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Recap of Gradient Descent convergence

Gradient Descent: m}}@n f(x) R = 2k — PV f(2F)
zeR™
convex (non-smooth) smooth (non-convex) smooth & convex smooth & strongly convex (or PL)
1 1 1 G
kY _ px _ EV(I2 ~ - kY _ - k _ %2 _~
e =r~o( ) IAE~o () s-rao(p) ke ao((1-4))
1 1 1 1
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Recap of Gradient Descent convergence

Gradient Descent: m}}@n f(x) R = 2k — PV f(2F)
zeR™
convex (non-smooth) smooth (non-convex) smooth & convex smooth & strongly convex (or PL)
1 1 1 G
kY _ px _ EV(I2 ~ - kY _ - k _ %2 _~
e =r~o( ) IAE~o () s-rao(p) ke ao((1-4))
1 1 1 1
k~0(z) ko () k~o () ke~ 0 (vlox )
For smooth strongly convex we have:
k
kY _ f* < _ ﬁ 0) __ fx
fa =< (1=5) () - ).
Note also, that for any z, since e™* is convex and 1 — z is
its tangent line at z = 0, we have:
1l—zx<e™®
0 O
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Recap of Gradient Descent convergence

Gradient Descent: m}}@n f(x) R = 2k — PV f(2F)
zeR™
convex (non-smooth) smooth (non-convex) smooth & convex smooth & strongly convex (or PL)
1 1 1 wNF
kY _ px _ EV(I2 ~ - kY _ - k _ %2 _~
e =r~o( ) IAE~o () s-rao(p) ke ao((1-4))
1 1 1 1
For smooth strongly convex we have: Finally we have
k k
k_*< _ﬁ 0\ _ px* — kE_*< _ﬁg 0y _ px*
fa =< (1=5) () - ). e=fat) - < (1=2) (@)= f)
Note also, that for any z, since e™* is convex and 1 — z is < exp (*@%) (f(2°) = f*)
its tangent line at 2 = 0, we have: Fa) — f* 1
lz<ew kszwlogiz(D(%logg)
0
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Recap of Gradient Descent convergence

Gradient Descent: m}}@n f(x) R = 2k — PV f(2F)
zeR™
convex (non-smooth) smooth (non-convex) smooth & convex smooth & strongly convex (or PL)
1 1 1 Nk
kY _ px _ EV(I2 ~ - kY _ - k _ %2 _~
e =r~o( ) IAE~o () s-rao(p) ke ao((1-4))
1 1 1 1
For smooth strongly convex we have: Finally we have
k k
k_*< _ﬁ 0\ _ px* — kE_*< _ﬁg 0y _ px*
fa =< (1=5) () - ). e=fat) - < (1=2) (@)= f)
Note also, that for any z, since e™* is convex and 1 — z is < exp (*@%) (f(2°) = f*)
its tangent line at 2 = 0, we have: Fa) — f* 1
lz<ew kszwlogiz(D(%logg)
Question: Can we do faster, than this using the first-order information?
0
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Recap of Gradient Descent convergence

Gradient Descent: m}}@n f(x) R = 2k — PV f(2F)
zeR™

smooth & strongly convex (or PL)

e -r~o(2)  WieE~o () fe-ro(h) e mer~o((1-5))
k5~0<i> kgwo(l) k€~(9<§> ksN0<%1og§)

g2 €

convex (non-smooth) smooth (non-convex) smooth & convex

For smooth strongly convex we have: Finally we have

k k
kY _ fx _ ﬁ 0\ _ px* — koY p* _ ﬁ N 0y _ px*
fa =< (1=5) () - ). e=fat) - < (1=2) (@)= f)
Note also, that for any z, since e™* is convex and 1 — z is < exp (*h%) (f(ﬂUO) -
its tangent line at 2 = 0, we have: Fa) — f* 1
_ k€2%10g7:(9(%10g7)
1l—zx<e™® e

Question: Can we do faster, than this using the first-order information? Yes, we can.
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Lower bounds

convex (non-smooth) smooth (non-convex)! smooth & convex? smooth & strongly convex (or PL)
k
1 1 1 m
0| —= O —= O\ —= O |1—4/=
(ﬂ) (k?) (k2> (( L) )
1 1 1 1

LCarmon, Duchi, Hinder, Sidford, 2017
2Nemirovski, Yudin, 1979
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Black box iteration

The iteration of gradient descent:

‘f - Wy‘rﬁ Lower bounds

$k+1 — le’k _ Oéka(:Bk)

=z

k—

1_

k
Zak zvf k— 1)

i=0

ak_1Vf(xk_1) _

abVf(x
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Black box iteration

The iteration of gradient descent:

xk-%—l — .Z’k _ akvf(xk)

=z

k-1 _

k
_ Zak zvf kz

7

Consider a family of first-order methods, where

k1 € 20 4 span {V f (2
2 € 2% + span {gg, gy, ...

— min
‘f 2,9,z Lower bounds

i=0

), VE(@h), ..., Vf(a*)}
» 91} where g; € O f(

AP IV F(xF ) — PV f(x

")

f - smooth

f - non-smooth
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Black box iteration

The iteration of gradient descent:
xk-%—l — .I’k _ oszf(xk)
— xk—l _ ak_1Vf(:Ek_1) _ Ockv_f(;rk)

k
_ Zak zvf k— z)
i=0

Consider a family of first-order methods, where

k€ 20 4 span {V f(2°), Vf(z!), ...,V f(zF)} f - smooth
xF 1 € 2% 4+ span{gg, 9, i}, Where g; € Of(x*)  f - non-smooth

In order to construct a lower bound, we need to find a function f from corresponding class such that any method
from the family 1 will work at least as slow as the lower bound.

lf%595‘2 Lower bounds 0 O
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Smooth case

i Theorem

There exists a function f that is L-smooth and convex such that any method 1 satisfies forany £ : 1 < k < "T’l:

3L|2° — 273

e e RN

K/AF‘J‘L Lower bounds 0 O


https://fmin.xyz
https://hse25.fmin.xyz
https://github.com/MerkulovDaniil/hse25
https://t.me/fminxyz

Smooth case

i Theorem

There exists a function f that is L-smooth and convex such that any method 1 satisfies forany £ : 1 < k < "T’l:

3L|2° — 273

fah) =1 > 32(k + 1)2

® No matter what gradient method you provide, there is always a function f that, when you apply your gradient
method on minimizing such f, the convergence rate is lower bounded as O (kl—z)

l/%?“}‘i Lower bounds 0 O
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Smooth case

i Theorem
There exists a function f that is L-smooth and convex such that any method 1 satisfies forany £ : 1 < k < "T’l:
3L[2" —2*|3

fah) =12 32(k + 1)2

® No matter what gradient method you provide, there is always a function f that, when you apply your gradient
method on minimizing such f, the convergence rate is lower bounded as O (kl—z)
® The key to the proof is to explicitly build a special function f.

— min
‘/ 29,2 Lower bounds
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Smooth case

i Theorem

There exists a function f that is L-smooth and convex such that any method 1 satisfies forany £ : 1 < k < "T’l:

3L||20 — x*|3

k * 2

z¥) — >

f@) =1 = 32(k+1)2

® No matter what gradient method you provide, there is always a function f that, when you apply your gradient
method on minimizing such f, the convergence rate is lower bounded as O (kl—z)

® The key to the proof is to explicitly build a special function f.
® Note, that this bound O (k%) does not match the rate of gradient descent O (%) Two options possible:
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Smooth case

i Theorem

There exists a function f that is L-smooth and convex such that any method 1 satisfies forany £ : 1 < k < "T’l:

by o SLI2° — a3
L e T EE
® No matter what gradient method you provide, there is always a function f that, when you apply your gradient
method on minimizing such f, the convergence rate is lower bounded as O (kl—z)
® The key to the proof is to explicitly build a special function f.
® Note, that this bound O (k%) does not match the rate of gradient descent O (%) Two options possible:
a. The lower bound is not tight.
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Smooth case

i Theorem

There exists a function f that is L-smooth and convex such that any method 1 satisfies forany £ : 1 < k < "T’l:

3L||20 — x*|3

k * 2

I D

f@) =1 = 32(k+1)2

® No matter what gradient method you provide, there is always a function f that, when you apply your gradient
method on minimizing such f, the convergence rate is lower bounded as O (kl—z)

® The key to the proof is to explicitly build a special function f.

