

𝑥∗
2

𝑥∗
3
⋮

𝑥∗
𝑛

⎤
⎥⎥⎥
⎦

=
⎡
⎢⎢⎢
⎣

1
0
0
⋮
0

⎤
⎥⎥⎥
⎦

⎧{
⎨{⎩

2𝑥∗
1 − 𝑥∗

2 = 1
−𝑥∗

𝑖 + 2𝑥∗
𝑖+1 − 𝑥∗

𝑖+2 = 0, 𝑖 = 2, … , 𝑛 − 1
−𝑥∗

𝑛−1 + 2𝑥∗
𝑛 = 0

• The hypothesis: 𝑥∗
𝑖 = 𝑎 + 𝑏𝑖 (inspired by physics). Check, that the second equation is satisfied, while 𝑎 and 𝑏 are

computed from the first and the last equations.
• The solution is:

𝑥∗
𝑖 = 1 − 𝑖

𝑛 + 1 ,

• And the objective value is

𝑓(𝑥∗) = 𝐿
8 𝑥∗𝑇 𝐴𝑥∗ − 𝐿

4 ⟨𝑥∗, 𝑒1⟩ = −𝐿
8 ⟨𝑥∗, 𝑒1⟩ = −𝐿

8 (1 − 1
𝑛 + 1) .

Lower bounds 8
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computed from the first and the last equations.

• The solution is:
𝑥∗

𝑖 = 1 − 𝑖
𝑛 + 1 ,

• And the objective value is

𝑓(𝑥∗) = 𝐿
8 𝑥∗𝑇 𝐴𝑥∗ − 𝐿

4 ⟨𝑥∗, 𝑒1⟩ = −𝐿
8 ⟨𝑥∗, 𝑒1⟩ = −𝐿

8 (1 − 1
𝑛 + 1) .

Lower bounds 8
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Nesterov’s worst function
• Define the following 𝐿-smooth convex function: 𝑓(𝑥) = 𝐿

4 ( 1
2 𝑥𝑇 𝐴𝑥 − 𝑒𝑇
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1 𝑥.
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Smooth case (proof)
• Suppose, we start from 𝑥0 = 0. Asking the
oracle for the gradient, we get 𝑔0 = −𝑒1. Then,
𝑥1 must lie on the line generated by 𝑒1. At this
point all the components of 𝑥1 are zero except
the first one, so

𝑥1 =
⎡
⎢⎢
⎣

•
0
⋮
0

⎤
⎥⎥
⎦

.

• At the second iteration we ask the oracle again
and get 𝑔1 = 𝐴𝑥1 − 𝑒1. Then, 𝑥2 must lie on
the line generated by 𝑒1 and 𝐴𝑥1 − 𝑒1. All the
components of 𝑥2 are zero except the first two,
so

⎡
⎢⎢⎢
⎣

2 −1 0 ⋯ 0
−1 2 −1 ⋯ 0
0 −1 2 ⋯ 0
⋮ ⋮ ⋮ ⋱ ⋮
0 0 0 ⋯ 2

⎤
⎥⎥⎥
⎦

⎡
⎢⎢
⎣

•
0
⋮
0

⎤
⎥⎥
⎦

⇒ 𝑥2 =
⎡
⎢⎢⎢
⎣

•
•
0
⋮
0

⎤
⎥⎥⎥
⎦

.

• Due to the structure of the matrix 𝐴 one can show using
induction that after 𝑘 iterations we have all the last 𝑛 − 𝑘
components of 𝑥𝑘 to be zero.

𝑥(𝑘) =

⎡
⎢
⎢
⎢
⎢
⎢
⎣

•
•
⋮
•
0
⋮
0

⎤
⎥
⎥
⎥
⎥
⎥
⎦

1
2
⋮
𝑘
𝑘 + 1
⋮
𝑛

• However, since every iterate 𝑥𝑘 produced by our method
lies in 𝑆𝑘 = span{𝑒1, 𝑒2, … , 𝑒𝑘} (i.e. has zeros in the
coordinates 𝑘 + 1, … , 𝑛), it cannot “reach” the full optimal
vector 𝑥∗. In other words, even if one were to choose the
best possible vector from 𝑆𝑘, denoted by

̃𝑥𝑘 = arg min
𝑥∈𝑆𝑘

𝑓(𝑥),

its objective value 𝑓( ̃𝑥𝑘) will be strictly worse than 𝑓(𝑥∗).

Lower bounds 9
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Smooth case (proof)

• Because 𝑥𝑘 ∈ 𝑆𝑘 = span{𝑒1, 𝑒2, … , 𝑒𝑘} and ̃𝑥𝑘 is the best possible approximation to 𝑥∗ within 𝑆𝑘, we have

𝑓(𝑥𝑘) ≥ 𝑓( ̃𝑥𝑘).

• Thus, the optimality gap obeys
𝑓(𝑥𝑘) − 𝑓(𝑥∗) ≥ 𝑓( ̃𝑥𝑘) − 𝑓(𝑥∗).

