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Affine set

Suppose x4, Z, are two points in R*. Then the
line passing through them is defined as follows:

x=0x;+(1—0)zy,0 €R

The set A is called affine if for any z,, z,
from A the line passing through them also lies
in A, i.e.

Vo e R, Vo, 2o € A: 0z, + (1 -0z, € A
Example

® R” is an affine set.

— min
‘f 2,9,z Convex sets

L1

Figure 1: lllustration of a line between two vectors z; and z,
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Affine set

Suppose x4, Z, are two points in R*. Then the
line passing through them is defined as follows:

x=0x;+(1—0)zy,0 €R

The set A is called affine if for any z,, z,
from A the line passing through them also lies
in A, i.e.

Vo e R, Vo, 2o € A: 0z, + (1 -0z, € A
Example

® R” is an affine set.
® The set of solutions {z | Az = b}
is also an affine set.
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L1

Figure 1: lllustration of a line between two vectors z; and z,
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Cone
A non-empty set S is called a cone, if:

VeSS, 6>0 — OxeS

For any point in the cone, it also contains a x 2 y
beam through this point.

— min
‘f 2,9,z Convex sets

Figure 2: lllustration of a cone
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Convex cone
The set S is called a convex cone, if:

Ve, 29 €85, 01,0, >0 — 0,x,+0,x, €S

A Convex cone is just like a cone, but it is also
convex.

Example

e R”

Convex cone: set that contains all conic
combinations of points in the set

— min
‘f 2,9,z Convex sets

Figure 3: lllustration of a convex cone
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Convex cone
The set S is called a convex cone, if:

Ve, 29 €85, 01,0, >0 — 0,x,+0,x, €S

A Convex cone is just like a cone, but it is also
convex.

Example

o R™
® Affine sets, containing 0

Convex cone: set that contains all conic
combinations of points in the set

— min
‘f 2,9,z Convex sets

Figure 3: lllustration of a convex cone

\4

0


https://fmin.xyz
https://hse25.fmin.xyz
https://github.com/MerkulovDaniil/hse25
https://t.me/fminxyz

Convex cone
The set S is called a convex cone, if:
Ve, 29 €85, 01,0, >0 — 0,x,+0,x, €S

A Convex cone is just like a cone, but it is also
convex.

Example
o R"

® Affine sets, containing 0
® Ray

Convex cone: set that contains all conic
combinations of points in the set

— min
‘f 2,9,z Convex sets

Figure 3: lllustration of a convex cone
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Convex cone
The set S is called a convex cone, if:

Ve, 29 €85, 01,0, >0 — 0,x,+0,x, €S

A Convex cone is just like a cone, but it is also
convex.

Example

Rn

Affine sets, containing 0

Ray

ST - the set of symmetric positive
semi-definite matrices

Convex cone: set that contains all conic
combinations of points in the set

— min
‘f 2,9,z Convex sets

Figure 3: lllustration of a convex cone
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Line segment
Suppose z;, x4 are two points in R”.
Then the line segment between them is defined
as follows:

x =0z + (1—0)x,y, 0€][0,1]

A Convex set contains a line segment between
any two points in the set.

‘f - 5“.}‘2 Convex sets @0
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Convex set

The set S is called convex if for any z;, x5 from S the line segment between
them also lies in .S, i.e.
Example

Vo €[0,1], V S:0 1—0)xy, €S8
€l Tt € 21+ Joz € An empty set and a set from

a single vector are convex by
/\ definition.
Example

Any affine set, a ray, or a line

‘ j Z segment are all convex sets.

Figure 5: Top: examples of convex sets. Bottom: examples of non-convex sets.

‘f% fnﬂ Convex sets 00
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Convex combination

Let 21,25, ..., € S, then the point 8,2, + 0,25 + ... + 0,2, is called the convex combination of points
k

Xy, Loy ., xp if >0, =1, 6, >0.
i=1

— min
‘f 2,9,z Convex sets
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Convex hull
The set of all convex combinations of points from .S is called the convex hull of the set S.

k k
conv(S) = Z@,x, | z; € S,Z@i =1,6,>0
=1 =1

® The set conv(.S) is the smallest convex set containing S.

O

Figure 6: Top: convex hulls of the convex sets. Bottom: the convex hull of the non-convex sets.
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Convex hull
The set of all convex combinations of points from .S is called the convex hull of the set S.

k k
conv(S) = {Z@,x, | z; € S,Z@i =1,06,> 0}
=1 i=1

® The set conv(.S) is the smallest convex set containing S.
® The set S is convex if and only if S = conv(S

oa

Figure 6: Top: convex hulls of the convex sets. Bottom: the convex hull of the non-convex sets.
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Minkowski addition

The Minkowski sum of two sets of vectors S; and S, in Euclidean space is formed by adding each vector in S; to

each vector in S,.

