Lower bounds for gradient descent. Accelerated gradient descent. Momentum. Nesterov's acceleration

Daniil Merkulov

Optimization for ML. Faculty of Computer Science. HSE University

$$\label{eq:Gradient Descent:} \qquad \min_{x \in \mathbb{R}^n} f(x) \qquad \qquad x^{k+1} = x^k - \alpha^k \nabla f(x^k)$$

convex (non-smooth)	smooth (non-convex)	smooth & convex	smooth & strongly convex (or PL)
$\overline{f(x^k) - f^* \sim \mathcal{O}\left(\frac{1}{\sqrt{k}}\right)}$	$\ \nabla f(x^k)\ ^2 \sim \mathcal{O}\left(\frac{1}{k}\right)$	$f(x^k) - f^* \sim \mathcal{O}\left(\frac{1}{k}\right)$	$\ x^k - x^*\ ^2 \sim \mathcal{O}\left(\left(1 - \frac{\mu}{L}\right)^k\right)$
$k_{\varepsilon} \sim \mathcal{O}\left(\frac{1}{\varepsilon^2}\right)^{-1}$	$k_{\varepsilon} \sim \mathcal{O}\left(\frac{1}{\varepsilon}\right)$	$k_{\varepsilon} \sim \mathcal{O}\left(\frac{1}{\varepsilon}\right)$	$k_{\varepsilon} \sim \mathcal{O}\left(\varkappa \log \frac{1}{\varepsilon}\right)$

$$\label{eq:Gradient Descent:} \qquad \min_{x \in \mathbb{R}^n} f(x) \qquad \qquad x^{k+1} = x^k - \alpha^k \nabla f(x^k)$$

convex (non-smooth)	smooth (non-convex)	smooth & convex	smooth & strongly convex (or PL)
$\overline{f(x^k) - f^* \sim \mathcal{O}\left(\frac{1}{\sqrt{k}}\right)}$ $k_{\varepsilon} \sim \mathcal{O}\left(\frac{1}{\varepsilon^2}\right)$	$\begin{split} \ \nabla f(x^k)\ ^2 &\sim \mathcal{O}\left(\frac{1}{k}\right) \\ k_\varepsilon &\sim \mathcal{O}\left(\frac{1}{\varepsilon}\right) \end{split}$	$\begin{split} f(x^k) - f^* &\sim \mathcal{O}\left(\frac{1}{k}\right) \\ k_\varepsilon &\sim \mathcal{O}\left(\frac{1}{\varepsilon}\right) \end{split}$	$\begin{split} \ x^k - x^*\ ^2 &\sim \mathcal{O}\left(\left(1 - \frac{\mu}{L}\right)^k\right) \\ k_\varepsilon &\sim \mathcal{O}\left(\varkappa \log \frac{1}{\varepsilon}\right) \end{split}$

For smooth strongly convex we have:

$$f(x^k) - f^* \le \left(1 - \frac{\mu}{L}\right)^k (f(x^0) - f^*).$$

Note also, that for any x, since e^{-x} is convex and 1-x is its tangent line at x=0, we have:

$$1-x \leq e^{-x}$$

$$\label{eq:Gradient Descent:} \qquad \min_{x \in \mathbb{R}^n} f(x) \qquad \qquad x^{k+1} = x^k - \alpha^k \nabla f(x^k)$$

convex (non-smooth)	smooth (non-convex)	smooth & convex	smooth & strongly convex (or PL)
$ \begin{array}{c} f(x^k) - f^* \sim \mathcal{O}\left(\frac{1}{\sqrt{k}}\right) \\ k_{\varepsilon} \sim \mathcal{O}\left(\frac{1}{\varepsilon^2}\right) \end{array} \end{array} $	$\begin{split} \ \nabla f(x^k)\ ^2 &\sim \mathcal{O}\left(\frac{1}{k}\right) \\ k_\varepsilon &\sim \mathcal{O}\left(\frac{1}{\varepsilon}\right) \end{split}$	$\begin{split} f(x^k) - f^* &\sim \mathcal{O}\left(\frac{1}{k}\right) \\ k_\varepsilon &\sim \mathcal{O}\left(\frac{1}{\varepsilon}\right) \end{split}$	$\begin{split} \ x^k - x^*\ ^2 &\sim \mathcal{O}\left(\left(1 - \frac{\mu}{L}\right)^k\right) \\ k_\varepsilon &\sim \mathcal{O}\left(\varkappa \log \frac{1}{\varepsilon}\right) \end{split}$

For smooth strongly convex we have:

$$f(x^k)-f^*\leq \left(1-\frac{\mu}{L}\right)^k(f(x^0)-f^*).$$

Note also, that for any x, since e^{-x} is convex and 1-x is its tangent line at x=0, we have:

$$1-x \leq e^{-x}$$

Finally we have

$$\begin{split} \varepsilon &= f(x^{k_{\varepsilon}}) - f^* \leq \left(1 - \frac{\mu}{L}\right)^{k_{\varepsilon}} \left(f(x^0) - f^*\right) \\ &\leq \exp\left(-k_{\varepsilon} \frac{\mu}{L}\right) \left(f(x^0) - f^*\right) \\ k_{\varepsilon} &\geq \varkappa \log \frac{f(x^0) - f^*}{\varepsilon} = \mathcal{O}\left(\varkappa \log \frac{1}{\varepsilon}\right) \end{split}$$

$$\label{eq:Gradient Descent:} \qquad \min_{x \in \mathbb{R}^n} f(x) \qquad \qquad x^{k+1} = x^k - \alpha^k \nabla f(x^k)$$

convex (non-smooth)	smooth (non-convex)	smooth & convex	smooth & strongly convex (or PL)
$\overline{f(x^k) - f^* \sim \mathcal{O}\left(\frac{1}{\sqrt{k}}\right)} \\ k_{\varepsilon} \sim \mathcal{O}\left(\frac{1}{\varepsilon^2}\right)$	$\begin{split} \ \nabla f(x^k)\ ^2 &\sim \mathcal{O}\left(\frac{1}{k}\right) \\ k_\varepsilon &\sim \mathcal{O}\left(\frac{1}{\varepsilon}\right) \end{split}$	$\begin{split} f(x^k) - f^* &\sim \mathcal{O}\left(\frac{1}{k}\right) \\ k_\varepsilon &\sim \mathcal{O}\left(\frac{1}{\varepsilon}\right) \end{split}$	$\begin{split} \ x^k - x^*\ ^2 &\sim \mathcal{O}\left(\left(1 - \frac{\mu}{L}\right)^k\right) \\ k_\varepsilon &\sim \mathcal{O}\left(\varkappa \log \frac{1}{\varepsilon}\right) \end{split}$

For smooth strongly convex we have:

 $f \to \min_{x,y,z}$

$$f(x^k) - f^* \le \left(1 - \frac{\mu}{L}\right)^k (f(x^0) - f^*).$$

Note also, that for any x, since e^{-x} is convex and 1-x is its tangent line at x=0, we have:

$$1-x \leq e^{-x}$$

Finally we have

$$\begin{split} \varepsilon &= f(x^{k_{\varepsilon}}) - f^* \leq \left(1 - \frac{\mu}{L}\right)^{k_{\varepsilon}} \left(f(x^0) - f^*\right) \\ &\leq \exp\left(-k_{\varepsilon} \frac{\mu}{L}\right) \left(f(x^0) - f^*\right) \\ k_{\varepsilon} &\geq \varkappa \log \frac{f(x^0) - f^*}{\varepsilon} = \mathcal{O}\left(\varkappa \log \frac{1}{\varepsilon}\right) \end{split}$$

.

Question: Can we do faster, than this using the first-order information?

$$\label{eq:Gradient Descent:} \qquad \min_{x \in \mathbb{R}^n} f(x) \qquad \qquad x^{k+1} = x^k - \alpha^k \nabla f(x^k)$$

convex (non-smooth)	smooth (non-convex)	smooth & convex	smooth & strongly convex (or PL)
$ \begin{array}{c} f(x^k) - f^* \sim \mathcal{O}\left(\frac{1}{\sqrt{k}}\right) \\ k_{\varepsilon} \sim \mathcal{O}\left(\frac{1}{\varepsilon^2}\right) \end{array} \end{array} $	$\begin{split} \ \nabla f(x^k)\ ^2 &\sim \mathcal{O}\left(\frac{1}{k}\right) \\ k_\varepsilon &\sim \mathcal{O}\left(\frac{1}{\varepsilon}\right) \end{split}$	$\begin{split} f(x^k) - f^* &\sim \mathcal{O}\left(\frac{1}{k}\right) \\ k_\varepsilon &\sim \mathcal{O}\left(\frac{1}{\varepsilon}\right) \end{split}$	$\begin{split} \ x^k - x^*\ ^2 &\sim \mathcal{O}\left(\left(1 - \frac{\mu}{L}\right)^k\right) \\ k_\varepsilon &\sim \mathcal{O}\left(\varkappa \log \frac{1}{\varepsilon}\right) \end{split}$

For smooth strongly convex we have:

 $f \to \min_{x,y,z}$

$$f(x^k)-f^*\leq \left(1-\frac{\mu}{L}\right)^k(f(x^0)-f^*)$$

Note also, that for any x, since e^{-x} is convex and 1-x is its tangent line at x=0, we have:

$$1-x \leq e^{-x}$$

Finally we have

$$\begin{split} \varepsilon &= f(x^{k_{\varepsilon}}) - f^* \leq \left(1 - \frac{\mu}{L}\right)^{k_{\varepsilon}} \left(f(x^0) - f^*\right) \\ &\leq \exp\left(-k_{\varepsilon}\frac{\mu}{L}\right) \left(f(x^0) - f^*\right) \\ k_{\varepsilon} &\geq \varkappa \log \frac{f(x^0) - f^*}{\varepsilon} = \mathcal{O}\left(\varkappa \log \frac{1}{\varepsilon}\right) \end{split}$$

Question: Can we do faster, than this using the first-order information? Yes, we can.