• Similarly, to the optimum of the original function, we have ̃𝑥𝑘
𝑖 = 1 − 𝑖

𝑘+1 and 𝑓( ̃𝑥𝑘) = − 𝐿
8 (1 − 1

𝑘+1 ).
• We now have:

𝑓(𝑥𝑘) − 𝑓(𝑥∗) ≥ 𝑓( ̃𝑥𝑘) − 𝑓(𝑥∗)

= −𝐿
8 (1 − 1

𝑘 + 1) − (−𝐿
8 (1 − 1

𝑛 + 1))

= 𝐿
8 ( 1

𝑘 + 1 − 1
𝑛 + 1) = 𝐿

8 ( 𝑛 − 𝑘
(𝑘 + 1)(𝑛 + 1))

𝑛=2𝑘+1= 𝐿
16(𝑘 + 1)

(2)

Lower bounds 10
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Smooth case (proof)

• Now we bound 𝑅 = ‖𝑥0 − 𝑥∗‖2:

‖𝑥0 − 𝑥∗‖2
2 = ‖0 − 𝑥∗‖2

2 = ‖𝑥∗‖2
2 =

𝑛
∑
𝑖=1

(1 − 𝑖
𝑛 + 1)

2

= 𝑛 − 2
𝑛 + 1

𝑛
∑
𝑖=1

𝑖 + 1
(𝑛 + 1)2

𝑛
∑
𝑖=1

𝑖2

≤ 𝑛 − 2
𝑛 + 1 ⋅ 𝑛(𝑛 + 1)

2 + 1
(𝑛 + 1)2 ⋅ (𝑛 + 1)3

3

= 𝑛 + 1
3

𝑛=2𝑘+1= 2(𝑘 + 1)
3 .

• Thus,
𝑘 + 1 ≥ 3

2‖𝑥0 − 𝑥∗‖2
2. = 3

2𝑅2 (3)

We observe, that
𝑛

∑
𝑖=1

𝑖 = 𝑛(𝑛 + 1)
2

𝑛
∑
𝑖=1

𝑖2 = 𝑛(𝑛 + 1)(2𝑛 + 1)
6

≤ (𝑛 + 1)3

3

Lower bounds 11
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Smooth case (proof)

Finally, using (2) and (3), we get:

𝑓(𝑥𝑘) − 𝑓(𝑥∗) ≥ 𝐿
16(𝑘 + 1) = 𝐿(𝑘 + 1)

16(𝑘 + 1)2

≥ 𝐿
16(𝑘 + 1)2

3
2𝑅2

= 3𝐿𝑅2

32(𝑘 + 1)2

Which concludes the proof with the desired 𝒪 ( 1
𝑘2 ) rate.

Lower bounds 12
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Smooth case lower bound theorems
Smooth convex case

There exists a function 𝑓 that is 𝐿-smooth and convex such that any method 1 satisfies for any 𝑘 ∶ 1 ≤ 𝑘 ≤ 𝑛−1
2 :

𝑓(𝑥𝑘) − 𝑓∗ ≥ 3𝐿‖𝑥0 − 𝑥∗‖2
2

32(𝑘 + 1)2

Smooth strongly convex case

For any 𝑥0 and any 𝜇 > 0, 𝜘 = 𝐿
𝜇 > 1, there exists a function 𝑓 that is 𝐿-smooth and 𝜇-strongly convex such

that for any method of the form 1 holds:

‖𝑥𝑘 − 𝑥∗‖2 ≥ (
√𝜘 − 1√𝜘 + 1)

𝑘
‖𝑥0 − 𝑥∗‖2

𝑓(𝑥𝑘) − 𝑓∗ ≥ 𝜇
2 (

√𝜘 − 1√𝜘 + 1)
2𝑘

‖𝑥0 − 𝑥∗‖2
2

Lower bounds 13
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Acceleration for quadratics
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Convergence result for quadratics

Suppose, we have a strongly convex quadratic function minimization problem solved by the gradient descent method:

𝑓(𝑥) = 1
2𝑥𝑇 𝐴𝑥 − 𝑏𝑇 𝑥 𝑥𝑘+1 = 𝑥𝑘 − 𝛼𝑘∇𝑓(𝑥𝑘).

Theorem

The gradient descent method with the learning rate 𝛼𝑘 = 2
𝜇+𝐿 converges to the optimal solution 𝑥∗ with the

following guarantee:

‖𝑥𝑘+1 − 𝑥∗‖2 = (𝜘 − 1
𝜘 + 1)

𝑘
‖𝑥0 − 𝑥∗‖2 𝑓(𝑥𝑘+1) − 𝑓(𝑥∗) = (𝜘 − 1

𝜘 + 1)
2𝑘

(𝑓(𝑥0) − 𝑓(𝑥∗))

where 𝜘 = 𝐿
𝜇 is the condition number of 𝐴.
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Condition number 𝜘
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Convergence from the first principles

𝑓(𝑥) = 1
2𝑥𝑇 𝐴𝑥 − 𝑏𝑇 𝑥 𝑥𝑘+1 = 𝑥𝑘 − 𝛼𝑘∇𝑓(𝑥𝑘).