S14+ 5, ={s; +s5|8; €5y, 8, €55}
Similarly, one can define a linear combination of the sets.
i Example
We will work in the R? space. Let's define: P

Sy i={reR?:2?+22 <1}

(s

T2

This is a unit circle centered at the origin. And:

S2
Sy i={r€eR?: —4< 2 <—-1,-3< 2, <1} -

This represents a rectangle. The sum of the sets .S; and S, will
form an enlarged rectangle S, with rounded corners. The resulting
set will be convex.

— min
‘f 2,9,z Convex sets

T1

S1+ 85>

Figure 7: S =5, + S,

1
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Finding convexity

In practice, it is very important to understand whether a specific set is convex or not. Two approaches are used for
this depending on the context.

® By definition.

lf%ﬁ}‘i Convex sets 00
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Finding convexity

In practice, it is very important to understand whether a specific set is convex or not. Two approaches are used for
this depending on the context.

® By definition.
® Show that S is derived from simple convex sets using operations that preserve convexity.

‘f% fnﬂ Convex sets 00
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Finding convexity by definition

1,85 €5,0<0<1 — Ox;+(1—0)z, €8
i Example

Prove, that the set of symmetric positive definite matrices S7, = {X € R™" | X = XT, X > 0} is convex.

‘f - Wy‘rﬁ Convex sets @ 0
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Operations, that preserve convexity

The linear combination of convex sets is convex Let there be 2 convex sets S, 5, let the set

S={sls=c@+cy, z€85,, yeS,, c,c; €R}

Take two points from S: s, = ¢;z; + ¢y, Sg = €1Z9 + CoY, and prove that the segment between them
0s; + (1 —0)s,,0 € [0,1] also belongs to S

Bs, + (1—6)s,
0(c1zy + coy1) + (1 = 0)(c125 + coy5)
¢y (0zy + (1= 0)xy) + ¢y (Oy; + (1 —0)y,)
T +cy €S

— min
‘f 2,9,z Convex sets

13
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The intersection of any (!) number of convex sets is convex

If the desired intersection is empty or contains one point, the property is proved by definition. Otherwise, take 2
points and a segment between them. These points must lie in all intersecting sets, and since they are all convex, the
segment between them lies in all sets and, therefore, in their intersection.

Y
S

4

v

) Figure 8: Intersection of halfplanes
‘fﬁ}fnﬂ Convex sets g P P00 O 14
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The image of the convex set under affine mapping is convex

S CR"™ convex — f(S)={f(z)|x €S} convex (f(x)=Ax+Db)

Examples of affine functions: extension, projection, transposition, set of solutions of linear matrix inequality
{z|zA) + ...+ z,,A,, X B}. Here A;, B € SP are symmetric matrices p X p.

Note also that the prototype of the convex set under affine mapping is also convex.

S CR™ convex — f71(S)={z €R"| f(x) € S} convex (f(x)= Ax+Db)

— min
‘f 2,9,z Convex sets

15


https://fmin.xyz
https://hse25.fmin.xyz
https://github.com/MerkulovDaniil/hse25
https://t.me/fminxyz

Example

Let z € R is a random variable with a given probability distribution of P(x = a;) = p;, where i = 1,...,n, and
a; < ...<a,. Itissaid that the probability vector of outcomes of p € R™ belongs to the probabilistic simplex, i.e.

P={p|1Tp=1,p=0y={p|p +..+p, =1,p; > 0}.

Determine if the following sets of p are convex:

* Plz>a)<f

‘f% fnﬂ Convex sets 00
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Example

Let z € R is a random variable with a given probability distribution of P(x = a;) = p;, where i = 1,...,n, and
a; < ...<a,. Itissaid that the probability vector of outcomes of p € R™ belongs to the probabilistic simplex, i.e.

P={p|1Tp=1,p=0y={p|p +..+p, =1,p; > 0}.

Determine if the following sets of p are convex:

*Plz>a)<f
* E|z20| < aFE|z|

‘f% fnﬂ Convex sets 00
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Example

Let z € R is a random variable with a given probability distribution of P(x = a;) = p;, where i = 1,...,n, and
a; < ...<a,. Itissaid that the probability vector of outcomes of p € R™ belongs to the probabilistic simplex, i.e.

P={p|1Tp=1,p=0y={p|p +..+p, =1,p; > 0}.

Determine if the following sets of p are convex:

*Plz>a)<f
* E|z20| < aFE|z|
® Elz2]| > aVz > «

‘f% fnﬂ Convex sets 00

16


https://fmin.xyz
https://hse25.fmin.xyz
https://github.com/MerkulovDaniil/hse25
https://t.me/fminxyz

‘f — min
Tz

Convex functions

Convex functions
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Jensen’s inequality

The function f(z), which is defined on the
convex set S C R", is called convex on S, if:

f(z)

FOx + (1= Nzg) < Af(2q) + (1= N) f(zo)

for any z,25, € Sand 0 < A < 1.

If the above inequality holds as strict inequality
xy # x5 and 0 < X < 1, then the function is
called strictly convex on S.