Lower bounds

Lower bounds

convex (non-smooth)	smooth (non-convex) 1	smooth & convex 2	smooth & strongly convex (or PL)
$\mathcal{O}\left(\frac{1}{\sqrt{k}}\right)$	$\mathcal{O}\left(\frac{1}{k^2}\right)$	$\mathcal{O}\left(\frac{1}{k^2}\right)$	$\mathcal{O}\left(\left(1-\sqrt{rac{\mu}{L}} ight)^k ight)$
$k_{\varepsilon} \sim \mathcal{O}\left(\frac{1}{\varepsilon^2}\right)$	$k_{\varepsilon} \sim \mathcal{O}\left(\frac{1}{\sqrt{\varepsilon}}\right)$	$k_{\varepsilon} \sim \mathcal{O}\left(\frac{1}{\sqrt{\varepsilon}}\right)$	$k_{\varepsilon} \sim \mathcal{O}\left(\sqrt{\varkappa}\log\frac{1}{\varepsilon}\right)$

¹Carmon, Duchi, Hinder, Sidford, 2017 ²Nemirovski, Yudin, 1979

Black box iteration

The iteration of gradient descent:

$$\begin{split} x^{k+1} &= x^k - \alpha^k \nabla f(x^k) \\ &= x^{k-1} - \alpha^{k-1} \nabla f(x^{k-1}) - \alpha^k \nabla f(x^k) \\ &\vdots \\ &= x^0 - \sum_{i=0}^k \alpha^{k-i} \nabla f(x^{k-i}) \end{split}$$

Black box iteration

The iteration of gradient descent:

$$\begin{split} x^{k+1} &= x^k - \alpha^k \nabla f(x^k) \\ &= x^{k-1} - \alpha^{k-1} \nabla f(x^{k-1}) - \alpha^k \nabla f(x^k) \\ &\vdots \\ &= x^0 - \sum_{i=0}^k \alpha^{k-i} \nabla f(x^{k-i}) \end{split}$$

Consider a family of first-order methods, where

$$\begin{aligned} x^{k+1} &\in x^0 + \text{span} \left\{ \nabla f(x^0), \nabla f(x^1), \dots, \nabla f(x^k) \right\} & f \text{ - smooth} \\ x^{k+1} &\in x^0 + \text{span} \left\{ g_0, g_1, \dots, g_k \right\}, \text{ where } g_i \in \partial f(x^i) & f \text{ - non-smooth} \end{aligned}$$

Black box iteration

The iteration of gradient descent:

$$\begin{split} x^{k+1} &= x^k - \alpha^k \nabla f(x^k) \\ &= x^{k-1} - \alpha^{k-1} \nabla f(x^{k-1}) - \alpha^k \nabla f(x^k) \\ &\vdots \\ &= x^0 - \sum_{i=0}^k \alpha^{k-i} \nabla f(x^{k-i}) \end{split}$$

Consider a family of first-order methods, where

$$\begin{aligned} x^{k+1} &\in x^0 + \text{span} \left\{ \nabla f(x^0), \nabla f(x^1), \dots, \nabla f(x^k) \right\} & f \text{ - smooth} \\ x^{k+1} &\in x^0 + \text{span} \left\{ g_0, g_1, \dots, g_k \right\}, \text{ where } g_i \in \partial f(x^i) & f \text{ - non-smooth} \end{aligned}$$

In order to construct a lower bound, we need to find a function f from corresponding class such that any method from the family 1 will work at least as slow as the lower bound.

i Theorem

$$f(x^k) - f^* \geq \frac{3L\|x^0 - x^*\|_2^2}{32(k+1)^2}$$

i Theorem

There exists a function f that is L-smooth and convex such that any method 1 satisfies for any $k: 1 \le k \le \frac{n-1}{2}$:

$$f(x^k) - f^* \geq \frac{3L\|x^0 - x^*\|_2^2}{32(k+1)^2}$$

No matter what gradient method you provide, there is always a function f that, when you apply your gradient method on minimizing such f, the convergence rate is lower bounded as O (¹/_{k²}).

i Theorem

$$f(x^k) - f^* \geq \frac{3L\|x^0 - x^*\|_2^2}{32(k+1)^2}$$

- No matter what gradient method you provide, there is always a function f that, when you apply your gradient method on minimizing such f, the convergence rate is lower bounded as O (¹/_{k²}).
- The key to the proof is to explicitly build a special function f.

i Theorem

$$f(x^k) - f^* \geq \frac{3L\|x^0 - x^*\|_2^2}{32(k+1)^2}$$

- No matter what gradient method you provide, there is always a function f that, when you apply your gradient method on minimizing such f, the convergence rate is lower bounded as O (¹/_{k²}).
- The key to the proof is to explicitly build a special function f.
- Note, that this bound $\mathcal{O}\left(\frac{1}{k^2}\right)$ does not match the rate of gradient descent $\mathcal{O}\left(\frac{1}{k}\right)$. Two options possible:

i Theorem

$$f(x^k) - f^* \geq \frac{3L\|x^0 - x^*\|_2^2}{32(k+1)^2}$$

- No matter what gradient method you provide, there is always a function f that, when you apply your gradient method on minimizing such f, the convergence rate is lower bounded as O (¹/_{k²}).
- The key to the proof is to explicitly build a special function f.
- Note, that this bound $\mathcal{O}\left(\frac{1}{k^2}\right)$ does not match the rate of gradient descent $\mathcal{O}\left(\frac{1}{k}\right)$. Two options possible: a. The lower bound is not tight.

Theorem

$$f(x^k) - f^* \geq \frac{3L\|x^0 - x^*\|_2^2}{32(k+1)^2}$$

- No matter what gradient method you provide, there is always a function f that, when you apply your gradient method on minimizing such f, the convergence rate is lower bounded as $\mathcal{O}\left(\frac{1}{k^2}\right)$.
- The key to the proof is to explicitly build a special function f.
- Note, that this bound $\mathcal{O}\left(\frac{1}{k^2}\right)$ does not match the rate of gradient descent $\mathcal{O}\left(\frac{1}{k}\right)$. Two options possible:
 - a. The lower bound is not tight.
 - b. The gradient method is not optimal for this problem.

i Theorem

$$f(x^k) - f^* \geq \frac{3L\|x^0 - x^*\|_2^2}{32(k+1)^2}$$

- No matter what gradient method you provide, there is always a function f that, when you apply your gradient method on minimizing such f, the convergence rate is lower bounded as O (1/k²).
- The key to the proof is to explicitly build a special function f.
- Note, that this bound $\mathcal{O}\left(\frac{1}{k^2}\right)$ does not match the rate of gradient descent $\mathcal{O}\left(\frac{1}{k}\right)$. Two options possible:
 - a. The lower bound is not tight.
 - b. The gradient method is not optimal for this problem.

• Let n = 2k + 1 and $A \in \mathbb{R}^{n \times n}$.

$$A = \begin{bmatrix} 2 & -1 & 0 & 0 & \cdots & 0 \\ -1 & 2 & -1 & 0 & \cdots & 0 \\ 0 & -1 & 2 & -1 & \cdots & 0 \\ 0 & 0 & -1 & 2 & \cdots & 0 \\ \vdots & \vdots & \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & 0 & 0 & \cdots & 2 \end{bmatrix}$$

• Let n = 2k + 1 and $A \in \mathbb{R}^{n \times n}$.

$$A = \begin{bmatrix} 2 & -1 & 0 & 0 & \cdots & 0 \\ -1 & 2 & -1 & 0 & \cdots & 0 \\ 0 & -1 & 2 & -1 & \cdots & 0 \\ 0 & 0 & -1 & 2 & \cdots & 0 \\ \vdots & \vdots & \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & 0 & 0 & \cdots & 2 \end{bmatrix}$$

• Notice, that

$$x^T A x = x_1^2 + x_n^2 + \sum_{i=1}^{n-1} (x_i - x_{i+1})^2,$$

Therefore, $x^TAx \geq 0.$ It is also easy to see that $0 \preceq A \preceq 4I.$

• Let n = 2k + 1 and $A \in \mathbb{R}^{n \times n}$.

$$A = \begin{bmatrix} 2 & -1 & 0 & 0 & \cdots & 0 \\ -1 & 2 & -1 & 0 & \cdots & 0 \\ 0 & -1 & 2 & -1 & \cdots & 0 \\ 0 & 0 & -1 & 2 & \cdots & 0 \\ \vdots & \vdots & \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & 0 & 0 & \cdots & 2 \end{bmatrix}$$

• Notice, that

$$x^T A x = x_1^2 + x_n^2 + \sum_{i=1}^{n-1} (x_i - x_{i+1})^2,$$

Therefore, $x^TAx \geq 0.$ It is also easy to see that $0 \preceq A \preceq 4I.$

• Let n = 2k + 1 and $A \in \mathbb{R}^{n \times n}$.

$$A = \begin{bmatrix} 2 & -1 & 0 & 0 & \cdots & 0 \\ -1 & 2 & -1 & 0 & \cdots & 0 \\ 0 & -1 & 2 & -1 & \cdots & 0 \\ 0 & 0 & -1 & 2 & \cdots & 0 \\ \vdots & \vdots & \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & 0 & 0 & \cdots & 2 \end{bmatrix}$$

• Notice, that

$$x^{T}Ax = x_{1}^{2} + x_{n}^{2} + \sum_{i=1}^{n-1} (x_{i} - x_{i+1})^{2},$$

Therefore, $x^TAx \geq 0.$ It is also easy to see that $0 \preceq A \preceq 4I.$

Example, when n = 3:

$$A = \begin{bmatrix} 2 & -1 & 0\\ -1 & 2 & -1\\ 0 & -1 & 2 \end{bmatrix}$$

• Let n = 2k + 1 and $A \in \mathbb{R}^{n \times n}$.

$$A = \begin{bmatrix} 2 & -1 & 0 & 0 & \cdots & 0 \\ -1 & 2 & -1 & 0 & \cdots & 0 \\ 0 & -1 & 2 & -1 & \cdots & 0 \\ 0 & 0 & -1 & 2 & \cdots & 0 \\ \vdots & \vdots & \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & 0 & 0 & \cdots & 2 \end{bmatrix}$$

• Notice, that

$$x^{T}Ax = x_{1}^{2} + x_{n}^{2} + \sum_{i=1}^{n-1} (x_{i} - x_{i+1})^{2},$$

Therefore, $x^TAx \geq 0.$ It is also easy to see that $0 \preceq A \preceq 4I.$

Example, when n = 3:

$$A = \begin{bmatrix} 2 & -1 & 0\\ -1 & 2 & -1\\ 0 & -1 & 2 \end{bmatrix}$$

Lower bound:

$$\begin{split} x^T A x &= 2x_1^2 + 2x_2^2 + 2x_3^2 - 2x_1x_2 - 2x_2x_3 \\ &= x_1^2 + x_1^2 - 2x_1x_2 + x_2^2 + x_2^2 - 2x_2x_3 + x_3^2 + x_3^2 \\ &= x_1^2 + (x_1 - x_2)^2 + (x_2 - x_3)^2 + x_3^2 \geq 0 \end{split}$$

• Let n = 2k + 1 and $A \in \mathbb{R}^{n \times n}$.

$$A = \begin{bmatrix} 2 & -1 & 0 & 0 & \cdots & 0 \\ -1 & 2 & -1 & 0 & \cdots & 0 \\ 0 & -1 & 2 & -1 & \cdots & 0 \\ 0 & 0 & -1 & 2 & \cdots & 0 \\ \vdots & \vdots & \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & 0 & 0 & \cdots & 2 \end{bmatrix}$$

• Notice, that

$$x^{T}Ax = x_{1}^{2} + x_{n}^{2} + \sum_{i=1}^{n-1} (x_{i} - x_{i+1})^{2},$$

Therefore, $x^TAx \geq 0.$ It is also easy to see that $0 \preceq A \preceq 4I.$

Example, when n = 3:

$$A = \begin{bmatrix} 2 & -1 & 0\\ -1 & 2 & -1\\ 0 & -1 & 2 \end{bmatrix}$$

Lower bound:

$$\begin{split} x^T A x &= 2x_1^2 + 2x_2^2 + 2x_3^2 - 2x_1x_2 - 2x_2x_3 \\ &= x_1^2 + x_1^2 - 2x_1x_2 + x_2^2 + x_2^2 - 2x_2x_3 + x_3^2 + x_3^2 \\ &= x_1^2 + (x_1 - x_2)^2 + (x_2 - x_3)^2 + x_3^2 \ge 0 \end{split}$$

Upper bound

$$\begin{split} x^T A x &= 2x_1^2 + 2x_2^2 + 2x_3^2 - 2x_1x_2 - 2x_2x_3 \\ &\leq 4(x_1^2 + x_2^2 + x_3^2) \\ 0 &\leq 2x_1^2 + 2x_2^2 + 2x_3^2 + 2x_1x_2 + 2x_2x_3 \\ 0 &\leq x_1^2 + x_1^2 + 2x_1x_2 + x_2^2 + x_2^2 + 2x_2x_3 + x_3^2 + x_3^2 \\ 0 &\leq x_1^2 + (x_1 + x_2)^2 + (x_2 + x_3)^2 + x_3^2 \end{split}$$

 $f \rightarrow \min_{x,y,z}$ Lower bounds

♥ **೧ 0** 7

• Define the following L-smooth convex function: $f(x) = \frac{L}{4} \left(\frac{1}{2} x^T A x - e_1^T x \right) = \frac{L}{8} x^T A x - \frac{L}{4} e_1^T x.$