Let 𝑥∗ be the unique solution of the linear system 𝐴𝑥 = 𝑏 and put 𝑒𝑘 = ‖𝑥𝑘 − 𝑥∗‖, where 𝑥𝑘+1 = 𝑥𝑘 − 𝛼𝑘(𝐴𝑥𝑘 − 𝑏)
is defined recursively starting from some 𝑥0, and 𝛼𝑘 is a step size we’ll determine shortly.

𝑒𝑘+1 = (𝐼 − 𝛼𝑘𝐴)𝑒𝑘.

Polynomials
The above calculation gives us 𝑒𝑘 = 𝑝𝑘(𝐴)𝑒0,
where 𝑝𝑘 is the polynomial

𝑝𝑘(𝑎) =
𝑘

∏
𝑖=1

(1 − 𝛼𝑖𝑎).

We can upper bound the norm of the error term as

‖𝑒𝑘‖ ≤ ‖𝑝𝑘(𝐴)‖ ⋅ ‖𝑒0‖ .

Since 𝐴 is a symmetric matrix with eigenvalues in [𝜇, 𝐿],:

‖𝑝𝑘(𝐴)‖ ≤ max
𝜇≤𝑎≤𝐿

|𝑝𝑘(𝑎)| .

This leads to an interesting problem: Among all
polynomials that satisfy 𝑝𝑘(0) = 1 we’re looking for a
polynomial whose magnitude is as small as possible in the
interval [𝜇, 𝐿].
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Naive polynomial solution
A naive solution is to choose a uniform step size 𝛼𝑘 = 2

𝜇+𝐿
in the expression. This choise makes |𝑝𝑘(𝜇)| = |𝑝𝑘(𝐿)|.

‖𝑒𝑘‖ ≤ (1 − 1
𝜘)

𝑘
‖𝑒0‖

This is exactly the rate we proved in the previous lecture
for any smooth and strongly convex function.
Let’s look at this polynomial a bit closer. On the right
figure we choose 𝛼 = 1 and 𝛽 = 10 so that 𝜅 = 10. The
relevant interval is therefore [1, 10].
Can we do better? The answer is yes.
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Chebyshev polynomials
Chebyshev polynomials turn out to give an optimal answer
to the question that we asked. Suitably rescaled, they
minimize the absolute value in a desired interval [𝜇, 𝐿]
while satisfying the normalization constraint of having
value 1 at the origin.

𝑇0(𝑥) = 1
𝑇1(𝑥) = 𝑥
𝑇𝑘(𝑥) = 2𝑥𝑇𝑘−1(𝑥) − 𝑇𝑘−2(𝑥), 𝑘 ≥ 2.

Let’s plot the standard Chebyshev polynomials (without
rescaling):
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Rescaled Chebyshev polynomials
Original Chebyshev polynomials are defined on the interval [−1, 1]. To use them for our purposes, we need to rescale
them to the interval [𝜇, 𝐿].

We will use the following affine transformation:

𝑥 = 𝐿 + 𝜇 − 2𝑎
𝐿 − 𝜇 , 𝑎 ∈ [𝜇, 𝐿], 𝑥 ∈ [−1, 1].

Note, that 𝑥 = 1 corresponds to 𝑎 = 𝜇, 𝑥 = −1
corresponds to 𝑎 = 𝐿 and 𝑥 = 0 corresponds to 𝑎 = 𝜇+𝐿

2 .
This transformation ensures that the behavior of the
Chebyshev polynomial on [−1, 1] is reflected on the
interval [𝜇, 𝐿]

In our error analysis, we require that the polynomial equals 1 at 0 (i.e., 𝑝𝑘(0) = 1). After applying the transformation,
the value 𝑇𝑘 takes at the point corresponding to 𝑎 = 0 might not be 1. Thus, we multiply by the inverse of 𝑇𝑘
evaluated at

𝐿 + 𝜇
𝐿 − 𝜇, ensuring that 𝑃𝑘(0) = 𝑇𝑘 (𝐿 + 𝜇 − 0

𝐿 − 𝜇 ) ⋅ 𝑇𝑘 (𝐿 + 𝜇
𝐿 − 𝜇)

−1
= 1.