Non convex

Convex

xr

Figure 9: Difference between convex and non-convex function

— min .
‘f Tz Convex functions

18


https://fmin.xyz
https://hse25.fmin.xyz
https://github.com/MerkulovDaniil/hse25
https://t.me/fminxyz

Jensen’s inequality

i Theorem

Let f(x) be a convex function on a convex set X C R™ and let z; € X,1 < i < m, be arbitrary points from
X. Then

m m
! (Z )\r’rz) < Z Aif(z;)
i=1 =1
forany A =[\,..., A\,,] € A, - probability simplex.

Proof

1. First, note that the point Zzl A;x; as a convex combination of points from the convex set X belongs to X.

‘f% fnﬂ Convex functions @0 O
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Jensen’s inequality

i Theorem

Let f(x) be a convex function on a convex set X C R™ and let z; € X,1 < i < m, be arbitrary points from
X. Then

m m
! (Z )‘zxz> < Z Aif(z;)
i=1 =1
for any A = [\, ..., \,,,] € A,,, - probability simplex.

Proof

1. First, note that the point Zzl A;x; as a convex combination of points from the convex set X belongs to X.
2. We will prove this by induction. For m = 1, the statement is obviously true, and for m = 2, it follows from the
definition of a convex function.

‘f% fn.}‘; Convex functions P00 O 19
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Jensen’s inequality
3. Assume it is true for all m up to m = k, and we will prove it for m =k + 1. Let A € Ak + 1 and

k+1 k
T = E Axy = E Ay + A1 Tpgr
-1 =1

Assuming 0 < A\, < 1, as otherwise, it reduces to previously considered cases, we have

T = Np1Zppn T (1 — Mgy,

A
1-X

where T = Zle ~;x; and v; = —>0,1<i<k

k1 k1
! (Z /\ixi> = f (A1 Zrar + (1= X)) < Ner f@pn) + (1= Ay f(@) < Z Aif (@)
i=1 =1

Thus, initial inequality is satisfied for m = k 4+ 1 as well.

‘f - §“}‘l Convex functions @0
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Jensen’s inequality
3. Assume it is true for all m up to m = k, and we will prove it for m = k+ 1. Let A € Ak + 1 and

k+1 k
T = E Axy = E Ay + A1 Tpgr
-1 =1

Assuming 0 < A\, < 1, as otherwise, it reduces to previously considered cases, we have

T = Np1Zppn T (1 — Mgy,

_ k : .
where 7 =3 v;x; and v, = 1&;“ >0,1<i<k.

4. Since A € Ay, then v = [y,..., 7] € A,. Therefore Z € X and by the convexity of f(z) and the induction

hypothesis:
k1 k1
! (Z /\ixi> = f (A1 Zrar + (1= X)) < Ner f@pn) + (1= Ay f(@) < Z Aif(z;)
i=1 =1

Thus, initial inequality is satisfied for m = k 4+ 1 as well.

‘fﬁ}fnﬂ Convex functions P00 O 20
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Examples of convex functions

e f(x)=aP, p>1, 2R,

o F(@) = Jol?, p> 1,2 € R"

° f(x)=e”, ceR,zeR

® f(z)=—Inz, ze R,

® f(x)=zlnz, xeR

® The sum of the largest k coordinates f(x)
© F(X) = Ay (X), X = XT

® f(X)=—logdet X, X € S7,

— min .
‘f Tz Convex functions

= I(l) + +I<k), T € Rn
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Epigraph

For the function f(x), defined on S C R™, the following
set:

epi f={[z,u] € SxR: f(x) <pu} f(x) Epl f

is called epigraph of the function f(x).

i Convexity of the epigraph is the convexity of the
function

For a function f(z), defined on a convex set X, to
be convex on X, it is necessary and sufficient that
the epigraph of f is a convex set.

Figure 10: Epigraph of a function

— min .
‘f Tz Convex functions
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Convexity of the epigraph is the convexity of the function

1. Necessity: Assume f(x) is convex on X. Take any two arbitrary points [z, t1] € epif and [z, i15] € epif.

Also take 0 < A < 1 and denote zy = Azy + (1 — N)zy, iy = Apg + (1 — N)pg. Then,

SR R E

From the convexity of the set X, it follows that xy, € X. Moreover, since f(x) is a convex function,

f(@y) S Af(2q) + (1= N) f(zg) < Ay + (1= Ny = py

Inequality above indicates that [z)‘] € epif. Thus, the epigraph of f is a convex set.
A

‘f - §“}‘l Convex functions @0
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Convexity of the epigraph is the convexity of the function
1. Necessity: Assume f(x) is convex on X. Take any two arbitrary points [z, t1] € epif and [z, i15] € epif.
Also take 0 < A < 1 and denote zy = Azy + (1 — Ny, iy = Ay + (1 — Ny Then,

SR R E

From the convexity of the set X, it follows that xy, € X. Moreover, since f(x) is a convex function,

flzy) < Af(2q) + (=N f(2) < Ay + (1= Npg = py
Inequality above indicates that [fﬁ] € epif. Thus, the epigraph of f is a convex set.
A