- Define the following L-smooth convex function: $f(x) = \frac{L}{4} \left(\frac{1}{2} x^T A x e_1^T x \right) = \frac{L}{8} x^T A x \frac{L}{4} e_1^T x.$
- The optimal solution x^* satisfies $Ax^* = e_1$, and solving this system of equations gives:

$$\begin{bmatrix} 2 & -1 & 0 & 0 & \cdots & 0 \\ -1 & 2 & -1 & 0 & \cdots & 0 \\ 0 & -1 & 2 & -1 & \cdots & 0 \\ 0 & 0 & -1 & 2 & \cdots & 0 \\ \vdots & \vdots & \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & 0 & 0 & \cdots & 2 \end{bmatrix} \begin{bmatrix} x_1^* \\ x_2^* \\ x_3^* \\ \vdots \\ x_n^* \end{bmatrix} = \begin{bmatrix} 1 \\ 0 \\ \vdots \\ 0 \end{bmatrix} \quad \begin{cases} 2x_1^* - x_2^* = 1 \\ -x_i^* + 2x_{i+1}^* - x_{i+2}^* = 0, \ i = 2, \dots, n-1 \\ -x_{n-1}^* + 2x_n^* = 0 \end{cases}$$

- Define the following L-smooth convex function: $f(x) = \frac{L}{4} \left(\frac{1}{2} x^T A x e_1^T x \right) = \frac{L}{8} x^T A x \frac{L}{4} e_1^T x.$
- The optimal solution x^* satisfies $Ax^* = e_1$, and solving this system of equations gives:

$$\begin{bmatrix} 2 & -1 & 0 & 0 & \cdots & 0 \\ -1 & 2 & -1 & 0 & \cdots & 0 \\ 0 & -1 & 2 & -1 & \cdots & 0 \\ 0 & 0 & -1 & 2 & \cdots & 0 \\ \vdots & \vdots & \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & 0 & 0 & \cdots & 2 \end{bmatrix} \begin{bmatrix} x_1^* \\ x_2^* \\ x_3^* \\ \vdots \\ x_n^* \end{bmatrix} = \begin{bmatrix} 1 \\ 0 \\ \vdots \\ 0 \end{bmatrix} \quad \begin{cases} 2x_1^* - x_2^* = 1 \\ -x_i^* + 2x_{i+1}^* - x_{i+2}^* = 0, \ i = 2, \dots, n-1 \\ -x_{n-1}^* + 2x_n^* = 0 \end{cases}$$

• The hypothesis: $x_i^* = a + bi$ (inspired by physics). Check, that the second equation is satisfied, while a and b are computed from the first and the last equations.

- Define the following L-smooth convex function: $f(x) = \frac{L}{4} \left(\frac{1}{2} x^T A x e_1^T x \right) = \frac{L}{8} x^T A x \frac{L}{4} e_1^T x.$
- The optimal solution x^* satisfies $Ax^* = e_1$, and solving this system of equations gives:

$$\begin{bmatrix} 2 & -1 & 0 & 0 & \cdots & 0 \\ -1 & 2 & -1 & 0 & \cdots & 0 \\ 0 & -1 & 2 & -1 & \cdots & 0 \\ 0 & 0 & -1 & 2 & \cdots & 0 \\ \vdots & \vdots & \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & 0 & 0 & \cdots & 2 \end{bmatrix} \begin{bmatrix} x_1^* \\ x_2^* \\ x_3^* \\ \vdots \\ x_n^* \end{bmatrix} = \begin{bmatrix} 1 \\ 0 \\ \vdots \\ 0 \end{bmatrix} \quad \begin{cases} 2x_1^* - x_2^* = 1 \\ -x_i^* + 2x_{i+1}^* - x_{i+2}^* = 0, \ i = 2, \dots, n-1 \\ -x_{n-1}^* + 2x_n^* = 0 \end{cases}$$

- The hypothesis: $x_i^* = a + bi$ (inspired by physics). Check, that the second equation is satisfied, while a and b are computed from the first and the last equations.
- The solution is:

$$x_i^* = 1 - \frac{i}{n+1},$$

- Define the following L-smooth convex function: $f(x) = \frac{L}{4} \left(\frac{1}{2} x^T A x e_1^T x \right) = \frac{L}{8} x^T A x \frac{L}{4} e_1^T x.$
- The optimal solution x^* satisfies $Ax^* = e_1$, and solving this system of equations gives:

$$\begin{bmatrix} 2 & -1 & 0 & 0 & \cdots & 0 \\ -1 & 2 & -1 & 0 & \cdots & 0 \\ 0 & -1 & 2 & -1 & \cdots & 0 \\ 0 & 0 & -1 & 2 & \cdots & 0 \\ \vdots & \vdots & \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & 0 & 0 & \cdots & 2 \end{bmatrix} \begin{bmatrix} x_1^* \\ x_2^* \\ x_3^* \\ \vdots \\ x_n^* \end{bmatrix} = \begin{bmatrix} 1 \\ 0 \\ \vdots \\ 0 \end{bmatrix} \quad \begin{cases} 2x_1^* - x_2^* = 1 \\ -x_i^* + 2x_{i+1}^* - x_{i+2}^* = 0, \ i = 2, \dots, n-1 \\ -x_{n-1}^* + 2x_n^* = 0 \end{cases}$$

- The hypothesis: $x_i^* = a + bi$ (inspired by physics). Check, that the second equation is satisfied, while a and b are computed from the first and the last equations.
- The solution is:

$$x_i^* = 1 - \frac{i}{n+1},$$

And the objective value is

$$f(x^*) = \frac{L}{8}{x^*}^T A x^* - \frac{L}{4} \langle x^*, e_1 \rangle = -\frac{L}{8} \langle x^*, e_1 \rangle = -\frac{L}{8} \left(1 - \frac{1}{n+1} \right).$$

• Suppose, we start from $x^{0} = 0$. Asking the oracle for the gradient, we get $g_{0} = -e_{1}$. Then, x^{1} must lie on the line generated by e_{1} . At this point all the components of x^{1} are zero except the first one, so

$$x^1 = \begin{bmatrix} \bullet \\ 0 \\ \vdots \\ 0 \end{bmatrix}.$$

 $f \rightarrow$

• Suppose, we start from $x^{0} = 0$. Asking the oracle for the gradient, we get $g_{0} = -e_{1}$. Then, x^{1} must lie on the line generated by e_{1} . At this point all the components of x^{1} are zero except the first one, so

$$x^1 = \begin{bmatrix} \bullet \\ 0 \\ \vdots \\ 0 \end{bmatrix}.$$

• At the second iteration we ask the oracle again and get $g_1 = Ax^1 - e_1$. Then, x^2 must lie on the line generated by e_1 and $Ax^1 - e_1$. All the components of x^2 are zero except the first two, so

$$\begin{bmatrix} 2 & -1 & 0 & \cdots & 0\\ -1 & 2 & -1 & \cdots & 0\\ 0 & -1 & 2 & \cdots & 0\\ \vdots & \vdots & \vdots & \ddots & \vdots\\ 0 & 0 & 0 & \cdots & 2 \end{bmatrix} \begin{bmatrix} \bullet \\ 0\\ \vdots\\ 0 \end{bmatrix} \Rightarrow x^2 = \begin{bmatrix} \bullet \\ 0\\ \vdots\\ 0 \end{bmatrix}.$$

 $f \rightarrow$

• Suppose, we start from $x^{0} = 0$. Asking the oracle for the gradient, we get $g_{0} = -e_{1}$. Then, x^{1} must lie on the line generated by e_{1} . At this point all the components of x^{1} are zero except the first one, so

$$x^1 = \begin{bmatrix} \bullet \\ 0 \\ \vdots \\ 0 \end{bmatrix}.$$

• At the second iteration we ask the oracle again and get $g_1 = Ax^1 - e_1$. Then, x^2 must lie on the line generated by e_1 and $Ax^1 - e_1$. All the components of x^2 are zero except the first two, so

$$\begin{bmatrix} 2 & -1 & 0 & \cdots & 0\\ -1 & 2 & -1 & \cdots & 0\\ 0 & -1 & 2 & \cdots & 0\\ \vdots & \vdots & \vdots & \ddots & \vdots\\ 0 & 0 & 0 & \cdots & 2 \end{bmatrix} \begin{bmatrix} \bullet \\ 0\\ \vdots\\ 0 \end{bmatrix} \Rightarrow x^2 = \begin{bmatrix} \bullet \\ 0\\ \vdots\\ 0 \end{bmatrix}.$$

 $f \rightarrow$

• Suppose, we start from $x^0 = 0$. Asking the oracle for the gradient, we get $g_0 = -e_1$. Then, x^1 must lie on the line generated by e_1 . At this point all the components of x^1 are zero except the first one, so

$$x^1 = \begin{bmatrix} \bullet \\ 0 \\ \vdots \\ 0 \end{bmatrix}.$$

• At the second iteration we ask the oracle again and get $g_1 = Ax^1 - e_1$. Then, x^2 must lie on the line generated by e_1 and $Ax^1 - e_1$. All the components of x^2 are zero except the first two, so

$$\begin{bmatrix} 2 & -1 & 0 & \cdots & 0\\ -1 & 2 & -1 & \cdots & 0\\ 0 & -1 & 2 & \cdots & 0\\ \vdots & \vdots & \vdots & \ddots & \vdots\\ 0 & 0 & 0 & 0 & \cdots & 2 \end{bmatrix} \begin{bmatrix} \bullet \\ 0\\ \vdots\\ 0 \end{bmatrix} \Rightarrow x^2 = \begin{bmatrix} \bullet \\ \bullet \\ 0\\ \vdots\\ 0 \end{bmatrix}.$$

 Due to the structure of the matrix A one can show using induction that after k iterations we have all the last n - k components of x^k to be zero.

$$x^{(k)} = \begin{bmatrix} \bullet \\ 1 \\ 2 \\ \vdots \\ \bullet \\ 0 \\ k+1 \\ \vdots \\ 0 \end{bmatrix}$$

• Suppose, we start from $x^0 = 0$. Asking the oracle for the gradient, we get $g_0 = -e_1$. Then, x^1 must lie on the line generated by e_1 . At this point all the components of x^1 are zero except the first one, so

$$x^1 = \begin{bmatrix} \bullet \\ 0 \\ \vdots \\ 0 \end{bmatrix}.$$

• At the second iteration we ask the oracle again and get $g_1 = Ax^1 - e_1$. Then, x^2 must lie on the line generated by e_1 and $Ax^1 - e_1$. All the components of x^2 are zero except the first two, so

$$\begin{bmatrix} 2 & -1 & 0 & \cdots & 0 \\ -1 & 2 & -1 & \cdots & 0 \\ 0 & -1 & 2 & \cdots & 0 \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & 0 & \cdots & 2 \end{bmatrix} \begin{bmatrix} \bullet \\ 0 \\ \vdots \\ 0 \end{bmatrix} \Rightarrow x^2 = \begin{bmatrix} \bullet \\ 0 \\ \vdots \\ 0 \end{bmatrix}$$

• Due to the structure of the matrix A one can show using induction that after k iterations we have all the last n-k components of x^k to be zero.

$$x^{(k)} = \begin{bmatrix} \bullet \\ \bullet \\ \vdots \\ \vdots \\ \bullet \\ 0 \\ \vdots \\ 0 \end{bmatrix} \begin{bmatrix} \bullet \\ k \\ k \\ k + 1 \\ \vdots \\ n \end{bmatrix}$$

• However, since every iterate x^k produced by our method lies in $S_k = \text{span}\{e_1, e_2, \dots, e_k\}$ (i.e. has zeros in the coordinates $k + 1, \dots, n$), it cannot "reach" the full optimal vector x^* . In other words, even if one were to choose the best possible vector from S_k , denoted by

$$\tilde{x}^k = \arg\min_{x\in S_k} f(x),$$

its objective value $f(\tilde{x}^k)$ will be strictly worse than $f(x^*)$.