Let’s plot the rescaled Chebyshev polynomials

𝑃𝑘(𝑎) = 𝑇𝑘 (𝐿 + 𝜇 − 2𝑎
𝐿 − 𝜇 ) ⋅ 𝑇𝑘 (𝐿 + 𝜇

𝐿 − 𝜇)
−1

and observe, that they are much better behaved than the naive polynomials in terms of the magnitude in the interval
[𝜇, 𝐿].
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Chebyshev polynomials upper bound

We can see, that the maximum value of the Chebyshev polynomial on the interval [𝜇, 𝐿] is achieved at the point
𝑎 = 𝜇. Therefore, we can use the following upper bound:

‖𝑃𝑘(𝐴)‖2 ≤ 𝑃𝑘(𝜇) = 𝑇𝑘 (𝐿 + 𝜇 − 2𝜇
𝐿 − 𝜇 ) ⋅ 𝑇𝑘 (𝐿 + 𝜇

𝐿 − 𝜇)
−1

= 𝑇𝑘 (1) ⋅ 𝑇𝑘 (𝐿 + 𝜇
𝐿 − 𝜇)

−1
= 𝑇𝑘 (𝐿 + 𝜇

𝐿 − 𝜇)
−1

Using the definition of condition number 𝜘 = 𝐿
𝜇 , we get:

‖𝑃𝑘(𝐴)‖2 ≤ 𝑇𝑘 (𝜘 + 1
𝜘 − 1)

−1
= 𝑇𝑘 (1 + 2

𝜘 − 1)
−1

= 𝑇𝑘 (1 + 𝜖)−1 , 𝜖 = 2
𝜘 − 1.

Therefore, we only need to understand the value of 𝑇𝑘 at 1 + 𝜖. This is where the acceleration comes from. We will
bound this value with 𝒪 ( 1√𝜖 ).
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Chebyshev polynomials upper bound
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√

𝑥2 − 1).
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4. Therefore,

𝑇𝑘(1 + 𝜖) = cosh (𝑘 arccosh(1 + 𝜖))
= cosh (𝑘𝜙)

= 𝑒𝑘𝜙 + 𝑒−𝑘𝜙

2 ≥ 𝑒𝑘𝜙

2

= (1 + √𝜖)𝑘

2 .

5. Finally, we get:

‖𝑒𝑘‖ ≤ ‖𝑃𝑘(𝐴)‖‖𝑒0‖ ≤ 2
(1 + √𝜖)𝑘 ‖𝑒0‖

≤ 2 (1 + √ 2
𝜘 − 1)

−𝑘

‖𝑒0‖

≤ 2 exp(−√ 2
𝜘 − 1𝑘) ‖𝑒0‖
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Accelerated method [1/2]
Due to the recursive definition of the Chebyshev polynomials, we directly obtain an iterative acceleration scheme.
Reformulating the recurrence in terms of our rescaled Chebyshev polynomials, we obtain:

𝑇𝑘+1(𝑥) = 2𝑥𝑇𝑘(𝑥) − 𝑇𝑘−1(𝑥)

Given the fact, that 𝑥 = 𝐿+𝜇−2𝑎
𝐿−𝜇 , and:

𝑃𝑘(𝑎) = 𝑇𝑘 (𝐿 + 𝜇 − 2𝑎
𝐿 − 𝜇 ) 𝑇𝑘 (𝐿 + 𝜇

𝐿 − 𝜇)
−1

𝑇𝑘 (𝐿 + 𝜇 − 2𝑎
𝐿 − 𝜇 ) = 𝑃𝑘(𝑎)𝑇𝑘 (𝐿 + 𝜇

𝐿 − 𝜇)

𝑇𝑘−1 (𝐿 + 𝜇 − 2𝑎
𝐿 − 𝜇 ) = 𝑃𝑘−1(𝑎)𝑇𝑘−1 (𝐿 + 𝜇

𝐿 − 𝜇)

𝑇𝑘+1 (𝐿 + 𝜇 − 2𝑎
𝐿 − 𝜇 ) = 𝑃𝑘+1(𝑎)𝑇𝑘+1 (𝐿 + 𝜇

𝐿 − 𝜇)

𝑃𝑘+1(𝑎)𝑡𝑘+1 = 2𝐿 + 𝜇 − 2𝑎
𝐿 − 𝜇 𝑃𝑘(𝑎)𝑡𝑘 − 𝑃𝑘−1(𝑎)𝑡𝑘−1, where 𝑡𝑘 = 𝑇𝑘 (𝐿 + 𝜇

𝐿 − 𝜇)

𝑃𝑘+1(𝑎) = 2𝐿 + 𝜇 − 2𝑎
𝐿 − 𝜇 𝑃𝑘(𝑎) 𝑡𝑘

𝑡𝑘+1
− 𝑃𝑘−1(𝑎) 𝑡𝑘−1

𝑡𝑘+1

Since we have 𝑃𝑘+1(0) = 𝑃𝑘(0) = 𝑃𝑘−1(0) = 1, we can find the method in the following form:

𝑃𝑘+1(𝑎) = (1 − 𝛼𝑘𝑎)𝑃𝑘(𝑎) + 𝛽𝑘 (𝑃𝑘(𝑎) − 𝑃𝑘−1(𝑎)) .
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Accelerated method [2/2]

Rearranging the terms, we get:

𝑃𝑘+1(𝑎) = (1 + 𝛽𝑘)𝑃𝑘(𝑎) − 𝛼𝑘𝑎𝑃𝑘(𝑎) − 𝛽𝑘𝑃𝑘−1(𝑎),

𝑃𝑘+1(𝑎) = 2𝐿 + 𝜇
𝐿 − 𝜇

𝑡𝑘
𝑡𝑘+1

𝑃𝑘(𝑎) − 4𝑎
𝐿 − 𝜇

𝑡𝑘
𝑡𝑘+1

𝑃𝑘(𝑎) − 𝑡𝑘−1
𝑡𝑘+1

𝑃𝑘−1(𝑎)

⎧{{{
⎨{{{⎩

𝛽𝑘 = 𝑡𝑘−1
𝑡𝑘+1

,

𝛼𝑘 = 4
𝐿 − 𝜇

𝑡𝑘
𝑡𝑘+1

,

1 + 𝛽𝑘 = 2𝐿 + 𝜇
𝐿 − 𝜇

𝑡𝑘
𝑡𝑘+1

We are almost done :) We remember, that 𝑒𝑘+1 = 𝑃𝑘+1(𝐴)𝑒0. Note also, that we work with the quadratic problem,
so we can assume 𝑥∗ = 0 without loss of generality. In this case, 𝑒0 = 𝑥0 and 𝑒𝑘+1 = 𝑥𝑘+1.

𝑥𝑘+1 = 𝑃𝑘+1(𝐴)𝑥0 = (𝐼 − 𝛼𝑘𝐴)𝑃𝑘(𝐴)𝑥0 + 𝛽𝑘 (𝑃𝑘(𝐴) − 𝑃𝑘−1(𝐴)) 𝑥0
= (𝐼 − 𝛼𝑘𝐴)𝑥𝑘 + 𝛽𝑘 (𝑥𝑘 − 𝑥𝑘−1)

For quadratic problem, we have ∇𝑓(𝑥𝑘) = 𝐴𝑥𝑘, so we can rewrite the update as:
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Acceleration from the first principles
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Polyak Heavy ball method
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Let’s introduce the idea of momentum, proposed by Polyak in 1964. Recall that the
momentum update is

𝑥𝑘+1 = 𝑥𝑘 − 𝛼∇𝑓(𝑥𝑘) + 𝛽(𝑥𝑘 − 𝑥𝑘−1).

Which is in our (quadratics) case is

̂𝑥𝑘+1 = ̂𝑥𝑘 − 𝛼Λ ̂𝑥𝑘 + 𝛽( ̂𝑥𝑘 − ̂𝑥𝑘−1) = (𝐼 − 𝛼Λ + 𝛽𝐼) ̂𝑥𝑘 − 𝛽 ̂𝑥𝑘−1

This can be rewritten as follows

̂𝑥𝑘+1 = (𝐼 − 𝛼Λ + 𝛽𝐼) ̂𝑥𝑘 − 𝛽 ̂𝑥𝑘−1,
̂𝑥𝑘 = ̂𝑥𝑘.

Let’s use the following notation ̂𝑧𝑘 = [ ̂𝑥𝑘+1
̂𝑥𝑘

]. Therefore ̂𝑧𝑘+1 = 𝑀 ̂𝑧𝑘, where the
iteration matrix 𝑀 is:

𝑀 = [𝐼 − 𝛼Λ + 𝛽𝐼 −𝛽𝐼
𝐼 0𝑑

] .
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Reduction to a scalar case
Note, that 𝑀 is 2𝑑 × 2𝑑 matrix with 4 block-diagonal matrices of size 𝑑 × 𝑑 inside. It means, that we can rearrange
the order of coordinates to make 𝑀 block-diagonal in the following form. Note that in the equation below, the matrix
𝑀 denotes the same as in the notation above, except for the described permutation of rows and columns. We use
this slight abuse of notation for the sake of clarity.

Figure 1: Illustration of matrix 𝑀 rearrangement

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎣

̂𝑥(1)
𝑘
⋮
̂𝑥(𝑑)
𝑘

̂𝑥(1)
𝑘−1
⋮

̂𝑥(𝑑)
𝑘−1

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎦

→

⎡
⎢
⎢
⎢
⎢
⎢
⎣

̂𝑥(1)
𝑘

̂𝑥(1)
𝑘−1
⋮
̂𝑥(𝑑)
𝑘

̂𝑥(𝑑)
𝑘−1

⎤
⎥
⎥
⎥
⎥
⎥
⎦

𝑀 =
⎡
⎢⎢
⎣

𝑀1
𝑀2

…
𝑀𝑑

⎤
⎥⎥
⎦

where ̂𝑥(𝑖)
𝑘 is 𝑖-th coordinate of vector ̂𝑥𝑘 ∈ R𝑑 and 𝑀𝑖 stands for 2 × 2 matrix. This rearrangement allows us to

study the dynamics of the method independently for each dimension. One may observe, that the asymptotic
convergence rate of the 2𝑑-dimensional vector sequence of ̂𝑧𝑘 is defined by the worst convergence rate among its
block of coordinates. Thus, it is enough to study the optimization in a one-dimensional case.
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block of coordinates. Thus, it is enough to study the optimization in a one-dimensional case.
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Reduction to a scalar case

For 𝑖-th coordinate with 𝜆𝑖 as an 𝑖-th eigenvalue of matrix 𝑊 we have:

𝑀𝑖 = [1 − 𝛼𝜆𝑖 + 𝛽 −𝛽
1 0 ] .