2. Sufficiency: Assume the epigraph of f, epif, is a convex set. Then, from the membership of the points [z, 141]
and [z, (5] in the epigraph of f, it follows that

-2 0[] o

forany 0 < A <1, ie., f(zy) < py = Ay + (1 — A)py. But thisis true for all gy > f(z,) and puy > f(z5),
particularly when py = f(zy) and uy = f(z5). Hence we arrive at the inequality

‘f% fn.}‘; Convex functions P00 O 23


https://fmin.xyz
https://hse25.fmin.xyz
https://github.com/MerkulovDaniil/hse25
https://t.me/fminxyz

Example: norm cone
Let a norm | - | be defined in the space U. Consider the set:

K :={(z,t) e U xR : |z| < t}
cone norm. According to the statement

which represents the epigraph of the function =  ||z|. This set is called the

above, the set K is convex. ®@Code for the figures
p =~ Norm Cone

p =2 Norm Cone

p =1 Norm Cone

2.00
1.75
1.50
1.25
1.00
0.75
0.50
0.25

1.0
0.5
0.0

-0.5

0.0
0.5
X 10 10

— min :
‘f Tz Convex functions

-1.0
-0.5
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Sublevel set

0 L x
Figure 12: Sublevel set of a function with respect to level 5

— min .
‘/ Tz Convex functions

For the function f(x), defined on S C R", the following
set:

Ly={reS: f(x) < B}

is called sublevel set or Lebesgue set of the function f(x).
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Sublevel set

Figure 12: Sublevel set of a function with respect to level 5

‘f — min
Tz

Convex functions

Lgs

For the function f(x), defined on S C R", the following
set:

Ly={z€S: f(x)< B}

is called sublevel set or Lebesgue set of the function f(x).

Note, that if the function f(z) is convex, then its sublevel
sets are convex for any 8 € R.
While the converse is not true. (For example, consider

the function f(z) = /|z])

25
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Reduction to a line

f:S — Ris convex if and only if S is a convex set and the function ¢g(t) = f(x + tv) defined on {t | z + tv € S} is
convex for any x € S, v € R™, which allows checking convexity of the scalar function to establish convexity of the
vector function.

lf%ﬁ}‘i Convex functions P00 O 26
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Reduction to a line
f:S — Ris convex if and only if S is a convex set and the function ¢g(t) = f(x + tv) defined on {t | z + tv € S} is
convex for any x € S, v € R"™, which allows checking convexity of the scalar function to establish convexity of the

vector function.
If you find a direction v for which g(t) is not convex, then f is not convex.

No Dropout. Plane projection of loss surface.

Before training After training

7
@ 2.33
+ 0.6
H 0o
I
+ 2.32 0.5
e
3
= 5 ob 0.4
3
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Weights after training ® 00

=S Trainloss & Testloss * Weights before training $5 Trainloss $5 Testloss e

— min h
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Operations that preserve convexity

f(z) = max{f(z), f2(z), f3(z)}

fi(z)
f2(z)

Figure 13: Pointwise maximum (supremum) of convex functions is
RCOnVEX

Convex functions

® Pointwise maximum (supremum) of any number of
functions: If fi(z),..., f,,(x) are convex, then

fx) = max{f(x),..., f,,(x)} is convex.

27
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Operations that preserve convexity
® Pointwise maximum (supremum) of any number of

functions: If fi(z),..., f,,(x) are convex, then
f(m) - max{f1 (m)v f2($)7 f3 (m)} flx)= max{]l"l(ac), ey fin(2)} is convex.
® Non-negative sum of the convex functions:

af(z) + Bg(z), (a > 0,8 > 0).

fi(z)
f2(z)

Figure 13: Pointwise maximum (supremum) of convex functions is
‘qu% Convex functions @0 O
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Operations that preserve convexity
® Pointwise maximum (supremum) of any number of

functions: If fi(z),..., f,,(x) are convex, then
f(z) = max{fi(z), f2(z), f3(z)} f(x) = max{f,(z),..., f,,(x)} is convex.
® Non-negative sum of the convex functions:
af(z) + Bg(z), (> 0,8 >0).
fl(m) ® Composition with affine function f(Az + b) is convex,

if f(x) is convex.
fa()

Figure 13: Pointwise maximum (supremum) of convex functions is

‘CQD—V% Convex functions P00 O 27


https://fmin.xyz
https://hse25.fmin.xyz
https://github.com/MerkulovDaniil/hse25
https://t.me/fminxyz

Operations that preserve convexity
® Pointwise maximum (supremum) of any number of

functions: If fi(z),..., f,,(x) are convex, then
f(m) - max{f1 (m)v f2($)7 f3 (m)} flx)= max{]l"l(m), ey fin(2)} is convex.
® Non-negative sum of the convex functions:

af(z) + Bg(z), (a > 0,8 > 0).