00 9

• Because $x^k \in S_k = \operatorname{span}\{e_1, e_2, \dots, e_k\}$ and \tilde{x}^k is the best possible approximation to x^* within S_k , we have $f(x^k) \ge f(\tilde{x}^k).$

- Because $x^k \in S_k = \text{span}\{e_1, e_2, \dots, e_k\}$ and \tilde{x}^k is the best possible approximation to x^* within S_k , we have $f(x^k) \ge f(\tilde{x}^k).$
- Thus, the optimality gap obeys

$$f(x^k)-f(x^*)\geq f(\tilde{x}^k)-f(x^*).$$

- Because $x^k \in S_k = \text{span}\{e_1, e_2, \dots, e_k\}$ and \tilde{x}^k is the best possible approximation to x^* within S_k , we have $f(x^k) \ge f(\tilde{x}^k).$
- Thus, the optimality gap obeys

$$f(x^k)-f(x^*)\geq f(\tilde{x}^k)-f(x^*).$$

• Similarly, to the optimum of the original function, we have $\tilde{x}_i^k = 1 - \frac{i}{k+1}$ and $f(\tilde{x}^k) = -\frac{L}{8} \left(1 - \frac{1}{k+1}\right)$.

- Because $x^k \in S_k = \text{span}\{e_1, e_2, \dots, e_k\}$ and \tilde{x}^k is the best possible approximation to x^* within S_k , we have $f(x^k) > f(\tilde{x}^k)$.
- Thus, the optimality gap obeys

$$f(x^k)-f(x^*)\geq f(\tilde{x}^k)-f(x^*).$$

• Similarly, to the optimum of the original function, we have $\tilde{x}_i^k = 1 - \frac{i}{k+1}$ and $f(\tilde{x}^k) = -\frac{L}{8} \left(1 - \frac{1}{k+1}\right)$. • We now have:

$$f(x^k) - f(x^*) \geq f(\tilde{x}^k) - f(x^*)$$

1	0	۱
l	2	J

- Because $x^k \in S_k = \text{span}\{e_1, e_2, \dots, e_k\}$ and \tilde{x}^k is the best possible approximation to x^* within S_k , we have $f(x^k) > f(\tilde{x}^k)$.
- Thus, the optimality gap obeys

$$f(x^k)-f(x^*)\geq f(\tilde{x}^k)-f(x^*).$$

• Similarly, to the optimum of the original function, we have $\tilde{x}_i^k = 1 - \frac{i}{k+1}$ and $f(\tilde{x}^k) = -\frac{L}{8} \left(1 - \frac{1}{k+1}\right)$. • We now have:

$$\begin{split} f(x^k) - f(x^*) &\geq f(\tilde{x}^k) - f(x^*) \\ &= -\frac{L}{8} \left(1 - \frac{1}{k+1} \right) - \left(-\frac{L}{8} \left(1 - \frac{1}{n+1} \right) \right) \end{split}$$

(2)

- Because $x^k \in S_k = \text{span}\{e_1, e_2, \dots, e_k\}$ and \tilde{x}^k is the best possible approximation to x^* within S_k , we have $f(x^k) \ge f(\tilde{x}^k)$.
- Thus, the optimality gap obeys

$$f(x^k)-f(x^*)\geq f(\tilde{x}^k)-f(x^*).$$

• Similarly, to the optimum of the original function, we have $\tilde{x}_i^k = 1 - \frac{i}{k+1}$ and $f(\tilde{x}^k) = -\frac{L}{8} \left(1 - \frac{1}{k+1}\right)$. • We now have:

$$f(x^{k}) - f(x^{*}) \ge f(\tilde{x}^{k}) - f(x^{*})$$

$$= -\frac{L}{8} \left(1 - \frac{1}{k+1} \right) - \left(-\frac{L}{8} \left(1 - \frac{1}{n+1} \right) \right)$$

$$= \frac{L}{8} \left(\frac{1}{k+1} - \frac{1}{n+1} \right) = \frac{L}{8} \left(\frac{n-k}{(k+1)(n+1)} \right)$$
(2)

- Because $x^k \in S_k = \text{span}\{e_1, e_2, \dots, e_k\}$ and \tilde{x}^k is the best possible approximation to x^* within S_k , we have $f(x^k) \ge f(\tilde{x}^k)$.
- Thus, the optimality gap obeys

$$f(x^k)-f(x^*)\geq f(\tilde{x}^k)-f(x^*).$$

• Similarly, to the optimum of the original function, we have $\tilde{x}_i^k = 1 - \frac{i}{k+1}$ and $f(\tilde{x}^k) = -\frac{L}{8} \left(1 - \frac{1}{k+1}\right)$. • We now have:

$$\begin{split} f(x^k) - f(x^*) &\geq f(\tilde{x}^k) - f(x^*) \\ &= -\frac{L}{8} \left(1 - \frac{1}{k+1} \right) - \left(-\frac{L}{8} \left(1 - \frac{1}{n+1} \right) \right) \\ &= \frac{L}{8} \left(\frac{1}{k+1} - \frac{1}{n+1} \right) = \frac{L}{8} \left(\frac{n-k}{(k+1)(n+1)} \right) \\ &\stackrel{n=2k+1}{=} \frac{L}{16(k+1)} \end{split}$$
(2)

• Now we bound
$$R = ||x^0 - x^*||_2$$
:

We observe, that

$$\begin{aligned} \|x^0 - x^*\|_2^2 &= \|0 - x^*\|_2^2 = \|x^*\|_2^2 = \sum_{i=1}^n \left(1 - \frac{i}{n+1}\right)^2 \\ &\sum_{i=1}^n i^2 = \frac{n(n+1)}{2} \\ &\sum_{i=1}^n i^2 = \frac{n(n+1)(2n+1)}{6} \\ &\leq \frac{(n+1)^3}{3} \end{aligned}$$

• Now we bound
$$R = ||x^0 - x^*||_2$$
:

 $\|x^0 - x^*\|_2^2 = \|0 - x^*\|_2^2 = \|x^*\|_2^2 = \sum_{i=1}^n \left(1 - \frac{i}{n+1}\right)^2$ $= n - \frac{2}{n+1} \sum_{i=1}^{n} i + \frac{1}{(n+1)^2} \sum_{i=1}^{n} i^2$

$$\sum_{i=1}^{n} i = \frac{n(n+1)}{2}$$
$$\sum_{i=1}^{n} i^2 = \frac{n(n+1)(2n+1)}{6}$$
$$\leq \frac{(n+1)^3}{3}$$

• Now we bound
$$R = ||x^0 - x^*||_2$$
:

We observe, that

$$\begin{split} \|x^0 - x^*\|_2^2 &= \|0 - x^*\|_2^2 = \|x^*\|_2^2 = \sum_{i=1}^n \left(1 - \frac{i}{n+1}\right)^2 & \sum_{i=1}^n i = \frac{n(n+1)}{2} \\ &= n - \frac{2}{n+1} \sum_{i=1}^n i + \frac{1}{(n+1)^2} \sum_{i=1}^n i^2 & \sum_{i=1}^n i^2 = \frac{n(n+1)(2n+1)}{6} \\ &\leq n - \frac{2}{n+1} \cdot \frac{n(n+1)}{2} + \frac{1}{(n+1)^2} \cdot \frac{(n+1)^3}{3} & \leq \frac{(n+1)^3}{3} \end{split}$$

• Now we bound
$$R = ||x^0 - x^*||_2$$
:

$$\begin{split} \|x^0 - x^*\|_2^2 &= \|0 - x^*\|_2^2 = \|x^*\|_2^2 = \sum_{i=1}^n \left(1 - \frac{i}{n+1}\right)^2 \\ &= n - \frac{2}{n+1} \sum_{i=1}^n i + \frac{1}{(n+1)^2} \sum_{i=1}^n i^2 \\ &\leq n - \frac{2}{n+1} \cdot \frac{n(n+1)}{2} + \frac{1}{(n+1)^2} \cdot \frac{(n+1)^3}{3} \\ &= \frac{n+1}{3} \stackrel{n=2k+1}{=} \frac{2(k+1)}{3}. \end{split}$$

We observe, that

$$\sum_{i=1}^{n} i = \frac{n(n+1)}{2}$$
$$\sum_{i=1}^{n} i^2 = \frac{n(n+1)(2n+1)}{6}$$
$$\leq \frac{(n+1)^3}{3}$$

• Now we bound
$$R = ||x^0 - x^*||_2$$
:

$$\begin{split} \|x^0 - x^*\|_2^2 &= \|0 - x^*\|_2^2 = \|x^*\|_2^2 = \sum_{i=1}^n \left(1 - \frac{i}{n+1}\right)^2 \\ &= n - \frac{2}{n+1} \sum_{i=1}^n i + \frac{1}{(n+1)^2} \sum_{i=1}^n i^2 \\ &\leq n - \frac{2}{n+1} \cdot \frac{n(n+1)}{2} + \frac{1}{(n+1)^2} \cdot \frac{(n+1)^3}{3} \\ &= \frac{n+1}{3} \stackrel{n=2k+1}{=} \frac{2(k+1)}{3}. \end{split}$$

We observe, that

$$\sum_{i=1}^{n} i = \frac{n(n+1)}{2}$$
$$\sum_{i=1}^{n} i^2 = \frac{n(n+1)(2n+1)}{6}$$
$$\leq \frac{(n+1)^3}{3}$$

Thus,

$$k+1 \ge \frac{3}{2} \|x^0 - x^*\|_2^2 = \frac{3}{2}R^2$$
(3)

Finally, using (2) and (3), we get:

$$\begin{split} f(x^k) - f(x^*) &\geq \frac{L}{16(k+1)} = \frac{L(k+1)}{16(k+1)^2} \\ &\geq \frac{L}{16(k+1)^2} \frac{3}{2} R^2 \\ &= \frac{3LR^2}{32(k+1)^2} \end{split}$$

Finally, using (2) and (3), we get:

$$\begin{split} f(x^k) - f(x^*) &\geq \frac{L}{16(k+1)} = \frac{L(k+1)}{16(k+1)^2} \\ &\geq \frac{L}{16(k+1)^2} \frac{3}{2} R^2 \\ &= \frac{3LR^2}{32(k+1)^2} \end{split}$$

Which concludes the proof with the desired $\mathcal{O}\left(\frac{1}{k^2}\right)$ rate.

Smooth case lower bound theorems

i Smooth convex case

There exists a function f that is L-smooth and convex such that any method 1 satisfies for any $k : 1 \le k \le \frac{n-1}{2}$:

$$f(x^k) - f^* \geq \frac{3L\|x^0 - x^*\|_2^2}{32(k+1)^2}$$

i Smooth strongly convex case

For any x^0 and any $\mu > 0$, $\varkappa = \frac{L}{\mu} > 1$, there exists a function f that is L-smooth and μ -strongly convex such that for any method of the form 1 holds:

$$\begin{split} \|x^k - x^*\|_2 &\geq \left(\frac{\sqrt{\varkappa} - 1}{\sqrt{\varkappa} + 1}\right)^k \|x^0 - x^*\|_2 \\ f(x^k) - f^* &\geq \frac{\mu}{2} \left(\frac{\sqrt{\varkappa} - 1}{\sqrt{\varkappa} + 1}\right)^{2k} \|x^0 - x^*\|_2^2 \end{split}$$

Acceleration for quadratics

Convergence result for quadratics

Suppose, we have a strongly convex quadratic function minimization problem solved by the gradient descent method:

$$f(x) = \frac{1}{2}x^TAx - b^Tx \qquad x^{k+1} = x^k - \alpha_k \nabla f(x^k).$$

i Theorem

The gradient descent method with the learning rate $\alpha_k = \frac{2}{\mu+L}$ converges to the optimal solution x^* with the following guarantee:

$$\|x^{k+1} - x^*\|_2 = \left(\frac{\varkappa - 1}{\varkappa + 1}\right)^k \|x^0 - x^*\|_2 \qquad f(x^{k+1}) - f(x^*) = \left(\frac{\varkappa - 1}{\varkappa + 1}\right)^{2k} \left(f(x^0) - f(x^*)\right)$$

where $\varkappa = \frac{L}{\mu}$ is the condition number of A.