The method will be convergent if 𝜌(𝑀) < 1, and the optimal parameters can be computed by optimizing the spectral
radius

𝛼∗, 𝛽∗ = argmin
𝛼,𝛽

max
𝑖

𝜌(𝑀𝑖) 𝛼∗ = 4
(
√

𝐿 + √𝜇)2 ; 𝛽∗ = (
√

𝐿 − √𝜇√
𝐿 + √𝜇

)
2

.

It can be shown, that for such parameters the matrix 𝑀 has complex eigenvalues, which forms a conjugate pair, so
the distance to the optimum (in this case, ‖𝑧𝑘‖), generally, will not go to zero monotonically.
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Heavy ball quadratic convergence

We can explicitly calculate the eigenvalues of 𝑀𝑖:

𝜆𝑀
1 , 𝜆𝑀

2 = 𝜆 ([1 − 𝛼𝜆𝑖 + 𝛽 −𝛽
1 0 ]) = 1 + 𝛽 − 𝛼𝜆𝑖 ± √(1 + 𝛽 − 𝛼𝜆𝑖)2 − 4𝛽

2 .

When 𝛼 and 𝛽 are optimal (𝛼∗, 𝛽∗), the eigenvalues are complex-conjugated pair (1 + 𝛽 − 𝛼𝜆𝑖)2 − 4𝛽 ≤ 0,
i.e. 𝛽 ≥ (1 − √𝛼𝜆𝑖)2.

Re(𝜆𝑀) = 𝐿 + 𝜇 − 2𝜆𝑖
(
√

𝐿 + √𝜇)2 ; Im(𝜆𝑀) = ±2√(𝐿 − 𝜆𝑖)(𝜆𝑖 − 𝜇)
(
√

𝐿 + √𝜇)2 ; |𝜆𝑀 | = 𝐿 − 𝜇
(
√

𝐿 + √𝜇)2 .

And the convergence rate does not depend on the stepsize and equals to
√𝛽∗.
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Heavy Ball quadratics convergence

Theorem

Assume that 𝑓 is quadratic 𝜇-strongly convex 𝐿-smooth quadratics, then Heavy Ball method with parameters

𝛼 = 4
(
√

𝐿 + √𝜇)2 , 𝛽 = (
√

𝐿 − √𝜇√
𝐿 + √𝜇

)
2

converges linearly:

‖𝑥𝑘 − 𝑥∗‖2 ≤ (
√𝜅 − 1√𝜅 + 1)

𝑘
‖𝑥0 − 𝑥∗‖
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Heavy Ball Global Convergence 3

Theorem

Assume that 𝑓 is smooth and convex and that

𝛽 ∈ [0, 1), 𝛼 ∈ (0, 2(1 − 𝛽)
𝐿 ).

Then, the sequence {𝑥𝑘} generated by Heavy-ball iteration satisfies

𝑓(𝑥𝑇 ) − 𝑓⋆ ≤
⎧{
⎨{⎩

‖𝑥0−𝑥⋆‖2

2(𝑇 +1) ( 𝐿𝛽
1−𝛽 + 1−𝛽

𝛼 ), if 𝛼 ∈ (0, 1 − 𝛽
𝐿 ],

‖𝑥0−𝑥⋆‖2

2(𝑇 +1)(2(1−𝛽)−𝛼𝐿) (𝐿𝛽 + (1−𝛽)2

𝛼 ), if 𝛼 ∈ [1 − 𝛽
𝐿 , 2(1 − 𝛽)

𝐿 ),

where 𝑥𝑇 is the Cesaro average of the iterates, i.e.,

𝑥𝑇 = 1
𝑇 + 1

𝑇
∑
𝑘=0

𝑥𝑘.

3Global convergence of the Heavy-ball method for convex optimization, Euhanna Ghadimi et.al.
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Heavy Ball Global Convergence 4

Theorem

Assume that 𝑓 is smooth and strongly convex and that

𝛼 ∈ (0, 2
𝐿), 0 ≤ 𝛽 < 1

2(𝜇𝛼
2 + √𝜇2𝛼2

4 + 4(1 − 𝛼𝐿
2 )).

Then, the sequence {𝑥𝑘} generated by Heavy-ball iteration converges linearly to a unique optimizer 𝑥⋆. In
particular,

𝑓(𝑥𝑘) − 𝑓⋆ ≤ 𝑞𝑘(𝑓(𝑥0) − 𝑓⋆),
where 𝑞 ∈ [0, 1).