® Note, that this bound O (k%) does not match the rate of gradient descent O (%) Two options possible:

a. The lower bound is not tight.
b. The gradient method is not optimal for this problem.
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Smooth case

i Theorem

There exists a function f that is L-smooth and convex such that any method 1 satisfies forany k: 1 < k < "Tfl:

3L||2° — x*|3

k * 2

") — >

f@) =1 = 32(k+1)2

® No matter what gradient method you provide, there is always a function f that, when you apply your gradient
method on minimizing such f, the convergence rate is lower bounded as O (kl—z)

® The key to the proof is to explicitly build a special function f.

® Note, that this bound O (kl—z) does not match the rate of gradient descent O (%) Two options possible:

a. The lower bound is not tight.
b. The gradient method is not optimal for this problem.
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Nesterov’s worst function
® letn=2k+1and A € R™".

2 -1 0
-1 2 -1
0o -1 2
A= 0 0 -1
0 0 0

‘/ - Wy‘rﬁ Lower bounds
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Nesterov’s worst function
® letn=2k+1and A € R™".

2 -1 0 0 0
-1 2 -1 0 0
0 -1 2 —1 0
A= 0 0o -1 2 0
0 0 0 0 2
® Notice, that
n—1
el Ax = 2} +af + Z(% — )%
i=1

Therefore, z7 Az > 0. It is also easy to see that
0<A=<4I.

— min
‘/ 2,9,z Lower bounds
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Nesterov’s worst function
® letn=2k+1and A € R™".

2 -1 0 0 0
-1 2 -1 0 0
0 -1 2 —1 0
A= 0 0o -1 2 0
0 0 0 0 2
® Notice, that
n—1
el Ax = 2} +af + Z(% — )%
i=1

Therefore, z7 Az > 0. It is also easy to see that
0<A=<4I.

— min
‘/ 2,9,z Lower bounds

Example, when n = 3:
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Nesterov’s worst function
® letn=2k+1and A € R™".

2 -1 0 0 0
-1 2 -1 0 0
0 -1 2 —1 0
A= 0 0o -1 2 0
0 0 0 0 2
® Notice, that
n—1
el Ax = 2} +af + Z(% — )%
i=1

Therefore, z7 Az > 0. It is also easy to see that
0<A=<4I.

— min
‘/ 2,9,z Lower bounds

Example, when n = 3:

Lower bound:
2T Az = 222 + 222 + 222 — 27,25 — 22574
zx%+m%—2x112+x§+m§—2x2m3+x§+x§

=2+ (2 —2)* + (29 —23)° + 25 >0
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Nesterov’s worst function

® letn=2k+1and A € R, Example, when n = 3:
2 -1 0 0 0 2 -1 0
-1 2 -1 0 0 A=|-1 2 -1
A— o -1 2 -1 0 0 -1 2
10 0o -1 2 0
: : Lower bound:
6 0 0 0 2 2T Az = 222 + 222 + 222 — 27,25 — 22574
® Notice, that =23 + a2 — 2z 3y + 23 + 23 — 22514 + 23 + 22
n—l =af + (2 — ) + (25 —23)* +25 2 0
2T Az = 22 + 22 + T, — T )%,
1 n ;( % 1+1) Upper bound
Therefore, z7 Az > 0. It is also easy to see that ol Az = 227 + 223 + 225 — 23,15 — 23,575
0=<A=<4l. < 4(x? + 2%+ 22)

0 < 22? + 222 + 222 + 23,25 + 27574
0 < a?+ a2 + 23,2y + 2% + 2% + 2055 + 22 + 22

0 < af+ (2 + 39)% + (zg + 73)> + 23

lf%ﬁ}‘i Lower bounds 0 O
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Nesterov’s worst function
® Define the following L-smooth convex function: f(z) = % (327 Az — el ) = LaT Az — Lela.

‘f - Wy‘l} Lower bounds
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Nesterov’s worst function

® Define the following L-smooth convex function: f(z) = % (327 Az — el ) = LaT Az — Lela.

® The optimal solution z* satisfies Az* = e;, and solving this system of equations gives:
2 -1 0 0 0 1
-1 2 -1 0 - 0 2 0 2wt —xp =1
o -1 2 -1 - 0 2 . . . .
0 0 - + 2%, —25,,=0,i=2,...,n—1
: Ho ey 205 =0

T3 | =

0 0 0 0 - 2ftmd 10

— min
‘f 2,9,z Lower bounds
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Nesterov’s worst function

® Define the following L-smooth convex function: f(z) = % (327 Az — el ) = LaT Az — Lela.

® The optimal solution z* satisfies Az* = e;, and solving this system of equations gives:
2 -1 0 0 0 1
-1 2 -1 0 - 0 2 0 2wt —xp =1
o -1 2 -1 - 0 2 . . . .
0 0 - + 2%, —25,,=0,i=2,...,n—1
: Ho ey 205 =0

T3 | =
0 0 0 0 - 2ftmd 10

® The hypothesis: z} = a + bi (inspired by physics). Check, that the second equation is satisfied, while a and b are
computed from the first and the last equations.

— min
‘f 2,9,z Lower bounds
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Nesterov’s worst function
® Define the following L-smooth convex function: f(z) = % (327 Az — el ) = LaT Az — Lela.
® The optimal solution z* satisfies Az* = e;, and solving this system of equations gives:
2 -1 0 o0 0 1
-1 2 -1 0 - 0 5 0 2wt —xp =1
o -1 2 -1 - 0 . . . .
0 0 - + 2%, —25,,=0,i=2,...,n—1
: Ho ey 205 =0

x5 | =
0 0 0 0 - 2fd 0
® The hypothesis: z} = a + bi (inspired by physics). Check, that the second equation is satisfied, while a and b are

computed from the first and the last equations.

® The solution is:

— min
‘f 2,9,z Lower bounds
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Nesterov’s worst function

® Define the following L-smooth convex function: f(z) = % (327 Az — el ) = LaT Az — Lela.

® The optimal solution z* satisfies Az* = e;, and solving this system of equations gives:
2 -1 0 0 0 1
-1 2 -1 0 - 0 2 0 2wt —xp =1

o -1 2 -1 - 0 2l . . . .
T 0 - + 2%, —25,,=0,i=2,...,n—1
: : : D : : —xy, 1+ 227, =0
: : : : CoH e 0
0 0 0 0 - 2 "

® The hypothesis: z} = a + bi (inspired by physics). Check, that the second equation is satisfied, while a and b are
computed from the first and the last equations.

® The solution is:

® And the objective value is

fla®) = 22T Azt — Z(a*e)) = —§<x*7el) = _L (1 _ ) .