fl(m) ® Composition with affine function f(Ax + b) is convex,
if f(x) is convex.
f2 (.’13) ® If f(z,y) is convex on x for any y € Y
g(x) = sup f(z,y) is convex.
yeY

Figure 13: Pointwise maximum (supremum) of convex functions is
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Operations that preserve convexity
® Pointwise maximum (supremum) of any number of

functions: If fi(z),..., f,,(x) are convex, then
f(m) - max{f1 (m)v f2($)7 f3 (m)} flx)= max{]l"l(m), ey fin(2)} is convex.
® Non-negative sum of the convex functions:

af(z) + Bg(z), (a > 0,8 > 0).

fl(m) ® Composition with affine function f(Ax + b) is convex,
if f(x) is convex.
f2 (.’13) ® If f(z,y) is convex on x for any y € Y
g(x) = sup f(z,y) is convex.
yeY

® If f(x) is convex on S, then g(z,t) =tf(x/t) - is
convex with z/t € S,t > 0.

Figure 13: Pointwise maximum (supremum) of convex functions is
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Operations that preserve convexity
® Pointwise maximum (supremum) of any number of

functions: If fi(z),..., f,,(x) are convex, then
f(m) - max{f1 ($)7 f2($)7 f3 (aj)} flx)= max{]l"l(m), ey fin(2)} is convex.
® Non-negative sum of the convex functions:

af(z) + Bg(z), (a > 0,8 > 0).

fl(m) ® Composition with affine function f(Ax + b) is convex,
if f(x) is convex.
f2 (.’13) ® If f(z,y) is convex on x for any y € Y
g(x) = sup f(z,y) is convex.
yeY

® If f(x) is convex on S, then g(z,t) =tf(x/t) - is
convex with z/t € S,t > 0.
® let f; : S; = Rand f;: S5 = R, where
f (:B) range(f;) C Sy. If f; and f, are convex, and f, is
3 increasing, then f; o f; is convex on S;.

Figure 13: Pointwise maximum (supremum) of convex functions is
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Maximum eigenvalue of a matrix is a convex function

i Example

Show, that f(A) = \,,,.(A4) - is convex, if A € S™.

max

— min :
‘f Tz Convex functions
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‘f — min
Tz

Strong convexity criteria

Strong convexity criteria

29


https://fmin.xyz
https://hse25.fmin.xyz
https://github.com/MerkulovDaniil/hse25
https://t.me/fminxyz

First-order differential criterion of convexity
The differentiable function f(x) defined on the convex set

S C R"™ is convex if and only if Vx,y € S:

f(z)
fy) = f(2) + V() (y — =)
Let y = = + Az, then the criterion will become more tractable: Function
flz+Az) > f(z) + VI (z)Ax
0 x

Global linear lower bounds

Figure 14: Convex function is greater or equal than Taylor
linear approximation at any point
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Second-order differential criterion of convexity

Twice differentiable function f(z) defined on the convex set S C R™ is convex if and only if Vz € int(S) # 0

V2 f(z) = 0

In other words, Vy € R™:

(y, V2 f(2)y) = 0

‘f - Wy‘rﬁ Strong convexity criteria DO
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Strong convexity
f(x), defined on the convex set S C R", is called u-strongly

convex (strongly convex) on S, if:
f(z)
fQa+(1=A)zy) < )‘f(ml)+(1_)‘)f(5”2)_g>‘(1_)‘)||I1_x2||2

for any zq,25 € S and 0 < A <1 for some p > 0. Function

0 T

Global quadratic lower bounds

Figure 15: Strongly convex function is greater or equal than
Taylor quadratic approximation at any point
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First-order differential criterion of strong convexity

Differentiable f(z) defined on the convex set S C R™ is p-strongly convex if and only if Vz,y € S:

) = f(@) + VT @)y =) + Sy —al

— mi L
‘f Wy‘l} Strong convexity criteria
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First-order differential criterion of strong convexity

Differentiable f(z) defined on the convex set S C R™ is p-strongly convex if and only if Vz,y € S:

) = f(@) + VT @)y =) + Sy —al

Let y = x + Az, then the criterion will become more tractable:

Fla+ Ax) > f@) + VT (@)Ax + S| Ax|?

— mi L
‘f Wy‘rﬁ Strong convexity criteria
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First-order differential criterion of strong convexity

Differentiable f(z) defined on the convex set S C R™ is p-strongly convex if and only if Vz,y € S:

) = f(@) + VT @)y =) + Sy —al

Let y = x + Az, then the criterion will become more tractable:
f@+Az) 2 f(2) + VT (2)Ac + | Aaf?

i Theorem

Let f(z) be a differentiable function on a convex set X C R™. Then f(z) is strongly convex on X with a
constant p > 0 if and only if

F(@) = flag) = (Vo) —a0) + o — |2

forall z,z5 € X.

‘f - 51'1;!; Strong convexity criteria D0 0
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Proof of first-order differential criterion of strong convexity

Necessity: Let 0 < A < 1. According to the definition of a strongly convex function,

FO@ + (1= XNaog) < Af(x) + (1= N f(xo) — g/\(l = Mllz —z|?