4Global convergence of the Heavy-ball method for convex optimization, Euhanna Ghadimi et.al.
Heavy ball 35
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Heavy ball method summary

• Ensures accelerated convergence for strongly convex quadratic problems

• Local accelerated convergence was proved in the original paper.
• Recently 5 was proved, that there is no global accelerated convergence for the method.
• Method was not extremely popular until the ML boom
• Nowadays, it is de-facto standard for practical acceleration of gradient methods, even for the non-convex
problems (neural network training)

5Provable non-accelerations of the heavy-ball method

Heavy ball 36

https://arxiv.org/pdf/2307.11291
https://fmin.xyz
https://hse25.fmin.xyz
https://github.com/MerkulovDaniil/hse25
https://t.me/fminxyz


Heavy ball method summary

• Ensures accelerated convergence for strongly convex quadratic problems
• Local accelerated convergence was proved in the original paper.

• Recently 5 was proved, that there is no global accelerated convergence for the method.
• Method was not extremely popular until the ML boom
• Nowadays, it is de-facto standard for practical acceleration of gradient methods, even for the non-convex
problems (neural network training)

5Provable non-accelerations of the heavy-ball method

Heavy ball 36

https://arxiv.org/pdf/2307.11291
https://fmin.xyz
https://hse25.fmin.xyz
https://github.com/MerkulovDaniil/hse25
https://t.me/fminxyz


Heavy ball method summary

• Ensures accelerated convergence for strongly convex quadratic problems
• Local accelerated convergence was proved in the original paper.
• Recently 5 was proved, that there is no global accelerated convergence for the method.

• Method was not extremely popular until the ML boom
• Nowadays, it is de-facto standard for practical acceleration of gradient methods, even for the non-convex
problems (neural network training)

5Provable non-accelerations of the heavy-ball method
Heavy ball 36

https://arxiv.org/pdf/2307.11291
https://fmin.xyz
https://hse25.fmin.xyz
https://github.com/MerkulovDaniil/hse25
https://t.me/fminxyz


Heavy ball method summary

• Ensures accelerated convergence for strongly convex quadratic problems
• Local accelerated convergence was proved in the original paper.
• Recently 5 was proved, that there is no global accelerated convergence for the method.
• Method was not extremely popular until the ML boom

• Nowadays, it is de-facto standard for practical acceleration of gradient methods, even for the non-convex
problems (neural network training)

5Provable non-accelerations of the heavy-ball method
Heavy ball 36

https://arxiv.org/pdf/2307.11291
https://fmin.xyz
https://hse25.fmin.xyz
https://github.com/MerkulovDaniil/hse25
https://t.me/fminxyz


Heavy ball method summary

• Ensures accelerated convergence for strongly convex quadratic problems
• Local accelerated convergence was proved in the original paper.
• Recently 5 was proved, that there is no global accelerated convergence for the method.
• Method was not extremely popular until the ML boom
• Nowadays, it is de-facto standard for practical acceleration of gradient methods, even for the non-convex
problems (neural network training)

5Provable non-accelerations of the heavy-ball method
Heavy ball 36

https://arxiv.org/pdf/2307.11291
https://fmin.xyz
https://hse25.fmin.xyz
https://github.com/MerkulovDaniil/hse25
https://t.me/fminxyz


Nesterov accelerated gradient

Nesterov accelerated gradient 37
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The concept of Nesterov Accelerated Gradient method

𝑥𝑘+1 = 𝑥𝑘 − 𝛼∇𝑓(𝑥𝑘) 𝑥𝑘+1 = 𝑥𝑘 − 𝛼∇𝑓(𝑥𝑘) + 𝛽(𝑥𝑘 − 𝑥𝑘−1) {𝑦𝑘+1 = 𝑥𝑘 + 𝛽(𝑥𝑘 − 𝑥𝑘−1)
𝑥𝑘+1 = 𝑦𝑘+1 − 𝛼∇𝑓(𝑦𝑘+1)

Let’s define the following notation

𝑥+ = 𝑥 − 𝛼∇𝑓(𝑥) Gradient step
𝑑𝑘 = 𝛽𝑘(𝑥𝑘 − 𝑥𝑘−1) Momentum term

Then we can write down:

𝑥𝑘+1 = 𝑥+
𝑘 Gradient Descent

𝑥𝑘+1 = 𝑥+
𝑘 + 𝑑𝑘 Heavy Ball

𝑥𝑘+1 = (𝑥𝑘 + 𝑑𝑘)+ Nesterov accelerated gradient

Polyak momentum

Nesterov momentum

Nesterov accelerated gradient 38
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General case convergence
Theorem

Let 𝑓 ∶ R𝑛 → R is convex and 𝐿-smooth. The Nesterov Accelerated Gradient Descent (NAG) algorithm is
designed to solve the minimization problem starting with an initial point 𝑥0 = 𝑦0 ∈ R𝑛 and 𝜆0 = 0. The
algorithm iterates the following steps:

Gradient update: 𝑦𝑘+1 = 𝑥𝑘 − 1
𝐿∇𝑓(𝑥𝑘)