Condition number \varkappa

Acceleration for guadratics

♥ ೧ Ø 16

Convergence from the first principles

$$f(x) = \frac{1}{2}x^TAx - b^Tx \qquad x_{k+1} = x_k - \alpha_k \nabla f(x_k).$$

Let x^* be the unique solution of the linear system Ax = b and put $e_k = ||x_k - x^*||$, where $x_{k+1} = x_k - \alpha_k(Ax_k - b)$ is defined recursively starting from some x_0 , and α_k is a step size we'll determine shortly.

$$e_{k+1} = (I - \alpha_k A) e_k$$

Polynomials

The above calculation gives us $e_k = p_k(A) e_0, \label{eq:ek}$ where p_k is the polynomial

$$p_k(a) = \prod_{i=1}^k (1-\alpha_i a).$$

We can upper bound the norm of the error term as

$$\left\|e_k\right\| \leq \left\|p_k(A)\right\| \cdot \left\|e_0\right\|.$$

 $f \rightarrow \min_{x,y,z}$ Acceleration for quadratics

Convergence from the first principles

$$f(x) = \frac{1}{2}x^TAx - b^Tx \qquad x_{k+1} = x_k - \alpha_k \nabla f(x_k).$$

Let x^* be the unique solution of the linear system Ax = b and put $e_k = ||x_k - x^*||$, where $x_{k+1} = x_k - \alpha_k(Ax_k - b)$ is defined recursively starting from some x_0 , and α_k is a step size we'll determine shortly.

$$e_{k+1} = (I - \alpha_k A) e_k$$

Polynomials

The above calculation gives us $e_k = p_k(A) e_0, \label{eq:ek}$ where p_k is the polynomial

$$p_k(a) = \prod_{i=1}^k (1-\alpha_i a).$$

We can upper bound the norm of the error term as

$$\left\|e_k\right\| \leq \left\|p_k(A)\right\| \cdot \left\|e_0\right\|.$$

Since A is a symmetric matrix with eigenvalues in $[\mu, L]$,:

$$\|p_k(A)\| \leq \max_{\mu \leq a \leq L} |p_k(a)| \ .$$

This leads to an interesting problem: Among all polynomials that satisfy $p_k(0)=1$ we're looking for a polynomial whose magnitude is as small as possible in the interval $[\mu,L].$

A naive solution is to choose a uniform step size $\alpha_k = \frac{2}{\mu+L}$ in the expression. This choise makes $|p_k(\mu)| = |p_k(L)|$.

$$\|e_k\| \leq \left(1-\frac{1}{\varkappa}\right)^k \|e_0\|$$

This is exactly the rate we proved in the previous lecture for any smooth and strongly convex function.

Let's look at this polynomial a bit closer. On the right figure we choose $\alpha=1$ and $\beta=10$ so that $\kappa=10.$ The relevant interval is therefore [1,10].

A naive solution is to choose a uniform step size $\alpha_k = \frac{2}{\mu+L}$ in the expression. This choise makes $|p_k(\mu)| = |p_k(L)|$.

$$\|e_k\| \leq \left(1-\frac{1}{\varkappa}\right)^k \|e_0\|$$

This is exactly the rate we proved in the previous lecture for any smooth and strongly convex function.

Let's look at this polynomial a bit closer. On the right figure we choose $\alpha=1$ and $\beta=10$ so that $\kappa=10.$ The relevant interval is therefore [1,10].

A naive solution is to choose a uniform step size $\alpha_k = \frac{2}{\mu+L}$ in the expression. This choise makes $|p_k(\mu)| = |p_k(L)|$.

$$\|e_k\| \leq \left(1-\frac{1}{\varkappa}\right)^k \|e_0\|$$

This is exactly the rate we proved in the previous lecture for any smooth and strongly convex function.

Let's look at this polynomial a bit closer. On the right figure we choose $\alpha=1$ and $\beta=10$ so that $\kappa=10.$ The relevant interval is therefore [1,10].

A naive solution is to choose a uniform step size $\alpha_k = \frac{2}{\mu+L}$ in the expression. This choise makes $|p_k(\mu)| = |p_k(L)|$.

$$\|e_k\| \leq \left(1-\frac{1}{\varkappa}\right)^k \|e_0\|$$

This is exactly the rate we proved in the previous lecture for any smooth and strongly convex function.

Let's look at this polynomial a bit closer. On the right figure we choose $\alpha=1$ and $\beta=10$ so that $\kappa=10.$ The relevant interval is therefore [1,10].

A naive solution is to choose a uniform step size $\alpha_k = \frac{2}{\mu+L}$ in the expression. This choise makes $|p_k(\mu)| = |p_k(L)|$.

$$\|e_k\| \leq \left(1-\frac{1}{\varkappa}\right)^k \|e_0\|$$

This is exactly the rate we proved in the previous lecture for any smooth and strongly convex function.

Let's look at this polynomial a bit closer. On the right figure we choose $\alpha=1$ and $\beta=10$ so that $\kappa=10.$ The relevant interval is therefore [1,10].

Chebyshev polynomials turn out to give an optimal answer to the question that we asked. Suitably rescaled, they minimize the absolute value in a desired interval $[\mu, L]$ while satisfying the normalization constraint of having value 1 at the origin.

$$\begin{split} T_0(x) &= 1 \\ T_1(x) &= x \\ T_k(x) &= 2x T_{k-1}(x) - T_{k-2}(x), \qquad k \geq 2. \end{split}$$

Let's plot the standard Chebyshev polynomials (without rescaling):

1.00

0.75

Chebyshev polynomials up to

⊕ ∩ ∅

19

Chebyshev polynomials turn out to give an optimal answer to the question that we asked. Suitably rescaled, they minimize the absolute value in a desired interval $[\mu, L]$ while satisfying the normalization constraint of having value 1 at the origin.

$$\begin{split} T_0(x) &= 1 \\ T_1(x) &= x \\ T_k(x) &= 2x T_{k-1}(x) - T_{k-2}(x), \qquad k \geq 2. \end{split}$$

Chebyshev polynomials turn out to give an optimal answer to the question that we asked. Suitably rescaled, they minimize the absolute value in a desired interval $[\mu, L]$ while satisfying the normalization constraint of having value 1 at the origin.

$$\begin{split} T_0(x) &= 1 \\ T_1(x) &= x \\ T_k(x) &= 2x T_{k-1}(x) - T_{k-2}(x), \qquad k \geq 2. \end{split}$$

Chebyshev polynomials turn out to give an optimal answer to the question that we asked. Suitably rescaled, they minimize the absolute value in a desired interval $[\mu, L]$ while satisfying the normalization constraint of having value 1 at the origin.

$$\begin{split} T_0(x) &= 1 \\ T_1(x) &= x \\ T_k(x) &= 2x T_{k-1}(x) - T_{k-2}(x), \qquad k \geq 2. \end{split}$$

Chebyshev polynomials turn out to give an optimal answer to the question that we asked. Suitably rescaled, they minimize the absolute value in a desired interval $[\mu, L]$ while satisfying the normalization constraint of having value 1 at the origin.

$$\begin{split} T_0(x) &= 1 \\ T_1(x) &= x \\ T_k(x) &= 2x T_{k-1}(x) - T_{k-2}(x), \qquad k \geq 2. \end{split}$$

Original Chebyshev polynomials are defined on the interval [-1,1]. To use them for our purposes, we need to rescale them to the interval $[\mu, L]$.

Original Chebyshev polynomials are defined on the interval [-1,1]. To use them for our purposes, we need to rescale them to the interval $[\mu, L]$.

We will use the following affine transformation:

$$x=\frac{L+\mu-2a}{L-\mu},\quad a\in[\mu,L],\quad x\in[-1,1].$$

Note, that x=1 corresponds to $a=\mu,\ x=-1$ corresponds to a=L and x=0 corresponds to $a=\frac{\mu+L}{2}.$ This transformation ensures that the behavior of the Chebyshev polynomial on [-1,1] is reflected on the interval $[\mu,L]$

Original Chebyshev polynomials are defined on the interval [-1,1]. To use them for our purposes, we need to rescale them to the interval $[\mu, L]$.

We will use the following affine transformation:

$$x=\frac{L+\mu-2a}{L-\mu},\quad a\in[\mu,L],\quad x\in[-1,1].$$

Note, that x=1 corresponds to $a=\mu,\ x=-1$ corresponds to a=L and x=0 corresponds to $a=\frac{\mu+L}{2}.$ This transformation ensures that the behavior of the Chebyshev polynomial on [-1,1] is reflected on the interval $[\mu,L]$

In our error analysis, we require that the polynomial equals 1 at 0 (i.e., $p_k(0) = 1$). After applying the transformation, the value T_k takes at the point corresponding to a = 0 might not be 1. Thus, we multiply by the inverse of T_k evaluated at

$$\frac{L+\mu}{L-\mu}, \qquad \text{ensuring that} \qquad P_k(0) = T_k \left(\frac{L+\mu-0}{L-\mu}\right) \cdot T_k \left(\frac{L+\mu}{L-\mu}\right)^{-1} = 1$$

Original Chebyshev polynomials are defined on the interval [-1,1]. To use them for our purposes, we need to rescale them to the interval $[\mu, L]$.

We will use the following affine transformation:

$$x=\frac{L+\mu-2a}{L-\mu},\quad a\in[\mu,L],\quad x\in[-1,1].$$

Note, that x=1 corresponds to $a=\mu,\ x=-1$ corresponds to a=L and x=0 corresponds to $a=\frac{\mu+L}{2}.$ This transformation ensures that the behavior of the Chebyshev polynomial on [-1,1] is reflected on the interval $[\mu,L]$

In our error analysis, we require that the polynomial equals 1 at 0 (i.e., $p_k(0) = 1$). After applying the transformation, the value T_k takes at the point corresponding to a = 0 might not be 1. Thus, we multiply by the inverse of T_k evaluated at

$$\frac{L+\mu}{L-\mu}, \qquad \text{ensuring that} \qquad P_k(0) = T_k \left(\frac{L+\mu-0}{L-\mu}\right) \cdot T_k \left(\frac{L+\mu}{L-\mu}\right)^{-1} = 1$$

Let's plot the rescaled Chebyshev polynomials

$$P_k(a) = T_k \left(\frac{L+\mu-2a}{L-\mu} \right) \cdot T_k \left(\frac{L+\mu}{L-\mu} \right)^{-1}$$

and observe, that they are much better behaved than the naive polynomials in terms of the magnitude in the interval $[\mu, L]$.