— min
‘f 2,9,z Lower bounds
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Smooth case (proof)
® Suppose, we start from ¥ = 0. Asking the
oracle for the gradient, we get g, = —e;. Then,
o1 must lie on the line generated by e,. At this
point all the components of z! are zero except

the first one, so

— min
‘/ 2,9,z Lower bounds
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Smooth case (proof)
® Suppose, we start from ¥ = 0. Asking the
oracle for the gradient, we get g, = —e;. Then,
o1 must lie on the line generated by e,. At this
point all the components of z! are zero except

the first one, so

® At the second iteration we ask the oracle again
and get g, = Ax! —e,. Then, 22 must lie on
the line generated by e; and Az' —e;. All the
components of z2 are zero except the first two,

so
2 -1 0 0 .
-1 2 -1 0 0 .
0o -1 2 of .| = 22 =0
0 0 o - 2 0 0

— min
‘/ 29,2 Lower bounds
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Smooth case (proof)
® Suppose, we start from ¥ = 0. Asking the
oracle for the gradient, we get g, = —e;. Then,
o1 must lie on the line generated by e,. At this
point all the components of z! are zero except

the first one, so

® At the second iteration we ask the oracle again
and get g, = Ax! —e,. Then, 22 must lie on
the line generated by e; and Az' —e;. All the
components of z2 are zero except the first two,

so
2 -1 0 0 .
-1 2 -1 0 0 .
0o -1 2 of .| = 22 =0
0 0 o - 2 0 0

— min
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Smooth case (proof)

® Suppose, we start from ¥ = 0. Asking the ® Due to the structure of the matrix A one can show using
oracle for the gradient, we get g, = —e;. Then, induction that after k iterations we have all the last n — k
2! must lie on the line generated by e;. At this components of z* to be zero.
point all the components of z! are zero except
the first one, so ] 1
o 2
= o
1|0 t®) = le| k

8

|
]
+
—

® At the second iteration we ask the oracle again
and get g, = Ax! —e,. Then, 22 must lie on
the line generated by e; and Az' —e;. All the
components of z2 are zero except the first two,

so
2 -1 0 0 .
-1 2 -1 0 0 .
0o -1 2 of .| = 22 =0
0 0 o - 2 0 0

lf%595‘2 Lower bounds 0 O
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Smooth case (proof)

® Suppose, we start from ¥ = 0. Asking the ® Due to the structure of the matrix A one can show using
oracle for the gradient, we get g, = —e;. Then, induction that after k iterations we have all the last n — k
2! must lie on the line generated by e;. At this components of z* to be zero.

point all the components of z! are zero except

the first one, so o] 1
o 2
° S
1 0 2% = | k
xt = .
: 0| k+1
0 o
0] n
® At the second iteration we ask the oracle again
and get g; = Az' —e;. Then, 2% must lie on ® However, since every iterate z* produced by our method
the line generated by e; and Az' —e;. All the lies in S, = span{eq, ey, ..., €.} (i.e. has zeros in the
components of 2 are zero except the first two, coordinates k + 1, ...,n), it cannot “reach” the full optimal
o) vector *. In other words, even if one were to choose the
2 _1 o0 0 - . best possible vector from S, denoted by
-1 2 -1 0 . ~k .
% = arg min f(x),
0o -1 2 0 0 =22=|0 TESy, (@)
6 0 0 2 0 0 its objective value f(Z*) will be strictly worse than f(z*).

lf%?“}‘i Lower bounds 0 O
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Smooth case (proof)

® Because ¥ € S, = span{eq, €q,...,¢.} and Z* is the best possible approximation to z* within S}, we have

F(@®) = f(@).

‘/ - Wy‘rﬁ Lower bounds 0 0

10
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Smooth case (proof)

® Because ¥ € S, = span{eq, €q,...,¢.} and Z* is the best possible approximation to z* within S}, we have
fa®) = f(@*).

® Thus, the optimality gap obeys

F@®) = f@*) = f(@*) — f(a").

‘/ - fny"; Lower bounds 0 0

10
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Smooth case (proof)

® Because ¥ € S, = span{eq, €q,...,¢.} and Z* is the best possible approximation to z* within S}, we have
fa®) = f(@*).

® Thus, the optimality gap obeys
fa®) = fa*) = f(@*) = f(a¥).

® Similarly, to the optimum of the original function, we have 7% =1 — ﬁ and f(Z%) = —é (1- ).

K/AF‘J‘L Lower bounds 0 0

10


https://fmin.xyz
https://hse25.fmin.xyz
https://github.com/MerkulovDaniil/hse25
https://t.me/fminxyz

Smooth case (proof)

® Because ¥ € S, = span{eq, €q,...,¢.} and Z* is the best possible approximation to z* within S}, we have

F(@®) = f(@).

® Thus, the optimality gap obeys

F@®) = f@*) = f(@*) — f(a").

® Similarly, to the optimum of the original function, we have frf =1- ﬁ and f(:f’“) = —é (1 — ﬁ)
® \We now have: )
f(@®) = fla*) > f(3*) — f(a¥)
K/AF‘J‘L Lower bounds
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Smooth case (proof)

® Because ¥ € S, = span{eq, €q,...,¢.} and Z* is the best possible approximation to z* within S}, we have

fa®) = f(@*).
® Thus, the optimality gap obeys
fa®) = fa*) = f(@*) = f(a¥).

® Similarly, to the optimum of the original function, we have ¥ = 1 — = and f(*) = —é (1- ).

k+1
® \We now have:
f(@®) — f(a*) > f(@%) — f(z*)

) ()

‘/%m‘; Lower bounds @0 O 10
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Smooth case (proof)

® Because ¥ € S, = span{eq, €q,...,¢.} and Z* is the best possible approximation to z* within S}, we have

fa®) = f(@*).
® Thus, the optimality gap obeys
fa®) = fa*) = f(@*) = f(a¥).

® Similarly, to the optimum of the original function, we have 7% =1 — ﬁ and f(Z%) = —é (1- ).
® We now have:

f@®) = fz*) = f(z%) - )
—%( ) - (5 0-05)
L L n—=k 2
_§<k+1*n+1> §<(k+1)(n+1)> @

— min
‘/ 2,9,z Lower bounds
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Smooth case (proof)

® Because ¥ € S, = span{eq, €q,...,¢.} and Z* is the best possible approximation to z* within S}, we have

F(@®) = f(@).

Thus, the optimality gap obeys
fa®) = fa*) = f(@*) = f(a¥).

® Similarly, to the optimum of the original function, we have 7% =1 — ﬁ and f(Z%) = —é (1— ﬁ)

We now have:

) :
:73 (Mﬁ)*(*% (1’ni1>>
n—k
(i) =3 (e e)
n=2k+1 L
T 16(k+1)

— min
‘f 2,9,z Lower bounds
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Smooth case (proof)

® Now we bound R = |2° — z*|,: We observe, that

n i \2 N n(n+1)
20— 22 =0 —2*|2 = |z*|3 = (1— ! ) t=—a

la — B = 10— B =l B =3 (1 2=

En:iz _nn+1)2n+1)

=1 6
(n+1)°

- 3

‘/ - Wy‘rﬁ Lower bounds 0 0
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Smooth case (proof)

® Now we bound R = ||z — z*||,:

n i 2
o0 ol = 10—l = 'l = 3 (1 )

n+1

i=1

2 = 1 Lo
:n_n+1;Z+ (n+41)2 Zzz

i=1

‘/ - §ny1r; Lower bounds

We observe, that

N n(n+1)
1= ——"
i=1 2
En:iz _nn+1)2n+1)
=1 6
(n+1)°
- 3
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Smooth case (proof)

® Now we bound R = ||z — z*||,:

n i 2
o0 ol = 10—l = 'l = 3 (1 )

i=1 ntl
2 O 1 &,
fn—n+1;z+7(n+l)2;z
3
<n_ 2 n(n+1) 1 (n+1)
n+1 2 (n+1)2 3

— min
‘/ 2,9,z Lower bounds

We observe, that

. n(n+1)
= ——"
i=1 2
En:iz _nn+1)2n+1)
=1 6
(n+1)°
- 3
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 nA+1 a2k 2(k+1)
T3 N 3

— min
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Smooth case (proof)

® Now we bound R = ||z — z*||,:

n . 2
07*2:07*2: *2: (1* Z)
2° =3 =10 =213 = o~ =D _ (1

=1
2 K. 1 -,
ST i g O
3
cn__2 . nlntl) 1 (ot
nt1 2 (n+1)2 3

n+1 n=gki1 2(k+1)
3 3

® Thus,
3 . 3
k12 Zla® — a3 = SR

‘f — min
Tz

Lower bounds

We observe, that

n

n(n+1)
——

1=
1

6

(n+1)°
etk

i=1

",2 nn+1)2n +1
$os_ nin s e
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Smooth case (proof)

Finally, using (2) and (3), we get:

‘f - Wy‘rﬁ Lower bounds

. L Lk+1
fh) = 1) 2 16(k+1)  16(k+1)2
L 3
= 16(k + 1)2 §R2
_ 3LR?
C32(k+1)2
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Smooth case (proof)

Finally, using (2) and (3), we get:

. L Lk+1)
f®) = fa") 2 16(k+1)  16(k+1)2
L 3
= 16(k + 1)2 §R2
_ 3LR?
C32(k+1)2

Which concludes the proof with the desired O (k%) rate.