— mi L
‘f ?qyu} Strong convexity criteria
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Proof of first-order differential criterion of strong convexity

Necessity: Let 0 < A < 1. According to the definition of a strongly convex function,

FO@ + (1= XNaog) < Af(x) + (1= N f(xo) — g/\(l = Mllz —z|?

or equivalently, .
F@) = ) = 5 (1= Nlle = 2ol = 51O + (1 = Ng) = F(zo)] =

— mi L
‘f Wy‘rﬁ Strong convexity criteria
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Proof of first-order differential criterion of strong convexity

Necessity: Let 0 < A < 1. According to the definition of a strongly convex function,

FO@ + (1= XNaog) < Af(x) + (1= N f(xo) — g/\(l = Mllz —z|?

or equivalently, .
F@) = ) = 5 (1= Nlle = 2ol = 51O + (1 = Ng) = F(zo)] =

1

= <f(xo + Mz —x)) — f(zo)] =

3 MV f(2o), 2 — 20) + 0(N)] =

> =
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Proof of first-order differential criterion of strong convexity

Necessity: Let 0 < A < 1. According to the definition of a strongly convex function,
1
FOz + (1= Vo) < Af(2) + (1= N f(z0) = AL = Nz — 2o

or equivalently,
[FAz + (1= N)zo) — flzo)] =

> =

F@) = flag) = B =N ) >

1

= ~[f(zo + Mz —20)) — f(20)] = T IMV f(20), 2 — T0) + 0(N)] =

> =

A

= (Vf(a).z —zo) + 2.

Thus, taking the limit as A | 0, we arrive at the initial statement.

— mi L
‘f Wy‘rﬁ Strong convexity criteria

34


https://fmin.xyz
https://hse25.fmin.xyz
https://github.com/MerkulovDaniil/hse25
https://t.me/fminxyz

Proof of first-order differential criterion of strong convexity

Sufficiency: Assume the inequality in the theorem is satisfied for all z, 2z, € X. Take z( = Azy + (1 — A)zy, where
Z1,T9 € X, 0 <X < 1. According to the inequality, the following inequalities hold:

‘f - Wy‘rﬁ Strong convexity criteria D0 0
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Proof of first-order differential criterion of strong convexity

Sufficiency: Assume the inequality in the theorem is satisfied for all z, 2z, € X. Take z( = Azy + (1 — A)zy, where
Z1,T9 € X, 0 <X < 1. According to the inequality, the following inequalities hold:

F@n) = (o) 2 (V flay), a1 — o) + o — aol?,

F(wa) = (o) = (V (), w5 — o) + e — ol

Multiplying the first inequality by A and the second by 1 — A\ and adding them, considering that

‘f - fny"; Strong convexity criteria D0 0
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Proof of first-order differential criterion of strong convexity

Sufficiency: Assume the inequality in the theorem is satisfied for all z, 2z, € X. Take z( = Azy + (1 — A)zy, where

Z1,T9 € X, 0 <X < 1. According to the inequality, the following inequalities hold:

F@n) = (o) 2 (V flay), a1 — o) + o — aol?,

F(wa) = (o) = (V (), w5 — o) + e — ol

Multiplying the first inequality by A and the second by 1 — A\ and adding them, considering that

T — x5 = (1= A)(T; —23), To—x5=AN2y—79),

and A(1—=X)2 +A2(1—2) = A(1—)), we get

— mi L
‘f fny"; Strong convexity criteria
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Proof of first-order differential criterion of strong convexity

Sufficiency: Assume the inequality in the theorem is satisfied for all z, 2z, € X. Take z( = Azy + (1 — A)zy, where
Z1,T9 € X, 0 <X < 1. According to the inequality, the following inequalities hold:

F@n) = (o) 2 (V flay), a1 — o) + o — aol?,

F(wa) = (o) = (V (), w5 — o) + e — ol

Multiplying the first inequality by A and the second by 1 — A\ and adding them, considering that

T — x5 = (1= A)(T; —23), To—x5=AN2y—79),

and A(1—=X)2 +A2(1—2) = A(1—)), we get

M) + (1= N f(a) = flag) = EML= Ny = >
(Vf(2o), Azy + (1 = AN)zy — 24) = 0.

Thus, inequality from the definition of a strongly convex function is satisfied. It is important to mention, that 1 =0
stands for the convex case and corresponding differential criterion.
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Second-order differential criterion of strong convexity

Twice differentiable function f(x) defined on the convex set S C R™ is called p-strongly convex if and only if
Vz € int(S) # 0
V2 f(@) = pl

In other words:
(y, V2 f(x)y) > plyl?