We can see, that the maximum value of the Chebyshev polynomial on the interval $[\mu, L]$ is achieved at the point $a = \mu$. Therefore, we can use the following upper bound:

$$\|P_k(A)\|_2 \le P_k(\mu) = T_k \left(\frac{L+\mu-2\mu}{L-\mu}\right) \cdot T_k \left(\frac{L+\mu}{L-\mu}\right)^{-1} = T_k\left(1\right) \cdot T_k \left(\frac{L+\mu}{L-\mu}\right)^{-1} = T_k \left(\frac{L+\mu}{L-\mu}\right)^{-1}$$

We can see, that the maximum value of the Chebyshev polynomial on the interval $[\mu, L]$ is achieved at the point $a = \mu$. Therefore, we can use the following upper bound:

$$\|P_k(A)\|_2 \le P_k(\mu) = T_k \left(\frac{L+\mu-2\mu}{L-\mu}\right) \cdot T_k \left(\frac{L+\mu}{L-\mu}\right)^{-1} = T_k\left(1\right) \cdot T_k \left(\frac{L+\mu}{L-\mu}\right)^{-1} = T_k \left(\frac{L+\mu}{L-\mu}\right)^{-1}$$

Using the definition of condition number $\varkappa = \frac{L}{\mu}$, we get:

$$\|P_k(A)\|_2 \le T_k \left(\frac{\varkappa + 1}{\varkappa - 1}\right)^{-1} = T_k \left(1 + \frac{2}{\varkappa - 1}\right)^{-1} = T_k \left(1 + \epsilon\right)^{-1}, \quad \epsilon = \frac{2}{\varkappa - 1}.$$

We can see, that the maximum value of the Chebyshev polynomial on the interval $[\mu, L]$ is achieved at the point $a = \mu$. Therefore, we can use the following upper bound:

$$\|P_k(A)\|_2 \le P_k(\mu) = T_k \left(\frac{L+\mu-2\mu}{L-\mu}\right) \cdot T_k \left(\frac{L+\mu}{L-\mu}\right)^{-1} = T_k(1) \cdot T_k \left(\frac{L+\mu}{L-\mu}\right)^{-1} = T_k \left(\frac{L+\mu}{L-\mu}\right)^{-1}$$

Using the definition of condition number $\varkappa = \frac{L}{\mu}$, we get:

$$\|P_k(A)\|_2 \le T_k \left(\frac{\varkappa + 1}{\varkappa - 1}\right)^{-1} = T_k \left(1 + \frac{2}{\varkappa - 1}\right)^{-1} = T_k \left(1 + \epsilon\right)^{-1}, \quad \epsilon = \frac{2}{\varkappa - 1}.$$

Therefore, we only need to understand the value of T_k at $1 + \epsilon$. This is where the acceleration comes from. We will bound this value with $\mathcal{O}\left(\frac{1}{\sqrt{\epsilon}}\right)$.

To upper bound $|P_k|,$ we need to lower bound $|T_k(1+\epsilon)|.$

To upper bound $|P_k|\text{, we need to lower bound }|T_k(1+\epsilon)|.$

1. For any $x\geq 1,$ the Chebyshev polynomial of the first kind can be written as

$$\begin{split} T_k(x) &= \cosh\left(k \operatorname{arccosh}(x)\right) \\ T_k(1+\epsilon) &= \cosh\left(k \operatorname{arccosh}(1+\epsilon)\right). \end{split}$$

To upper bound $|P_k|\text{, we need to lower bound }|T_k(1+\epsilon)|.$

1. For any $x\geq 1,$ the Chebyshev polynomial of the first kind can be written as

$$\begin{split} T_k(x) &= \cosh\left(k \operatorname{arccosh}(x)\right) \\ T_k(1+\epsilon) &= \cosh\left(k \operatorname{arccosh}(1+\epsilon)\right). \end{split}$$

$$\cosh(x) = \frac{e^x + e^{-x}}{2} \quad \operatorname{arccosh}(x) = \ln(x + \sqrt{x^2 - 1}).$$

To upper bound $|P_k|\text{, we need to lower bound }|T_k(1+\epsilon)|.$

1. For any $x\geq 1,$ the Chebyshev polynomial of the first kind can be written as

$$\begin{split} T_k(x) &= \cosh\left(k \operatorname{arccosh}(x)\right) \\ T_k(1+\epsilon) &= \cosh\left(k \operatorname{arccosh}(1+\epsilon)\right). \end{split}$$

$$\cosh(x)=\frac{e^x+e^{-x}}{2}\quad \mathrm{arccosh}(x)=\ln(x+\sqrt{x^2-1}).$$

3. Now, letting $\phi = \operatorname{arccosh}(1 + \epsilon)$,

$$e^{\phi} = 1 + \epsilon + \sqrt{2\epsilon + \epsilon^2} \ge 1 + \sqrt{\epsilon}.$$

To upper bound $|P_k|\text{, we need to lower bound }|T_k(1+\epsilon)|.$

1. For any $x \ge 1$, the Chebyshev polynomial of the first kind can be written as

$$\begin{split} T_k(x) &= \cosh\left(k \operatorname{arccosh}(x)\right) \\ T_k(1+\epsilon) &= \cosh\left(k \operatorname{arccosh}(1+\epsilon)\right). \end{split}$$

$$\cosh(x)=\frac{e^x+e^{-x}}{2}\quad \mathrm{arccosh}(x)=\ln(x+\sqrt{x^2-1}).$$

3. Now, letting $\phi = \operatorname{arccosh}(1 + \epsilon)$,

 $e^{\phi} = 1 + \epsilon + \sqrt{2\epsilon + \epsilon^2} \ge 1 + \sqrt{\epsilon}.$

Therefore,

$$\begin{split} T_k(1+\epsilon) &= \cosh\left(k \operatorname{arccosh}(1+\epsilon)\right) \\ &= \cosh\left(k\phi\right) \\ &= \frac{e^{k\phi}+e^{-k\phi}}{2} \geq \frac{e^{k\phi}}{2} \\ &= \frac{\left(1+\sqrt{\epsilon}\right)^k}{2}. \end{split}$$

To upper bound $|P_k|\text{, we need to lower bound }|T_k(1+\epsilon)|.$

1. For any $x \geq 1,$ the Chebyshev polynomial of the first kind can be written as

$$\begin{split} T_k(x) &= \cosh\left(k \operatorname{arccosh}(x)\right) \\ T_k(1+\epsilon) &= \cosh\left(k \operatorname{arccosh}(1+\epsilon)\right). \end{split}$$

$$\cosh(x)=\frac{e^x+e^{-x}}{2}\quad \mathrm{arccosh}(x)=\ln(x{+}\sqrt{x^2-1})$$

3. Now, letting $\phi = \operatorname{arccosh}(1 + \epsilon)$,

 $e^{\phi} = 1 + \epsilon + \sqrt{2\epsilon + \epsilon^2} \ge 1 + \sqrt{\epsilon}.$

4. Therefore,

$$\begin{split} T_k(1+\epsilon) &= \cosh\left(k \operatorname{arccosh}(1+\epsilon)\right) \\ &= \cosh\left(k\phi\right) \\ &= \frac{e^{k\phi}+e^{-k\phi}}{2} \geq \frac{e^{k\phi}}{2} \\ &= \frac{\left(1+\sqrt{\epsilon}\right)^k}{2}. \end{split}$$

5. Finally, we get:

$$\begin{split} \|e_k\| &\leq \|P_k(A)\| \|e_0\| \leq \frac{2}{\left(1+\sqrt{\epsilon}\right)^k} \|e_0\| \\ &\leq 2 \left(1+\sqrt{\frac{2}{\varkappa-1}}\right)^{-k} \|e_0\| \\ &\leq 2 \exp\left(-\sqrt{\frac{2}{\varkappa-1}}k\right) \|e_0\| \end{split}$$

 $f \to \min_{x,y,z}$ Acceleration for quadratics

♥ O Ø 23

Due to the recursive definition of the Chebyshev polynomials, we directly obtain an iterative acceleration scheme. Reformulating the recurrence in terms of our rescaled Chebyshev polynomials, we obtain:

$$T_{k+1}(x) = 2xT_k(x) - T_{k-1}(x)$$

Given the fact, that $x = \frac{L+\mu-2a}{L-\mu}$, and:

$$\begin{split} P_k(a) &= T_k \left(\frac{L+\mu-2a}{L-\mu} \right) T_k \left(\frac{L+\mu}{L-\mu} \right)^- \\ T_k \left(\frac{L+\mu-2a}{L-\mu} \right) &= P_k(a) T_k \left(\frac{L+\mu}{L-\mu} \right) \end{split}$$

Due to the recursive definition of the Chebyshev polynomials, we directly obtain an iterative acceleration scheme. Reformulating the recurrence in terms of our rescaled Chebyshev polynomials, we obtain:

$$T_{k+1}(x) = 2xT_k(x) - T_{k-1}(x) \\$$

Given the fact, that $x = \frac{L+\mu-2a}{L-\mu}$, and:

$$P_{k}(a) = T_{k} \left(\frac{L+\mu-2a}{L-\mu}\right) T_{k} \left(\frac{L+\mu}{L-\mu}\right)^{-1} \qquad T_{k-1} \left(\frac{L+\mu-2a}{L-\mu}\right) = P_{k-1}(a) T_{k-1} \left(\frac{L+\mu}{L-\mu}\right)$$

$$T_{k} \left(\frac{L+\mu-2a}{L-\mu}\right) = P_{k}(a) T_{k} \left(\frac{L+\mu}{L-\mu}\right) \qquad T_{k+1} \left(\frac{L+\mu-2a}{L-\mu}\right) = P_{k+1}(a) T_{k+1} \left(\frac{L+\mu}{L-\mu}\right)$$

$$\begin{split} P_{k+1}(a)t_{k+1} &= 2\frac{L+\mu-2a}{L-\mu}P_k(a)t_k - P_{k-1}(a)t_{k-1}, \text{ where } t_k = T_k\left(\frac{L+\mu}{L-\mu}\right)\\ P_{k+1}(a) &= 2\frac{L+\mu-2a}{L-\mu}P_k(a)\frac{t_k}{t_{k+1}} - P_{k-1}(a)\frac{t_{k-1}}{t_{k+1}} \end{split}$$

Due to the recursive definition of the Chebyshev polynomials, we directly obtain an iterative acceleration scheme. Reformulating the recurrence in terms of our rescaled Chebyshev polynomials, we obtain:

$$T_{k+1}(x) = 2xT_k(x) - T_{k-1}(x)$$

Given the fact, that $x = \frac{L+\mu-2a}{L-\mu}$, and:

$$P_{k}(a) = T_{k} \left(\frac{L+\mu-2a}{L-\mu}\right) T_{k} \left(\frac{L+\mu}{L-\mu}\right)^{-1} \qquad T_{k-1} \left(\frac{L+\mu-2a}{L-\mu}\right) = P_{k-1}(a) T_{k-1} \left(\frac{L+\mu}{L-\mu}\right)$$

$$T_{k} \left(\frac{L+\mu-2a}{L-\mu}\right) = P_{k}(a) T_{k} \left(\frac{L+\mu}{L-\mu}\right) \qquad T_{k+1} \left(\frac{L+\mu-2a}{L-\mu}\right) = P_{k+1}(a) T_{k+1} \left(\frac{L+\mu}{L-\mu}\right)$$

$$\begin{split} P_{k+1}(a)t_{k+1} &= 2\frac{L+\mu-2a}{L-\mu}P_k(a)t_k - P_{k-1}(a)t_{k-1}, \text{ where } t_k = T_k\left(\frac{L+\mu}{L-\mu}\right) \\ P_{k+1}(a) &= 2\frac{L+\mu-2a}{L-\mu}P_k(a)\frac{t_k}{t_{k+1}} - P_{k-1}(a)\frac{t_{k-1}}{t_{k+1}} \end{split}$$