— min
‘f 2,9,z Lower bounds
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Smooth case lower bound theorems

o
1 Smooth convex case

There exists a function f that is L-smooth and convex such that any method 1 satisfies forany k: 1 < k < "7’1:

3L||x°% — x*|2
kY _ px* > 2
fh) = f = 320k +1)2

i Smooth strongly convex case

For any 20 and any p > 0, % = 1% > 1, there exists a function f that is L-smooth and p-strongly convex such
that for any method of the form 1 holds:

—1
It oty 2 (V1) 10—l
2k
s b (Vr=1 .
re -2 b (V) el

‘f%m‘; Lower bounds 0 0O
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‘f — min
Tz

Acceleration for quadratics

Acceleration for quadratics

14
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Convergence result for quadratics

Suppose, we have a strongly convex quadratic function minimization problem solved by the gradient descent method:

flz) = %xTAx — Tz 2Pl =2k — o, Vf(zF).

i Theorem
The gradient descent method with the learning rate o, = ;H»% converges to the optimal solution x* with the
following guarantee:
w—1\" w—1\%*
k+1 _ % — 0 _ % k+1y _ *) 0y *
ettty = (S) I =l f@ = fe) = (S) (fe0) = fe)

where % = ﬁ is the condition number of A.

‘f - 51'1;1; Acceleration for quadratics D0 0

15
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Condition number »

x=1.0
4_
2_
>r<\1 0' >r<~4
_2_
_4_
-4 -2 0 2 4
X1

— mi N .
‘f ;nyul Acceleration for quadratics

x=100.0

4_
2 -
0 -
_2 -
_4_

-4 -2 0 4

X1
DO
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Convergence from the first principles

1
flz) = §$TA17 —bTx T = T, — .V f(T).

Let z* be the unique solution of the linear system Az = b and put ¢, = |z, — z*||, where ;. ., = z;, — a;,(Az;, —b)
is defined recursively starting from some x, and ¢, is a step size we'll determine shortly.

erp1 = (I — o A)ey.

Polynomials

The above calculation gives us ¢, = p,.(A)ey,
where p,, is the polynomial

k

pla) = H(1 —aa).

i=1

We can upper bound the norm of the error term as

lexll < lpx (A - fleoll -

‘/ - fn‘}'; Acceleration for quadratics @0 O 17
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Convergence from the first principles

1
flz) = §$TA1’ —bTx T = T, — .V f(T).

Let z* be the unique solution of the linear system Az = b and put ¢, = |z, — z*||, where ;. ., = z;, — a;,(Az;, —b)
is defined recursively starting from some x, and ¢, is a step size we'll determine shortly.

erp1 = (I — o A)ey.

Polynomials

The above calculation gives us ¢, = p,.(A)ey, Since A is a symmetric matrix with eigenvalues in [y, L],:
where p,, is the polynomial

Al < .
k k()] < max |py(a)

pla) = H(1 —aa).

Ll This leads to an interesting problem: Among all
i

polynomials that satisfy p,(0) = 1 we're looking for a
We can upper bound the norm of the error term as polynomial whose magnitude is as small as possible in the

interval [u, L].
lexll < ok (A - lleol -

‘f - fn.}‘; Acceleration for quadratics P00 O 17
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Naive polynomial solution

A naive solution is to choose a uniform step size o), = ;H%L
in the expression. This choise makes |p. (1) = |pi(L)]- Naive polynomials up to de<_
N 1.0
leel < (1= ) Teol
0.8 A

This is exactly the rate we proved in the previous lecture
for any smooth and strongly convex function.

Let's look at this polynomial a bit closer. On the right 0.6
figure we choose @ = 1 and 8 = 10 so that kK = 10. The
relevant interval is therefore [1, 10].

Can we do better? The answer is yes.

0.4
0.2
0.0 A

_0.2 .

— mi . .
‘f fn.}‘; Acceleration for quadratics
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Naive polynomial solution

A naive solution is to choose a uniform step size o), = ;H%L
in the expression. This choise makes |p. (1) = |pi(L)]- Naive polynomials up to de<_
N 1.0
leel < (1= ) Teol
0.8 A

This is exactly the rate we proved in the previous lecture
for any smooth and strongly convex function.

Let's look at this polynomial a bit closer. On the right 0.6
figure we choose @ = 1 and 8 = 10 so that kK = 10. The
relevant interval is therefore [1, 10].

Can we do better? The answer is yes.

0.4
0.2
0.0 A

_0.2 .
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‘f fn.}‘; Acceleration for quadratics

o L RO 0 18


https://fmin.xyz
https://hse25.fmin.xyz
https://github.com/MerkulovDaniil/hse25
https://t.me/fminxyz

Naive polynomial solution

A naive solution is to choose a uniform step size o), = ;H%L
in the expression. This choise makes |p. (1) = |pi(L)]- Naive ponnomlaIs up to de<_
. 1.0
1
leel < (1= ) Teol
0.8 A
This is exactly the rate we proved in the previous lecture
for any smooth and strongly convex function.
Let's look at this polynomial a bit closer. On the right 0.6 1 I
figure we choose @ = 1 and 8 = 10 so that kK = 10. The L
relevant interval is therefore [1, 10]. \
Can we do better? The answer is yes. 0.4 1
0.2 A
0.0 1 S
—0.2 1
— p2(a)
lf%ﬁ}‘i Acceleration for quadratics o I ..ﬁ (¢ ] 18
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Naive polynomial solution
A naive solution is to choose a uniform step size o), =

in the expression. This choise makes |p. (1) = |pi(L)]-

k

1
leel < (1= ) Teol
n

This is exactly the rate we proved in the previous lecture
for any smooth and strongly convex function.

Let's look at this polynomial a bit closer. On the right
figure we choose @ = 1 and 8 = 10 so that kK = 10. The
relevant interval is therefore [1, 10].

Can we do better? The answer is yes.

— mi . .
‘f fny"; Acceleration for quadratics
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Naive polynomial solution
A naive solution is to choose a uniform step size o), =

in the expression. This choise makes |p, (1) = |pi(L)].

k

1
leel < (1= ) Teol
n

This is exactly the rate we proved in the previous lecture
for any smooth and strongly convex function.

Let's look at this polynomial a bit closer. On the right
figure we choose @ = 1 and 8 = 10 so that kK = 10. The
relevant interval is therefore [1, 10].

Can we do better? The answer is yes.
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Chebyshev polynomials

Chebyshev polynomials turn out to give an optimal answer

to the question that we asked. Suitably rescaled, they
minimize the absolute value in a desired interval [y, L]
while satisfying the normalization constraint of having
value 1 at the origin.

Ty(x) =1
T (z)==x
Ty(x) = 22T, () =T o(x), k=2

Let's plot the standard Chebyshev polynomials (without
rescaling):

— mi . .
‘f fn.}‘; Acceleration for quadratics

Chebyshev polynomials up to

1.00

0.75 A

0.50 A

0.25 ~

0.00 -

—0.25 A

—0.50 A
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Chebyshev polynomials

Chebyshev polynomials turn out to give an optimal answer

to the question that we asked. Suitably rescaled, they
minimize the absolute value in a desired interval [y, L]
while satisfying the normalization constraint of having
value 1 at the origin.