‘f - Wy‘rﬁ Strong convexity criteria QDO
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Second-order differential criterion of strong convexity

Twice differentiable function f(x) defined on the convex set S C R™ is called p-strongly convex if and only if
Vz € int(S) # 0
V2 f(x) = pl

In other words:
(y, V2 f(x)y) > plyl?

i Theorem

Let X C R™ be a convex set, with intX = (. Furthermore, let f(x) be a twice continuously differentiable
function on X. Then f(z) is strongly convex on X with a constant x> 0 if and only if

(y, V2 f(z)y) = plyl?
for all z € X and y € R™.

‘f - 51'1;!; Strong convexity criteria D0 0
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Proof of second-order differential criterion of strong convexity

The target inequality is trivial when y = 0,,, hence we assume y # 0,,.

Necessity: Assume initially that = is an interior point of X. Then x + ay € X for all y € R™ and sufficiently small a.
Since f(z) is twice differentiable,

flz+ay) = f(z) +a(Vi(z),y) + %(y» V2 f(@)y) + o(a®).
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Proof of second-order differential criterion of strong convexity

The target inequality is trivial when y = 0,,, hence we assume y # 0,,.

Necessity: Assume initially that = is an interior point of X. Then x + ay € X for all y € R™ and sufficiently small a.
Since f(z) is twice differentiable,

flz+ay) = f(z) +a(Vi(z),y) + %(y» V2 f(@)y) + o(a®).

Based on the first-order criterion of strong convexity, we have

S 0. V2 f(@)y) +0(a®) = f(z + ay) — f(x) — a(V(x).y) = Sallyl?.

This inequality reduces to the target inequality after dividing both sides by a? and taking the limit as o | 0.

If z € X but = ¢ intX, consider a sequence {z}} such that z; € intX and x;, — x as k — co. Then, we arrive at
the target inequality after taking the limit.
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Proof of second-order differential criterion of strong convexity

Sufficiency: Using Taylor's formula with the Lagrange remainder and the target inequality, we obtain for x +y € X:

Fla+ ) — f() = (V(),9) = 50, V2 (@ + an)y) = ]I,

where 0 < e < 1. Therefore,

‘f - Wy‘rﬁ Strong convexity criteria D0 0
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Proof of second-order differential criterion of strong convexity

Sufficiency: Using Taylor's formula with the Lagrange remainder and the target inequality, we obtain for x +y € X:
1 B
fa+y) = f@) ~ (Vf@), ) = 5, V2 F + ag)y) = Syl

where 0 < o« < 1. Therefore,

Fa+y) = f(2) = (Vf(),p) + Syl

Consequently, by the first-order criterion of strong convexity, the function f(x) is strongly convex with a constant p.
It is important to mention, that = 0 stands for the convex case and corresponding differential criterion.
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Convex and concave function

i Example

Show, that f(z) = ¢"x + b is convex and concave.

— mi L
‘f ?qyu} Strong convexity criteria
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Simplest strongly convex function

i Example

Show, that f(z) = 2" Az, where A = 0 - is convex on R”

— mi L
‘f ?qyu} Strong convexity criteria

. Is it strongly convex?
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Convexity and continuity
Let f(x) - be a convex function on a convex set S C R".
Then f(x) is continuous Vz € ri(S). !

i Proper convex function
Function f : R®™ — R is said to be proper convex

function if it never takes on the value —oo and not
identically equal to oc.

i Indicator function

00, w€ES,
55(37)_{0 2 ¢S

is a proper convex function.

— mi L
‘ = 1 Strong convexity criteria
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Convexity and continuity

Let f(x) - be a convex function on a convex set S C R".
. - . 1

Then f(x) is continuous Vz € ri(.5). i Closed function

1 Proper convex function Function f : R™ — R is said to be closed if for each

o € R, the sublevel set is closed.

Equivalently, if the epigraph is closed, then the func-

tion f is closed.

Function f : R®™ — R is said to be proper convex
function if it never takes on the value —oo and not
identically equal to oc.

i Indicator function (=) f(z) .
Closed

M rax 3 . .
Convex function convex function

00, w€ES, . .
dg(z) _{

0, z¢S5,
is a proper convex function. \/

Figure 16: The concept of a closed function is introduced to avoid
such breaches at the border.
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Facts about convexity

® f(x)is called (strictly, strongly) concave if the function —f(z) - is (strictly, strongly) convex.
® Jensen's inequality for the convex functions:

f (iaﬂi) < iazf<'rz)
i=1 i=1

n

fora; >0; > «a, =1 (probability simplex)
i=1

For the infinite dimension case:

If the integrals exist and p(z) >0, [p(z)dz =1.
5

® If the function f(z) and the set .S are convex, then any local minimum 2* = argmigl f(z) will be the global one.
xE
Strong convexity guarantees the uniqueness of the solution.
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Other forms of convexity

Log-concavity: log f concave; not closed under addition!
Exponential convexity: [f(x; + ;)] = 0, for zq,..., 2,
Operator convexity: f(AX + (1 —\)Y)
Quasiconvexity: f(Az + (1 — N)y) < max{f(z), f(y)}
Pseudoconvexity: (Vf(y),z —y) >0 — f(z) > f(y)
Discrete convexity: f : Z™ — Z; “convexity + matroid theory.”