Since we have $P_{k+1}(0) = P_k(0) = P_{k-1}(0) = 1$, we can find the method in the following form:

$$P_{k+1}(a) = \left(1 - \alpha_k a \right) P_k(a) + \beta_k \left(P_k(a) - P_{k-1}(a) \right).$$

 $f \rightarrow \min_{x,y,z}$ Acceleration for quadratics

Rearranging the terms, we get:

$$\begin{split} P_{k+1}(a) &= (1+\beta_k)P_k(a) - \alpha_k a P_k(a) - \beta_k P_{k-1}(a), \\ P_{k+1}(a) &= 2\frac{L+\mu}{L-\mu}\frac{t_k}{t_{k+1}}P_k(a) - \frac{4a}{L-\mu}\frac{t_k}{t_{k+1}}P_k(a) - \frac{t_{k-1}}{t_{k+1}}P_{k-1}(a) \end{split}$$

Rearranging the terms, we get:

$$\begin{split} P_{k+1}(a) &= (1+\beta_k) P_k(a) - \alpha_k a P_k(a) - \beta_k P_{k-1}(a), \\ P_{k+1}(a) &= 2 \frac{L+\mu}{L-\mu} \frac{t_k}{t_{k+1}} P_k(a) - \frac{4a}{L-\mu} \frac{t_k}{t_{k+1}} P_k(a) - \frac{t_{k-1}}{t_{k+1}} P_{k-1}(a) \end{split}$$

$$\begin{cases} \beta_k = \frac{t_{k-1}}{t_{k+1}}, \\ \alpha_k = \frac{4}{L-\mu} \frac{t_k}{t_{k+1}}, \\ 1+\beta_k = 2 \frac{L+\mu}{L-\mu} \frac{t_k}{t_{k+1}} \end{cases}$$

 $\begin{array}{l} \text{Rearranging the terms, we get:} \\ P_{k+1}(a) &= (1+\beta_k)P_k(a) - \alpha_k a P_k(a) - \beta_k P_{k-1}(a), \\ P_{k+1}(a) &= 2\frac{L+\mu}{L-\mu}\frac{t_k}{t_{k+1}}P_k(a) - \frac{4a}{L-\mu}\frac{t_k}{t_{k+1}}P_k(a) - \frac{t_{k-1}}{t_{k+1}}P_{k-1}(a) \end{array} \qquad \begin{cases} \beta_k &= \frac{t_{k-1}}{t_{k+1}}, \\ \alpha_k &= \frac{4}{L-\mu}\frac{t_k}{t_{k+1}}, \\ 1+\beta_k &= 2\frac{L+\mu}{L-\mu}\frac{t_k}{t_{k+1}} \end{cases} \end{cases}$

We are almost done :) We remember, that $e_{k+1} = P_{k+1}(A)e_0$. Note also, that we work with the quadratic problem, so we can assume $x^* = 0$ without loss of generality. In this case, $e_0 = x_0$ and $e_{k+1} = x_{k+1}$.

$$\begin{split} x_{k+1} &= P_{k+1}(A)x_0 = (I - \alpha_k A)P_k(A)x_0 + \beta_k \left(P_k(A) - P_{k-1}(A)\right)x_0 \\ &= (I - \alpha_k A)x_k + \beta_k \left(x_k - x_{k-1}\right) \end{split}$$

 $\begin{array}{l} \text{Rearranging the terms, we get:} \\ P_{k+1}(a) &= (1+\beta_k)P_k(a) - \alpha_k a P_k(a) - \beta_k P_{k-1}(a), \\ P_{k+1}(a) &= 2\frac{L+\mu}{L-\mu}\frac{t_k}{t_{k+1}}P_k(a) - \frac{4a}{L-\mu}\frac{t_k}{t_{k+1}}P_k(a) - \frac{t_{k-1}}{t_{k+1}}P_{k-1}(a) \end{array} \qquad \begin{cases} \beta_k &= \frac{t_{k-1}}{t_{k+1}}, \\ \alpha_k &= \frac{4}{L-\mu}\frac{t_k}{t_{k+1}}, \\ 1+\beta_k &= 2\frac{L+\mu}{L-\mu}\frac{t_k}{t_{k+1}} \end{cases} \end{cases}$

We are almost done :) We remember, that $e_{k+1} = P_{k+1}(A)e_0$. Note also, that we work with the quadratic problem, so we can assume $x^* = 0$ without loss of generality. In this case, $e_0 = x_0$ and $e_{k+1} = x_{k+1}$.

$$\begin{split} x_{k+1} &= P_{k+1}(A)x_0 = (I - \alpha_k A)P_k(A)x_0 + \beta_k \left(P_k(A) - P_{k-1}(A)\right)x_0 \\ &= (I - \alpha_k A)x_k + \beta_k \left(x_k - x_{k-1}\right) \end{split}$$

For quadratic problem, we have $\nabla f(x_k) = A x_k$, so we can rewrite the update as:

$$x_{k+1} = x_k - \alpha_k \nabla f(x_k) + \beta_k \left(x_k - x_{k-1} \right)$$

Acceleration from the first principles

Acceleration for guadratics

♥ ೧ Ø 26

Heavy ball

Oscillations and acceleration

Let's introduce the idea of momentum, proposed by Polyak in 1964. Recall that the momentum update is

$$x^{k+1} = x^k - \alpha \nabla f(x^k) + \beta (x^k - x^{k-1}).$$

 $f \rightarrow \min_{x,y,z}$ Heavy ball

Let's introduce the idea of momentum, proposed by Polyak in 1964. Recall that the momentum update is

$$x^{k+1} = x^k - \alpha \nabla f(x^k) + \beta (x^k - x^{k-1}).$$

Which is in our (quadratics) case is

$$\hat{x}_{k+1} = \hat{x}_k - \alpha \Lambda \hat{x}_k + \beta (\hat{x}_k - \hat{x}_{k-1}) = (I - \alpha \Lambda + \beta I) \hat{x}_k - \beta \hat{x}_{k-1}$$

Let's introduce the idea of momentum, proposed by Polyak in 1964. Recall that the momentum update is

$$x^{k+1} = x^k - \alpha \nabla f(x^k) + \beta (x^k - x^{k-1}).$$

Which is in our (quadratics) case is

$$\hat{x}_{k+1} = \hat{x}_k - \alpha \Lambda \hat{x}_k + \beta (\hat{x}_k - \hat{x}_{k-1}) = (I - \alpha \Lambda + \beta I) \hat{x}_k - \beta \hat{x}_{k-1}$$

This can be rewritten as follows

$$\begin{split} \hat{x}_{k+1} &= (I - \alpha \Lambda + \beta I) \hat{x}_k - \beta \hat{x}_{k-1}, \\ \hat{x}_k &= \hat{x}_k. \end{split}$$

Heavy ball

 $f \to \min_{x,y,z}$

Let's introduce the idea of momentum, proposed by Polyak in 1964. Recall that the momentum update is

$$x^{k+1} = x^k - \alpha \nabla f(x^k) + \beta (x^k - x^{k-1}).$$

Which is in our (quadratics) case is

$$\hat{x}_{k+1} = \hat{x}_k - \alpha \Lambda \hat{x}_k + \beta (\hat{x}_k - \hat{x}_{k-1}) = (I - \alpha \Lambda + \beta I) \hat{x}_k - \beta \hat{x}_{k-1}$$

This can be rewritten as follows

$$\begin{split} \hat{x}_{k+1} &= (I - \alpha \Lambda + \beta I) \hat{x}_k - \beta \hat{x}_{k-1}, \\ \hat{x}_k &= \hat{x}_k. \end{split}$$

Let's use the following notation $\hat{z}_k = \begin{bmatrix} \hat{x}_{k+1} \\ \hat{x}_k \end{bmatrix}$. Therefore $\hat{z}_{k+1} = M \hat{z}_k$, where the iteration matrix M is:

-4

Let's introduce the idea of momentum, proposed by Polyak in 1964. Recall that the momentum update is

$$x^{k+1} = x^k - \alpha \nabla f(x^k) + \beta (x^k - x^{k-1}).$$

Which is in our (quadratics) case is

$$\hat{x}_{k+1} = \hat{x}_k - \alpha \Lambda \hat{x}_k + \beta (\hat{x}_k - \hat{x}_{k-1}) = (I - \alpha \Lambda + \beta I) \hat{x}_k - \beta \hat{x}_{k-1}$$

This can be rewritten as follows

$$\begin{split} \hat{x}_{k+1} &= (I - \alpha \Lambda + \beta I) \hat{x}_k - \beta \hat{x}_{k-1}, \\ \hat{x}_k &= \hat{x}_k. \end{split}$$

Let's use the following notation $\hat{z}_k = \begin{bmatrix} \hat{x}_{k+1} \\ \hat{x}_k \end{bmatrix}$. Therefore $\hat{z}_{k+1} = M \hat{z}_k$, where the iteration matrix M is:

$$M = \begin{bmatrix} I - \alpha \Lambda + \beta I & -\beta I \\ I & 0_d \end{bmatrix}.$$

 $f \to \min_{x,y,z}$

-4

Note, that M is $2d \times 2d$ matrix with 4 block-diagonal matrices of size $d \times d$ inside. It means, that we can rearrange the order of coordinates to make M block-diagonal in the following form. Note that in the equation below, the matrix M denotes the same as in the notation above, except for the described permutation of rows and columns. We use this slight abuse of notation for the sake of clarity.

Note, that M is $2d \times 2d$ matrix with 4 block-diagonal matrices of size $d \times d$ inside. It means, that we can rearrange the order of coordinates to make M block-diagonal in the following form. Note that in the equation below, the matrix M denotes the same as in the notation above, except for the described permutation of rows and columns. We use this slight abuse of notation for the sake of clarity.

Figure 1: Illustration of matrix ${\cal M}$ rearrangement

where $\hat{x}_k^{(i)}$ is *i*-th coordinate of vector $\hat{x}_k \in \mathbb{R}^d$ and M_i stands for 2×2 matrix. This rearrangement allows us to study the dynamics of the method independently for each dimension. One may observe, that the asymptotic convergence rate of the 2d-dimensional vector sequence of \hat{z}_k is defined by the worst convergence rate among its block of coordinates. Thus, it is enough to study the optimization in a one-dimensional case.

For *i*-th coordinate with λ_i as an *i*-th eigenvalue of matrix W we have:

$$M_i = \begin{bmatrix} 1 - \alpha \lambda_i + \beta & -\beta \\ 1 & 0 \end{bmatrix}.$$

For *i*-th coordinate with λ_i as an *i*-th eigenvalue of matrix W we have:

$$M_i = \begin{bmatrix} 1 - \alpha \lambda_i + \beta & -\beta \\ 1 & 0 \end{bmatrix}$$

The method will be convergent if $\rho(M) < 1$, and the optimal parameters can be computed by optimizing the spectral radius

$$\alpha^*, \beta^* = \arg\min_{\alpha, \beta} \max_i \rho(M_i) \quad \alpha^* = \frac{4}{(\sqrt{L} + \sqrt{\mu})^2}; \quad \beta^* = \left(\frac{\sqrt{L} - \sqrt{\mu}}{\sqrt{L} + \sqrt{\mu}}\right)^2$$

For *i*-th coordinate with λ_i as an *i*-th eigenvalue of matrix W we have:

$$M_i = \begin{bmatrix} 1 - \alpha \lambda_i + \beta & -\beta \\ 1 & 0 \end{bmatrix}$$

The method will be convergent if $\rho(M) < 1$, and the optimal parameters can be computed by optimizing the spectral radius

$$\alpha^*, \beta^* = \arg\min_{\alpha, \beta} \max_i \rho(M_i) \quad \alpha^* = \frac{4}{(\sqrt{L} + \sqrt{\mu})^2}; \quad \beta^* = \left(\frac{\sqrt{L} - \sqrt{\mu}}{\sqrt{L} + \sqrt{\mu}}\right)^2$$

It can be shown, that for such parameters the matrix M has complex eigenvalues, which forms a conjugate pair, so the distance to the optimum (in this case, $||z_k||$), generally, will not go to zero monotonically.