Extrapolation: 𝑥𝑘+1 = (1 − 𝛾𝑘)𝑦𝑘+1 + 𝛾𝑘𝑦𝑘

Extrapolation weight: 𝜆𝑘+1 =
1 + √1 + 4𝜆2

𝑘
2

Extrapolation weight: 𝛾𝑘 = 1 − 𝜆𝑘
𝜆𝑘+1

The sequences {𝑓(𝑦𝑘)}𝑘∈N produced by the algorithm will converge to the optimal value 𝑓∗ at the rate of 𝒪 ( 1
𝑘2 ),

specifically:
𝑓(𝑦𝑘) − 𝑓∗ ≤ 2𝐿‖𝑥0 − 𝑥∗‖2

𝑘2
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General case convergence

Theorem

Let 𝑓 ∶ R𝑛 → R is 𝜇-strongly convex and 𝐿-smooth. The Nesterov Accelerated Gradient Descent (NAG)
algorithm is designed to solve the minimization problem starting with an initial point 𝑥0 = 𝑦0 ∈ R𝑛 and 𝜆0 = 0.
The algorithm iterates the following steps:

Gradient update: 𝑦𝑘+1 = 𝑥𝑘 − 1
𝐿∇𝑓(𝑥𝑘)

Extrapolation: 𝑥𝑘+1 = (1 + 𝛾𝑘)𝑦𝑘+1 − 𝛾𝑘𝑦𝑘

Extrapolation weight: 𝛾𝑘 =
√

𝐿 − √𝜇√
𝐿 + √𝜇

The sequences {𝑓(𝑦𝑘)}𝑘∈N produced by the algorithm will converge to the optimal value 𝑓∗ linearly:

𝑓(𝑦𝑘) − 𝑓∗ ≤ 𝜇 + 𝐿
2 ‖𝑥0 − 𝑥∗‖2

2 exp(− 𝑘√𝜅)
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Numerical experiments
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Convex quadratics (aka linear regression)
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Strongly convex quadratics (aka regularized linear regression)

0 25 50 75 100
Iteration

10 12

10 8

10 4

100

|f(
x)

f* |

Function Gap

0 25 50 75 100
Iteration

10 12

10 8

10 4

100

x
x

*
2

Domain Gap

0 25 50 75 100
Iteration

10 12

10 8

10 4

100

f(x
)

2

Gradient Norm

Strongly convex quadratics: n=60, random matrix, =1, L=10

Gradient Descent. =1.67e-01 Heavy Ball. =2.15e-01, =2.88e-01 NAG. =9.09e-02, =5.37e-01

Numerical experiments 43

https://fmin.xyz
https://hse25.fmin.xyz
https://github.com/MerkulovDaniil/hse25
https://t.me/fminxyz


Strongly convex quadratics (aka regularized linear regression)
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Convex binary logistic regression
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Convex binary logistic regression. mu=0.

GD 0.9 Heavy Ball. =9.00e-01. =1.00e-01 NAG. =9.00e-01. =1.00e-01
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Convex binary logistic regression

0 200 400
Iteration

10 2

100

|f(
x)

f* |

0 200 400
Iteration

1.1 × 101
1.2 × 101
1.3 × 101
1.4 × 101
1.5 × 101
1.6 × 101
1.7 × 101

x k
x

*

0 200 400
Iteration

0.5

0.6

0.7

Tr
ai

n 
ac

cu
ra

cy

0 200 400
Iteration

0.5

0.6

0.7

Te
st

 a
cc

ur
ac

y

Convex binary logistic regression. mu=0.

GD 0.9 Heavy Ball. =9.00e-01. =2.00e-01 NAG. =9.00e-01. =2.00e-01
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Convex binary logistic regression
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Numerical experiments 48

https://fmin.xyz
https://hse25.fmin.xyz
https://github.com/MerkulovDaniil/hse25
https://t.me/fminxyz


Convex binary logistic regression
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Convex binary logistic regression
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GD 0.9 Heavy Ball. =9.00e-01. =5.00e-01 NAG. =9.00e-01. =5.00e-01
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Convex binary logistic regression
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Convex binary logistic regression
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Convex binary logistic regression
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Convex binary logistic regression
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Convex binary logistic regression
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Convex binary logistic regression
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Strongly convex binary logistic regression

0 100 200 300
Iteration

10 5

10 2

101

|f(
x)

f* |

0 100 200 300
Iteration

10 5

10 2

101

x k
x

*

0 100 200 300
Iteration

0.5

0.6

0.7

Tr
ai

n 
ac

cu
ra

cy

0 100 200 300
Iteration

0.55

0.60

0.65

Te
st

 a
cc

ur
ac

y

Strongly convex binary logistic regression. mu=1.

GD 0.05 Heavy Ball. =5.00e-02. =2.50e-01 NAG. =5.00e-02. =2.50e-01
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Strongly convex binary logistic regression
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Strongly convex binary logistic regression
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Strongly convex binary logistic regression. mu=1.

GD 0.05 Heavy Ball. =5.00e-02. =7.00e-01 NAG. =5.00e-02. =7.00e-01
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Strongly convex binary logistic regression
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