Ty(x) =1
T (z)==x
Ty(x) = 22T, () =T o(x), k=2

Let's plot the standard Chebyshev polynomials (without
rescaling):
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Chebyshev polynomials up to

1.00

0.75 A

0.50 A

0.25 ~

0.00 -

—0.25 A

—0.50 A
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Chebyshev polynomials

Chebyshev polynomials turn out to give an optimal answer

to the question that we asked. Suitably rescaled, they Chebyshev polynomials up to
minimize the absolute value in a desired interval [y, L] 1.00
while satisfying the normalization constraint of having
value 1 at the origin.
0.75 A
Ty(x) =1
Ti(z)==
1(7) 0.50 4
Ti(x) = 22T, (2) =T} o(x), k=2
Let's plot the standard Chebyshev polynomials (without
rescaling): 0.25 1
0.00 A
—0.25 A
—0.50 A
‘f - Wy‘rﬁ Acceleration for quadratics L4 19
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Chebyshev polynomials

Chebyshev polynomials turn out to give an optimal answer

to the question that we asked. Suitably rescaled, they Chebyshev polynomials up to
minimize the absolute value in a desired interval [y, L] 1.00
while satisfying the normalization constraint of having
value 1 at the origin.
0.75 A
To(z) =1
T (x) =2
) 0.50 1
Ti(x) = 22T, (2) =T} o(x), k=2
Let's plot the standard Chebyshev polynomials (without
rescaling): 0.25 1
0.00 A
—0.25 A
—0.50 A
‘f - ?qyu} Acceleration for quadratics L4 i\
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Chebyshev pol?momials
S

Chebyshev polynomials turn out to give an optimal answer

to the question that we asked. Suitably rescaled, they Chebyshev polynomials up to
minimize the absolute value in a desired interval [y, L] 1.00
while satisfying the normalization constraint of having
value 1 at the origin.
0.75 A
To(z) =1
Ti(z)==
1@) 0.50 1
Ti(x) = 22T, (2) =T} o(x), k=2
Let's plot the standard Chebyshev polynomials (without
rescaling): 0.25 A
0.00 A
—0.25 A
—0.50 A
‘f - ;nyu} Acceleration for quadratics P 1
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Rescaled Chebyshev polynomials

Original Chebyshev polynomials are defined on the interval [—1,1]. To use them for our purposes, we need to rescale
them to the interval [p, L].

‘/ - §ny1r; Acceleration for quadratics D0 0
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Rescaled Chebyshev polynomials
Original Chebyshev polynomials are defined on the interval [—1,1]. To use them for our purposes, we need to rescale
them to the interval [p, L].

We will use the following affine transformation: Note, that £ = 1 corresponds to a = u, * = —1
corresponds to a = L and & = 0 corresponds to a = %
— M’ a€lp L], xecl[-1,1]. This transformation ensures that the behavior of the
L—p Chebyshev polynomial on [—1, 1] is reflected on the
interval [u, L]

‘f - fn.}‘; Acceleration for quadratics P00 O 20
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Rescaled Chebyshev polynomials
Original Chebyshev polynomials are defined on the interval [—1,1]. To use them for our purposes, we need to rescale
them to the interval [p, L].

We will use the following affine transformation: Note, that £ = 1 corresponds to a = u, * = —1
corresponds to a = L and & = 0 corresponds to a = %
— M, a€lp L], xecl[-1,1]. This transformation ensures that the behavior of the
L—p Chebyshev polynomial on [—1, 1] is reflected on the
interval [u, L]

In our error analysis, we require that the polynomial equals 1 at 0 (i.e., p,,(0) = 1). After applying the transformation,
the value T}, takes at the point corresponding to a = 0 might not be 1. Thus, we multiply by the inverse of T},

evaluated at )

L+pu . L+p—0 L+p
ﬂ, ensuring that Pk(O) = Tk (T’u/) . ka (m) =1

‘f - fn.}‘; Acceleration for quadratics P00 O 20


https://fmin.xyz
https://hse25.fmin.xyz
https://github.com/MerkulovDaniil/hse25
https://t.me/fminxyz

Rescaled Chebyshev polynomials
Original Chebyshev polynomials are defined on the interval [—1,1]. To use them for our purposes, we need to rescale
them to the interval [p, L].

We will use the following affine transformation: Note, that £ = 1 corresponds to a = u, * = —1
L+p—2a corresponds to a = L and & = 0 corresponds to a = #
r=—"—""—" acul], zc[-1,1]. This transformation ensures that the behavior of the
L—p Chebyshev polynomial on [—1, 1] is reflected on the
interval [u, L]

In our error analysis, we require that the polynomial equals 1 at 0 (i.e., p,,(0) = 1). After applying the transformation,
the value T}, takes at the point corresponding to a = 0 might not be 1. Thus, we multiply by the inverse of T},
evaluated at )

L+pu . L+p—0 L+p
ﬂ, ensuring that Pk(O) = Tk (T’u/) . ka (m) =1

Let’s plot the rescaled Chebyshev polynomials
~1

L+p—2a L+p
Ao =1 (S7) 1 (7

and observe, that they are much better behaved than the naive polynomials in terms of the magnitude in the interval
[, L].

— mi . .
‘f fn.}‘; Acceleration for quadratics
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Rescaled Chebyshev polynomials

Polynomials of degree 1

1.0
— Naive
Chebyshev
0.5 A
0.0 A
~0.5 - L
4 6 8 10
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Rescaled Chebyshev polynomials

1.0

Polynomials of degree 2

0.5 A

0.0 1

—0.5 1

—— Naive
—— Chebyshev
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Rescaled Chebyshev polynomials

1.0

Polynomials of degree 3

0.5 A

0.0 1

—0.5 1

—— Naive
—— Chebyshev
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Rescaled Chebyshev polynomials

Polynomials of degree 4

1.0
—— Naive
—— Chebyshev
0.5 A _ :
0.0 A |
~0.5 1 L.
4 6 8 10
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Rescaled Chebyshev polynomials

1.0

Polynomials of degree 5

0.5 A1

0.0 1

—0.5 1

— Naive

Chebyshev

<)
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Rescaled Chebyshev polynomials

Polynomials of degree 6

1.0
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Rescaled Chebyshev polynomials

Polynomials of degree 7
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Rescaled Chebyshev polynomials

Polynomials of degree 8

1.0
— Naive
Chebyshev
0.5 -
0.0 — /
054 M L
0 2 4 8 10
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Rescaled Chebyshev polynomials

Polynomials of degree 9
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Rescaled Chebyshev polynomials

Polynomials of degree 10

1.0
—— Naive
Chebyshev
0.5 -
0.0 1 B S S S—
~0.5 - L
4 6 8 10
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Chebyshev polynomials upper bound

We can see, that the maximum value of the Chebyshev polynomial on the interval [u, L] is achieved at the point
a = p. Therefore, we can use the following upper bound:

~1 -1

ot <= (B) (522 < (22) < (422

-1

‘f - fny"; Acceleration for quadratics QDO
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Chebyshev polynomials upper bound

We can see, that the maximum value of the Chebyshev polynomial on the interval [u, L] is achieved at the point
a = p. Therefore, we can use the following upper bound:

-1 1

L+p—2p L+p L+p\ L+p
IR < ) =T (S ) 1 (722) =n-n(722) =m (72

-1

Using the definition of condition number » = % we get:

w1\ 2\ ! o 2
P <7 (25) =T(14+-25) =Tt+9, o=

nw—1

‘f - 51'1;1; Acceleration for quadratics QDO
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Chebyshev polynomials upper bound

We can see, that the maximum value of the Chebyshev polynomial on the interval [u, L] is achieved at the point
a = p. Therefore, we can use the following upper bound:

L+p—2p L+p\ " L+p\ " L+p\""
IR < ) =T (S ) 1 (722) =n-n(722) =m (72

Using the definition of condition number » = % we get:

-1

w+1\ 1 2 1 2
< = - = = .
”Plc(A)”27Tk(%71) Tk<1+%71) T.(1+¢) , ¢ —

Therefore, we only need to understand the value of T}, at 1 + €. This is where the acceleration comes from. We will
bound this value with @ (ﬁ)
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Chebyshev polynomials upper bound
To upper bound |P,|, we need to lower bound |T},(1 + €)].

— mi . .
‘/ ?qyu} Acceleration for quadratics
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Chebyshev polynomials upper bound

To upper bound |P,|, we need to lower bound |T}.(1 + ¢€)].

1. For any x > 1, the Chebyshev polynomial of the first
kind can be written as

T,.(x) = cosh (k arccosh(x))
T,.(1 4+ €) = cosh (karccosh(1l +¢)) .

— mi . .
‘f Wy‘rﬁ Acceleration for quadratics
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Chebyshev polynomials upper bound

To upper bound |P,|, we need to lower bound |T}.(1 + ¢€)].