Heavy ball quadratic convergence

We can explicitly calculate the eigenvalues of M_i :

$$\lambda_1^M, \lambda_2^M = \lambda \left(\begin{bmatrix} 1 - \alpha \lambda_i + \beta & -\beta \\ 1 & 0 \end{bmatrix} \right) = \frac{1 + \beta - \alpha \lambda_i \pm \sqrt{(1 + \beta - \alpha \lambda_i)^2 - 4\beta}}{2}.$$

Heavy ball quadratic convergence

We can explicitly calculate the eigenvalues of M_i :

$$\lambda_1^M, \lambda_2^M = \lambda \left(\begin{bmatrix} 1 - \alpha \lambda_i + \beta & -\beta \\ 1 & 0 \end{bmatrix} \right) = \frac{1 + \beta - \alpha \lambda_i \pm \sqrt{(1 + \beta - \alpha \lambda_i)^2 - 4\beta}}{2}.$$

When α and β are optimal (α^*, β^*), the eigenvalues are complex-conjugated pair $(1 + \beta - \alpha \lambda_i)^2 - 4\beta \leq 0$, i.e. $\beta \geq (1 - \sqrt{\alpha \lambda_i})^2$.

Heavy ball quadratic convergence

We can explicitly calculate the eigenvalues of M_i :

$$\lambda_1^M, \lambda_2^M = \lambda \left(\begin{bmatrix} 1 - \alpha \lambda_i + \beta & -\beta \\ 1 & 0 \end{bmatrix} \right) = \frac{1 + \beta - \alpha \lambda_i \pm \sqrt{(1 + \beta - \alpha \lambda_i)^2 - 4\beta}}{2}.$$

When α and β are optimal (α^*, β^*), the eigenvalues are complex-conjugated pair $(1 + \beta - \alpha \lambda_i)^2 - 4\beta \leq 0$, i.e. $\beta \geq (1 - \sqrt{\alpha \lambda_i})^2$.

$$\operatorname{Re}(\lambda^M) = \frac{L+\mu-2\lambda_i}{(\sqrt{L}+\sqrt{\mu})^2}; \quad \operatorname{Im}(\lambda^M) = \frac{\pm 2\sqrt{(L-\lambda_i)(\lambda_i-\mu)}}{(\sqrt{L}+\sqrt{\mu})^2}; \quad |\lambda^M| = \frac{L-\mu}{(\sqrt{L}+\sqrt{\mu})^2}$$

Heavy ball quadratic convergence

We can explicitly calculate the eigenvalues of M_i :

$$\lambda_1^M, \lambda_2^M = \lambda \left(\begin{bmatrix} 1 - \alpha \lambda_i + \beta & -\beta \\ 1 & 0 \end{bmatrix} \right) = \frac{1 + \beta - \alpha \lambda_i \pm \sqrt{(1 + \beta - \alpha \lambda_i)^2 - 4\beta}}{2}.$$

When α and β are optimal (α^*, β^*), the eigenvalues are complex-conjugated pair $(1 + \beta - \alpha \lambda_i)^2 - 4\beta \leq 0$, i.e. $\beta \geq (1 - \sqrt{\alpha \lambda_i})^2$.

$$\mathsf{Re}(\lambda^M) = \frac{L+\mu-2\lambda_i}{(\sqrt{L}+\sqrt{\mu})^2}; \quad \mathsf{Im}(\lambda^M) = \frac{\pm 2\sqrt{(L-\lambda_i)(\lambda_i-\mu)}}{(\sqrt{L}+\sqrt{\mu})^2}; \quad |\lambda^M| = \frac{L-\mu}{(\sqrt{L}+\sqrt{\mu})^2}$$

And the convergence rate does not depend on the stepsize and equals to $\sqrt{\beta^*}$.

Heavy Ball quadratics convergence

i Theorem

Assume that f is quadratic μ -strongly convex L-smooth quadratics, then Heavy Ball method with parameters

$$\alpha = \frac{4}{(\sqrt{L} + \sqrt{\mu})^2}, \beta = \left(\frac{\sqrt{L} - \sqrt{\mu}}{\sqrt{L} + \sqrt{\mu}}\right)^2$$

converges linearly:

$$\|x_k-x^*\|_2 \leq \left(\frac{\sqrt{\kappa}-1}{\sqrt{\kappa}+1}\right)^k \|x_0-x^*\|$$

Heavy Ball Global Convergence ³

i Theorem

Assume that f is smooth and convex and that

$$\beta \in [0,1), \quad \alpha \in \left(0, \frac{2(1-\beta)}{L}\right).$$

Then, the sequence $\{x_k\}$ generated by Heavy-ball iteration satisfies

$$f(\overline{x}_T) - f^\star \leq \begin{cases} \frac{\|x_0 - x^\star\|^2}{2(T+1)} \left(\frac{L\beta}{1-\beta} + \frac{1-\beta}{\alpha}\right), & \text{if } \alpha \in \left(0, \frac{1-\beta}{L}\right], \\ \frac{\|x_0 - x^\star\|^2}{2(T+1)(2(1-\beta) - \alpha L)} \left(L\beta + \frac{(1-\beta)^2}{\alpha}\right), & \text{if } \alpha \in \left[\frac{1-\beta}{L}, \frac{2(1-\beta)}{L}\right) \end{cases}$$

where \overline{x}_{T} is the Cesaro average of the iterates, i.e.,

$$\overline{x}_T = \frac{1}{T+1} \sum_{k=0}^T x_k.$$

³Global convergence of the Heavy-ball method for convex optimization, Euhanna Ghadimi et.al.

 $f \rightarrow \min_{x,y,z}$ Heavy ball

Heavy Ball Global Convergence ⁴

i Theorem

Assume that f is smooth and strongly convex and that

$$\alpha \in (0,\frac{2}{L}), \quad 0 \leq \beta < \frac{1}{2} \bigg(\frac{\mu \alpha}{2} + \sqrt{\frac{\mu^2 \alpha^2}{4} + 4(1 - \frac{\alpha L}{2})} \bigg).$$

Then, the sequence $\{x_k\}$ generated by Heavy-ball iteration converges linearly to a unique optimizer $x^\star.$ In particular,

$$f(x_k)-f^\star \leq q^k(f(x_0)-f^\star),$$

where $q \in [0, 1)$.

 $f \rightarrow \min_{x,y,z}$ Heavy ball

⁴Global convergence of the Heavy-ball method for convex optimization, Euhanna Ghadimi et.al.

• Ensures accelerated convergence for strongly convex quadratic problems

- Ensures accelerated convergence for strongly convex quadratic problems
- Local accelerated convergence was proved in the original paper.

Heavy ball method summary

- Ensures accelerated convergence for strongly convex quadratic problems
- Local accelerated convergence was proved in the original paper.
- Recently ⁵ was proved, that there is no global accelerated convergence for the method.

⁵Provable non-accelerations of the heavy-ball method

Heavy ball method summary

- Ensures accelerated convergence for strongly convex quadratic problems
- Local accelerated convergence was proved in the original paper.
- Recently ⁵ was proved, that there is no global accelerated convergence for the method.
- Method was not extremely popular until the ML boom

⁵Provable non-accelerations of the heavy-ball method

Heavy ball method summary

- Ensures accelerated convergence for strongly convex quadratic problems
- Local accelerated convergence was proved in the original paper.
- Recently ⁵ was proved, that there is no global accelerated convergence for the method.
- Method was not extremely popular until the ML boom
- Nowadays, it is de-facto standard for practical acceleration of gradient methods, even for the non-convex problems (neural network training)

⁵Provable non-accelerations of the heavy-ball method

Nesterov accelerated gradient

The concept of Nesterov Accelerated Gradient method

$$x_{k+1} = x_k - \alpha \nabla f(x_k) \qquad x_{k+1} = x_k - \alpha \nabla f(x_k) + \beta (x_k - x_{k-1}) \qquad \begin{cases} y_{k+1} = x_k + \beta (x_k - x_{k-1}) \\ x_{k+1} = y_{k+1} - \alpha \nabla f(y_{k+1}) \end{cases}$$

The concept of Nesterov Accelerated Gradient method

$$x_{k+1} = x_k - \alpha \nabla f(x_k) \qquad x_{k+1} = x_k - \alpha \nabla f(x_k) + \beta (x_k - x_{k-1})$$

Let's define the following notation

$$\begin{array}{ll} x^+ = x - \alpha \nabla f(x) & \mbox{Gradient step} \\ d_k = \beta_k (x_k - x_{k-1}) & \mbox{Momentum term} \end{array}$$

Then we can write down:

$$\begin{array}{ll} x_{k+1} = x_k^+ & \mbox{Gradient Descent} \\ x_{k+1} = x_k^+ + d_k & \mbox{Heavy Ball} \\ x_{k+1} = (x_k + d_k)^+ & \mbox{Nesterov accelerated gradient} \end{array}$$

$$\begin{cases} y_{k+1} = x_k + \beta(x_k - x_{k-1}) \\ x_{k+1} = y_{k+1} - \alpha \nabla f(y_{k+1}) \\ \text{Polyak momentum} \end{cases}$$

General case convergence

i Theorem

Let $f : \mathbb{R}^n \to \mathbb{R}$ is convex and *L*-smooth. The Nesterov Accelerated Gradient Descent (NAG) algorithm is designed to solve the minimization problem starting with an initial point $x_0 = y_0 \in \mathbb{R}^n$ and $\lambda_0 = 0$. The algorithm iterates the following steps:

The sequences $\{f(y_k)\}_{k\in\mathbb{N}}$ produced by the algorithm will converge to the optimal value f^* at the rate of $\mathcal{O}\left(\frac{1}{k^2}\right)$, specifically:

$$f(y_k) - f^* \leq \frac{2L\|x_0 - x^*\|^2}{k^2}$$

General case convergence

i Theorem

Let $f : \mathbb{R}^n \to \mathbb{R}$ is μ -strongly convex and L-smooth. The Nesterov Accelerated Gradient Descent (NAG) algorithm is designed to solve the minimization problem starting with an initial point $x_0 = y_0 \in \mathbb{R}^n$ and $\lambda_0 = 0$. The algorithm iterates the following steps:

 $\begin{array}{ll} \mbox{Gradient update:} & y_{k+1} = x_k - \frac{1}{L} \nabla f(x_k) \\ \mbox{Extrapolation:} & x_{k+1} = (1+\gamma_k) y_{k+1} - \gamma_k y_k \\ \mbox{Extrapolation weight:} & \gamma_k = \frac{\sqrt{L} - \sqrt{\mu}}{\sqrt{L} + \sqrt{\mu}} \end{array}$

The sequences $\{f(y_k)\}_{k\in\mathbb{N}}$ produced by the algorithm will converge to the optimal value f^* linearly:

$$f(y_k)-f^* \leq \frac{\mu+L}{2}\|x_0-x^*\|_2^2 \exp\left(-\frac{k}{\sqrt{\kappa}}\right)$$

Numerical experiments

Convex quadratics (aka linear regression)

Convex quadratics: n=60, random matrix, μ =0, L=10

♥ O Ø 42

Strongly convex quadratics (aka regularized linear regression)

Strongly convex quadratics: n=60, random matrix, $\mu=1$, L=10

Strongly convex quadratics (aka regularized linear regression)

Strongly convex quadratics: n=60, random matrix, μ =1, L=1000

Strongly convex quadratics (aka regularized linear regression)