1. For any x > 1, the Chebyshev polynomial of the first
kind can be written as

T,.(x) = cosh (k arccosh(x))
T,.(1 4+ €) = cosh (karccosh(1l +¢)) .
2. Recall that:

et 4+ e "

cosh(z) = —5 arccosh(z) = In(z+Vvaz?2 —1).

— mi . .
‘f §ny1r; Acceleration for quadratics
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Chebyshev polynomials upper bound

To upper bound |P,|, we need to lower bound |T}.(1 + ¢€)].

1. For any x > 1, the Chebyshev polynomial of the first
kind can be written as

T,.(x) = cosh (k arccosh(x))
T,.(1 4+ €) = cosh (karccosh(1l +¢)) .
2. Recall that:

et 4+ e "

cosh(z) = —5 arccosh(z) = In(z+Vvaz?2 —1).

3. Now, letting ¢ = arccosh(1 + ),

e =14+e+V2e+e>1++/c

— mi . .
‘f fny"; Acceleration for quadratics
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Chebyshev polynomials upper bound
To upper bound |P,|, we need to lower bound |T}.(1 + ¢€)].

1. For any & > 1, the Chebyshev polynomial of the first 4. Therefore,

kind can be written as
T,.(1 4+ €) = cosh (k arccosh(1 + ¢))

T,.(x) = cosh (k arccosh(x)) = cosh (ko)
T.(1 + €) = cosh (karccosh(1 + ¢)) . kg ek . ok
2. Recall that: - 2 -2
k
P 1+ /e)
cosh(z) = % arccosh(z) = In(z+vz2 —1). = ( 2\[ ‘

3. Now, letting ¢ = arccosh(1 + ),

e =14+e+V2e+e>1++/c

‘f - fny"; Acceleration for quadratics QDO
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Chebyshev polynomials upper bound
To upper bound |P,|, we need to lower bound |T}.(1 + ¢€)].

1. For any x > 1, the Chebyshev polynomial of the first
kind can be written as

T,.(x) = cosh (k arccosh(x))
T,.(1+ €) = cosh (karccosh(1 +¢)) .

2. Recall that:

e’ +e®

cosh(z) = —5 arccosh(z) = In(z+Vvaz?2 —1).

3. Now, letting ¢ = arccosh(1 + ),

‘f — min
Tz

e =14+e+V2e+e>1++/c

Acceleration for quadratics

4. Therefore,

T,.(1 4+ €) = cosh (k arccosh(1 + ¢))

= cosh (ko)
_ et
2 -2
_ Ve
= 5 )
5. Finally, we get:
lexll < 1P (A)lleoll < — leoll
erl < 1% el = % €0
(1+Ve)

—k
<214/ 2] Jel
- n—1 ‘o

2
< 2exp <—\/ %1k> leol

DO

o
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Accelerated method [1/2]
Due to the recursive definition of the Chebyshev polynomials, we directly obtain an iterative acceleration scheme.
Reformulating the recurrence in terms of our rescaled Chebyshev polynomials, we obtain:

Tk+1(l’) = 22T} (z) — Ty ()

L4-p—2a

Given the fact, that x = jr=n

‘/ - 5\'1;!; Acceleration for quadratics D0 0
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Accelerated method [1/2]

Due to the recursive definition of the Chebyshev polynomials, we directly obtain an iterative acceleration scheme.

Reformulating the recurrence in terms of our rescaled Chebyshev polynomials, we obtain:

Tk+1(l’) = 22T} (z) — Ty ()

Given the fact, that = L*L“i;fa and:
Po) = 1, (22 gy (L) s (S )~ P (755)
L—p NL—p ;. (Etn=2\_, . (Ltnp
1 (Ltp—2a — P(a)T, L+p kﬂ( L—p >— i1 (@) k+1<m)
k I _ = P(a)T}, I _
7 1
Pp(a)ty = Qﬂpk(a)tk — P,_,(a)t,_,, where t, =T, (m)
L+p—2a t th 1
P =2 & _ P
o (0) L—p kl >tk+1 k(@) oy

‘f - fn.}‘; Acceleration for quadratics QDO
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Accelerated method [1/2]

Due to the recursive definition of the Chebyshev polynomials, we directly obtain an iterative acceleration scheme.

Reformulating the recurrence in terms of our rescaled Chebyshev polynomials, we obtain:

Tk+1(l’) = 22T} (z) — Ty ()

Given the fact, that = L*L“i;fa and:
L+ p—2a <L+/L)
- T — | =P T
Pk(a):Tk(L-i-u—?a)Tk(L—f—u) ! k—l( I ) e1(a) T4 T
7, (B2 _p oyp, (K 1 (Li_u)— w1 (0) Ty (L—_M)
k L—u = Py(a)T}, L—pu
Pp(a)ty = ZﬂPk(a)tk — P,y (a)t,_q, where t, =T, (m)
L+p—2a t th 1
P =2 & _ P
o (0) L—p kl >tk+1 kil(a)tkﬂ

Since we have P, (0) = P,(0) = P,_;(0) = 1, we can find the method in the following form:
Ppiy(a) = (1= oga)P(a) + By, (Prla) — Py (a)) .

‘f - fn.}‘; Acceleration for quadratics QDO

24


https://fmin.xyz
https://hse25.fmin.xyz
https://github.com/MerkulovDaniil/hse25
https://t.me/fminxyz

Accelerated method [2/2]

Rearranging the terms, we get:

Pk+1(a) =

Pk+1(a)

‘/ — min
Tz

(1+ By)Py(a) — aaPy(a) — B Py (a),
L t 4 t
ot p g ¢ % p(a)—
L—ptyy CL- Bt

Acceleration for quadratics

o
; 2=LP, i (a)
ki1
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Accelerated method [2/2]

Rearranging the terms, we get: 8, = th_1
t )
Pyii(a) = (L4 By) Pp(a) — agaPy(a) — BpPy_y(a), k+41 ty
L+p t 4a t t O =7
Pen(e) = 27— Pi(a) = 7= Pi(a) = 2P (o) bshn
Pt Bt k1 148 L+p t
k
L—ptyy

— mi . .
‘f Wy‘rﬁ Acceleration for quadratics
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Accelerated method [2/2]

Rearranging the terms, we get:

By = Bt
try
Py 1(a) = (14 By,)Py(a) — apaPy(a) — B P4 (a), k+41 .
L+p t da t t Qg =
Peyi(a) =27— =Py (a) — I_ tk 3 tk P (a) L=ty
Pty Bty k+1 148, = L+tp t
=

L—ptyy

We are almost done :) We remember, that e, ; = P,.,;(A)ey. Note also, that we work with the quadratic problem,

so we can assume x* = 0 without loss of generality. In this case, ey = 2y and e, ; = x},4.

Ty = Py (A)zg = (I — o A) P (A)zg + By (Pu(A) — Py_1(A)) z
= (I = A)wy, + By (v, — T4_y)

— mi . .
‘f 51'1;1; Acceleration for quadratics
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Accelerated method [2/2]

Rearranging the terms, we get:

By = b=t
try
Py 1(a) = (14 By,)Py(a) — apaPy(a) — B P4 (a), k+41 .
L+p t da t t Qg =
Piii(a) = Lfikpka I tk (3 tklpk 1(a) L—pityn’
Pty Bty k+1 148, = L+tp t
=

L—ptyy

We are almost done :) We remember, that e, ; = P,.,;(A)ey. Note also, that we work with the quadratic problem,

so we can assume x* = 0 without loss of generality. In this case, ey = 2y and e, ; = x},4.

Ty = Py (A)zg = (I — o A) P (A)zg + By (Pu(A) — Py_1(A)) z
= (I = A)wy, + By (v, — T4_y)

For quadratic problem, we have V f(x)) = Az;, so we can rewrite the update as:

’ Ty = T — oV () + By (2, — 41) ‘

— mi . .
‘f 5\'1;!; Acceleration for quadratics
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Acceleration from the first principles

x=1.0
—e— GD
4 —e— Accelerated GD
2 -
>r<\1 0 T >r<\1
-2
—4
-4 -2 0 2 4
X1

— mi . .
‘f Wy‘rﬁ Acceleration for quadratics

x=100.0

—e— GD

—e— Accelerated GD
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‘f — min
Tz

Heavy ball

Heavy ball
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Oscillations and acceleration

Gradient Descent

Heavy Ball
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Polyak Heavy ball method

Trajectories with Contour Plot Let's introduce the idea of momentum, proposed by Polyak in 1964. Recall that the
o Gradient Descent with step 3.50.01 .
s oty 250 S momentum update is
Optimal Point

htl =gk — aV f(2¥) + B(ak — 2k 1.

Trajectories with Contour Plot
—e— Heavy Ball with « 3.5e-01 and B 3. Ue-o§

4 Start Point
Optimal Point

-2

‘f%ﬂ,‘} Heavy ball @0 O
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Polyak Heavy ball method
lecoriswith Contour Pt _ Let's introduce the idea of momentum, proposed by Polyak in 1964. Recall that the
- Grad\en(Dsscen(wl(hslep35e~01\ momentum update iS

a Start Point
Optimal Point

htl =gk — aV f(2¥) + B(ak — 2k 1.

Which is in our (quadratics) case is

Ty = Ty — ATy + (T, — Tq) = (I — @A + BI)Ty, — BTy,

Trajectories with Contour Plot

—— Heavy Ball with a 3.5¢-01 and B 3. ue-ul§

4 Start Point
Optimal Point

‘f - ;nyu} Heavy ball @0 O
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Polyak Heavy ball method
lecoriswith Contour Pt _ Let's introduce the idea of momentum, proposed by Polyak in 1964. Recall that the
- Grad\entllescentwlthslepi5e~01\ momentum update iS

a Start Point
Optimal Point

2Pl = gF — oV f(2b) + B(a? — 2FL).
Which is in our (quadratics) case is
Ty =T — 0ATy + B(Zy — Tpy) = ([ — o + BTy, — BTy,

This can be rewritten as follows

Trajectories with Contour Plot ~ I A Ji ~ ~
T T | Ty = — oA+ BTy, — BTy,
==

;r Optimal Point

‘%k = ‘%k'

‘/ - ?qyu} Heavy ball @0 O
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Polyak Heavy ball method

-2

Trajectories with Contour Plot

—e— Gradient Descent with step 3.5e-01 \

Start Point
Optimal Point

Trajectories with Contour Plot
o Heavy Ball with a 3.5¢-01 and § 3.06:01

Start Point
Optimal Point

‘/ - Wy‘l} Heavy ball

Let's introduce the idea of momentum, proposed by Polyak in 1964. Recall that the
momentum update is

htl =gk — aV f(2¥) + B(ak — 2k 1.
Which is in our (quadratics) case is
Ty = Ty — ATy + (T, — Tq) = (I — @A + BI)Ty, — BTy,
This can be rewritten as follows
Ty = (I —al + BI)Z), — Py,
‘%k == fik.

, . L z - -
Let's use the following notation 2, = [ g“} Therefore 2, , = M2z, where the
k
iteration matrix M is:
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Polyak Heavy ball method

-2

Trajectories with Contour Plot

—e— Gradient Descent with step 3.5e-01 \

Start Point
Optimal Point

Trajectories with Contour Plot
o Heavy Ball with a 3.5¢-01 and § 3.06:01

;r Optimal Point
_——
=————
= —

‘f - Wy‘rﬁ Heavy ball

Let's introduce the idea of momentum, proposed by Polyak in 1964. Recall that the
momentum update is

2Pl = gF — oV f(2b) + B(a? — 2FL).
Which is in our (quadratics) case is
Ty =T — 0ATy + B(Zy — Tpy) = ([ — o + BTy, — BTy,

This can be rewritten as follows

Ty = —alh+ BTy — BTy,
‘%k = fik.
. , o z - -
Let's use the following notation 2, = { g“} Therefore 2, , = M2z, where the

k
iteration matrix M is:

| I—aA+pI —pI
e A
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Reduction to a scalar case

Note, that M is 2d x 2d matrix with 4 block-diagonal matrices of size d x d inside. It means, that we can rearrange
the order of coordinates to make M block-diagonal in the following form. Note that in the equation below, the matrix
M denotes the same as in the notation above, except for the described permutation of rows and columns. We use
this slight abuse of notation for the sake of clarity.

‘/ - fnﬂ Heavy ball

30
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Reduction to a scalar case

Note, that M is 2d x 2d matrix with 4 block-diagonal matrices of size d x d inside. It means, that we can rearrange
the order of coordinates to make M block-diagonal in the following form. Note that in the equation below, the matrix
M denotes the same as in the notation above, except for the described permutation of rows and columns. We use

this slight abuse of notation for the sake of clarity.

'Ec;;) . ;EZI)
: R M
7 Eclf)l !

- Pl M= M,

P (d)
k‘fl z, ‘A/[d
S ~(d)

Lz, ] k—1

Figure 1: lllustration of matrix M rearrangement

where 12) is i-th coordinate of vector &, € R% and M, stands for 2 x 2 matrix. This rearrangement allows us to
study the dynamics of the method independently for each dimension. One may observe, that the asymptotic
convergence rate of the 2d-dimensional vector sequence of Z, is defined by the worst convergence rate among its

block of coordinates. Thus, it is enough to study the optimization in a one-dimensional case.

‘f - fnﬂ Heavy ball
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Reduction to a scalar case

For i-th coordinate with \; as an i-th eigenvalue of matrix W we have:

_|1—aN+5 -
M; = 1 0

‘f - Wy‘rﬁ Heavy ball
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Reduction to a scalar case

For i-th coordinate with \; as an i-th eigenvalue of matrix W we have:

|1—aX+8 =B
]

The method will be convergent if p(M) < 1, and the optimal parameters can be computed by optimizing the spectral

radius 2
T —
of, f* = argminmax p(M;) o = $; g = M .
wr (VL + yh)? N

‘fﬁ}fnﬂ Heavy ball P00 O 31
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Reduction to a scalar case

For i-th coordinate with \; as an i-th eigenvalue of matrix W we have:

|1—aX+8 =B
]

The method will be convergent if p(M) < 1, and the optimal parameters can be computed by optimizing the spectral

radius 2
T —

of, f* = argminmax p(M;) o = $; . _ M .

wr (VL + yh)? N

It can be shown, that for such parameters the matrix M has complex eigenvalues, which forms a conjugate pair, so
the distance to the optimum (in this case, ||z, ), generally, will not go to zero monotonically.

‘f% fn.}‘; Heavy ball P00 O 31
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Heavy ball quadratic convergence

We can explicitly calculate the eigenvalues of M;:

1—aX\+p5
W,W:A({ :

‘f - Wy‘rﬁ Heavy ball

—B
0

)

14 B—aN £/ +B—aN)?—48
— 5 :
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Heavy ball quadratic convergence

We can explicitly calculate the eigenvalues of M;:

AM )\M:Aql—a)\ﬁ-ﬁ —ﬁD_lJrﬁa/\ii\/(lJrﬂw\i)Qw
L2 1 0 2 ‘

When « and 3 are optimal (a*, 3*), the eigenvalues are complex-conjugated pair (1 + 3 — a);)? — 43 <0,

ie. B> (1—/a))2

‘f - fny"; Heavy ball Q0
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Heavy ball quadratic convergence

We can explicitly calculate the eigenvalues of M;:

AM )\M:Aql—a)\ﬁ-ﬁ —ﬁD_lJrﬂa/\ii\/(lJrﬂw\i)Qw
L2 1 0 2 ‘

When « and 3 are optimal (a*, 3*), the eigenvalues are complex-conjugated pair (1 + 3 — a);)? — 43 <0,

ie. B> (1—/a))2

amy . LHu—2) M 22V (L =N ) My L=p
Re(A )7(\/Z+\/,t7)27 Im(A™Y) = (VL + /1) P |7(\/f+\/ﬁ)2.

‘f - §“}‘l Heavy ball Q0
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Heavy ball quadratic convergence

We can explicitly calculate the eigenvalues of M;:

AM )\M:Aql—a)\ﬁ-ﬁ —ﬁD_lJrﬂa/\ii\/(lJrﬂw\i)Qw
L2 1 0 2 ‘

When « and 3 are optimal (a*, 3*), the eigenvalues are complex-conjugated pair (1 + 3 — a);)? — 43 <0,

ie. B> (1—+/a))2

Re\) = LAy 2V A ), Lo

(VI + R WVL+ym? L+ ym?

And the convergence rate does not depend on the stepsize and equals to \/5*.

‘f - fnﬂ Heavy ball Q0
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Heavy Ball quadratics convergence

i Theorem
Assume that f is quadratic p-strongly convex L-smooth quadratics, then Heavy Ball method with parameters

4 :(ﬁ\/ﬁf

T’ T\ Vi

converges linearly:

* \/E_]‘ *
fo =o'l < (Y1) feo o'l

‘f - fny"; Heavy ball Q0
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Heavy Ball Global Convergence °

i Theorem

Assume that f is smooth and convex and that

genl), ae (O,M)

L

Then, the sequence {z;} generated by Heavy-ball iteration satisfies

- _ . 1—
HQ?T+1H) (% + %)a if a€ (0, Tﬂ}’
f@p)—f < 2 2 1-5 2(1-5)
|zo—="| <L5+ (ljf) >, if a€[——,——),

2AT+1)(2(1—f)—al) 77

where T is the Cesaro average of the iterates, i.e.,

3Global convergence of the Heavy-ball method for convex optimization, Euhanna Ghadimi et.al.
‘f - fnﬂ Heavy ball

34
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Heavy Ball Global Convergence *

i Theorem

Assume that f is smooth and strongly convex and that
2 1/ po \/u2a2 alL
— < —| — 41— —) .
ae(02) 0_ﬂ<2<2+ a2

Then, the sequence {x;} generated by Heavy-ball iteration converges linearly to a unique optimizer z*. In
particular,

fx) =+ < 5 (f(zo) — ),
where ¢ € [0,1).

“Global convergence of the Heavy-ball method for convex optimization, Euhanna Ghadimi et.al.
lf%ﬁ}‘i Heavy ball 00


https://arxiv.org/abs/1412.7457
https://fmin.xyz
https://hse25.fmin.xyz
https://github.com/MerkulovDaniil/hse25
https://t.me/fminxyz

Heavy ball method summary

® Ensures accelerated convergence for strongly convex quadratic problems

‘f - Wy‘rﬁ Heavy ball
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Heavy ball method summary

® Ensures accelerated convergence for strongly convex quadratic problems
® | ocal accelerated convergence was proved in the original paper.

‘f - fny"; Heavy ball
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Heavy ball method summary

® Ensures accelerated convergence for strongly convex quadratic problems
® | ocal accelerated convergence was proved in the original paper.
® Recently 5 was proved, that there is no global accelerated convergence for the method.

SProvable non-accelerations of the heavy-ball method
‘f - 5\'1;1; Heavy ball
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Heavy ball method summary

Ensures accelerated convergence for strongly convex quadratic problems

Local accelerated convergence was proved in the original paper.

Recently ® was proved, that there is no global accelerated convergence for the method.
Method was not extremely popular until the ML boom

SProvable non-accelerations of the heavy-ball method
‘f - 5\'1;1; Heavy ball
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Heavy ball method summary

Ensures accelerated convergence for strongly convex quadratic problems

Local accelerated convergence was proved in the original paper.

Recently ® was proved, that there is no global accelerated convergence for the method.

Method was not extremely popular until the ML boom

Nowadays, it is de-facto standard for practical acceleration of gradient methods, even for the non-convex
problems (neural network training)

5Provable non-accelerations of the heavy-ball method
‘f - fnﬂ Heavy ball Q0

36


https://arxiv.org/pdf/2307.11291
https://fmin.xyz
https://hse25.fmin.xyz
https://github.com/MerkulovDaniil/hse25
https://t.me/fminxyz

‘f — min
Tz

Nesterov accelerated gradient

Nesterov accelerated gradient
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The concept of Nesterov Accelerated Gradient method

Ty =z, — aV f(zy) Ty = 2, — aV f(xy) + B2y, — 24_q)

— mi :
‘f ;nyul Nesterov accelerated gradient

{

Y1 = T + B2y, — T y)
Tpr1 = Ygp1 — avf(yk-H)

38
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The concept of Nesterov Accelerated Gradient method

T = 2 — aVf(zy) Ty = 2 — oV f(zy) + Blay, — xp_1)
Let's define the following notation

Y1 = Tp + Bl — 7 1)
Tpi1 = Ypr1 — AV (Yrp)
Polyak momentum
zt =z —aVf(z) Gradient step f(z)
dy, = B(x), —x5_1) Momentum term R

Then we can write down:

Tpyq =T} Gradient Descent
T =) +dy, Heavy Ball
Ty = (2, +dp)* Nesterov accelerated gradient

f(z)

‘f - fny"; Nesterov accelerated gradient P00 O 38
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General case convergence

i Theorem

Let f : R™ — R is convex and L-smooth. The Nesterov Accelerated Gradient Descent (NAG) algorithm is
designed to solve the minimization problem starting with an initial point 25 = y, € R™ and Aj; = 0. The
algorithm iterates the following steps:

Gradient update: Y1 = Tpy — %Vf(xk)
Extrapolation: Tip1 = (1= Y)Yk + eV
1+ 4/1+4X2
Extrapolation weight: )\, , = B S—
1- A,

Extrapolation weight: Vie
Akt
The sequences { f(y,) }ren Produced by the algorithm will converge to the optimal value f* at the rate of @ (k%)
specifically:
2L|zy — x*||?
fla) — g < 2 20

‘f - fn.}‘; Nesterov accelerated gradient P00 O 39
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General case convergence

i Theorem

Let f : R® — R is u-strongly convex and L-smooth. The Nesterov Accelerated Gradient Descent (NAG)

algorithm is designed to solve the minimization problem starting with an initial point 5 = y, € R™ and Ay = 0.

The algorithm iterates the following steps:
. 1
Gradient update: Y1 = Tp — va(xk)
Extrapolation: Tpr = (1 + Y)Yk — Wb

T —
Extrapolation weight: Vi = w
+ Vi

The sequences { f(yy)}ren Produced by the algorithm will converge to the optimal value f* linearly:

L k
) = £ < g~ ep (~ )

‘f - fn.}‘; Nesterov accelerated gradient P00 O
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‘f — min
Tz

Numerical experiments

Numerical experiments
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Convex quadratics (aka linear regression)

Convex quadratics: n=60, random matrix, u=0, L=10

Function Gap Domain Gap Gradient Norm
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X =3

10—3 4

0 200 400 600 800 0 200 400 600 800 0 200 400 600 800
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‘f - ?qyu} Numerical experiments D0 0
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Strongly convex quadratics (aka regularized linear regression)

Strongly convex quadratics: n=60, random matrix, u=1, L=10
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Strongly convex quadratics (aka regularized linear regression)

Strongly convex quadratics: n=60, random matrix, u=1,

Function Gap
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Strongly convex quadratics (aka regularized linear regression)

Strongly convex quadratics: n=1000, random matrix, p=1, L=1000

Function Gap
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Convex binary logistic regression

Convex binary logistic regression. mu=0.
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Convex binary logistic regression
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Convex binary logistic regression
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Convex binary logistic regression
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Convex binary logistic regression

Convex binary logistic regression. mu=0.
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Convex binary logistic regression
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Convex binary logistic regression
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Convex binary logistic regression

Convex binary logistic regression. mu=0.
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Convex binary logistic regression
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Convex binary logistic regression

Convex binary logistic regression. mu=0.
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Convex binary logistic regression

Convex binary logistic regression. mu=0.
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Strongly convex binary logistic regression
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Strongly convex binary logistic regression

Strongly convex binary logistic regression. mu=1.
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Strongly convex binary logistic regression

Strongly convex binary logistic regression. mu=1.
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Strongly convex binary logistic regression

Strongly convex binary logistic regression. mu=1.
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