3

— mi L
‘f 51'1;!; Strong convexity criteria

Log-convexity: log f is convex; Log convexity implies convexity.
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Polyak- Lojasiewicz condition. Linear convergence of gradient descent without

convexity
PL inequality holds if the following condition is satisfied for some u > 0,

IVF(@)I? = 2u(f(z) — f*)Va
It is interesting, that the Gradient Descent algorithm has

The following functions satisfy the PL condition but are not convex. ®Link to the code

fz) = 22 4 3sin’(z)

Function, that satisfies
Polyak- Lojasiewicz condition

—— f(x) = x2 + 3sin?(x)

-3 -2 -1 0 1 2 3

— mi L
‘/ Wy‘rﬁ Strong convexity criteria
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Polyak- Lojasiewicz condition. Linear convergence of gradient descent without

convexity
PL inequality holds if the following condition is satisfied for some u > 0,

IVF@)I? > 2u(f(z) — f)Va
It is interesting, that the Gradient Descent algorithm has

The following functions satisfy the PL condition but are not convex. ®Link to the code

(y —sinx)?
2

fz) = 2% + 3sin’(z) fla,y) =

Function, that satisfies Non-convex PL function
Polyak- Lojasiewicz condition

—— f(x) =x? + 3sin?(x)

4.0
35
3.0
25
2.0
15
10
05

-3 -2 -1 0 1 2 3
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Convexity in ML

Convexity in ML
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Linear Least Squares aka Linear Regression

Linear least squares. Linear least squares.

5 Lol K 2

Function value
o
.®
®e
.
Function value
°

-10.0 =75 =50 -2.5 00 25 50 75 100 -100 =75 =50 -25 00 25 50 75 100
x x

Figure 19: Illustration

In a least-squares, or linear regression, problem, we have measurements X € R"*™ and y € R™ and seek a vector
0 € R™ such that X6 is close to y. Closeness is defined as the sum of the squared differences:

m
> (@0—y,)* = |X0—y|3 — min
=1

For example, we might have a dataset of m users, each represented by n features. Each row x] of X is the features
for user 4, while the corresponding entry y; of y is the measurement we want to predict from ], such as ad spending.
The prediction is given by z] 0.
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Linear Least Squares aka Linear Regression

1. Is this problem convex? Strongly convex?

‘f - wl} Convexity in ML

2
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Linear Least Squares aka Linear Regression 2

1. Is this problem convex? Strongly convex?
2. What do you think about the convergence of Gradient Descent for this problem?

2Take a look at the fexample of real-world data linear least squares problem
‘f - §ny1r; Convexity in ML
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l,-regularized Linear Least Squares

In the underdetermined case, it is often desirable to restore the strong convexity of the objective function by adding
an ly-penality, also known as Tikhonov regularization, [,-regularization, or weight decay.

o2 Bz :
|X6 —ylz + 516z — min

Note: With this modification, the objective is p-strongly convex again.

Take a look at the ®code

‘f - fnﬂ Convexity in ML

48


https://colab.research.google.com/github/MerkulovDaniil/optim/blob/master/assets/Notebooks/l2_LLS.ipynb
https://fmin.xyz
https://hse25.fmin.xyz
https://github.com/MerkulovDaniil/hse25
https://t.me/fminxyz

Most important difference between convexity and strong convexity
F@) = —— Az — b2 + LJe|2 > min, AeRmn b Rm
2m 20 21T e '

Convex least squares regression. m=50. n=100. mu=0.
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Figure 20: Convex problem does not have convergence in domain
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Most important difference between convexity and strong convexity

1x) — £

‘f — min
Tz

1
@) = 5-|Av—bj3 + Elel3 — min, AeRrm™beR™

Strongly convex least squares regression. m=50. n=100. mu=0.1.
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But if you add even small amount of regularization, you will ensure convergence in domain

Ixe = x|l

Ixc = x "1l
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Most important difference between convexity and strong convexity
F@) = —— Az — b2 + LJe|2 > min, AeRmn b Rm
2m 20 21T e '

Strongly convex least squares regression. m=100. n=50. mu=0.
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Figure 22: Another way to ensure convergence in the previous problem is to switch the dimension values
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You have to have strong convexity (or PL) to ensure convergence with a high
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Ixie = x|

I = x"1
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Convex binary logistic regression. mu=0.
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Figure 23: Only small precision is achievable with sublinear convergence
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You have to have strong convexity (or PL) to ensure convergence with a high
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Strongly convex binary logistic regression. mu=0.1.
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Figure 24: Strong convexity ensures linear convergence
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Any local minimum is a global minimum for Deep Linear Networks 3

We consider the following optimization problem:

. 1
erf}}fil/VL LWy,..,Wp) = §”WLWL71 W X = Y”%»

where
X € R%*" is the data/input matrix,

Y € R%*" is the “label’/output matrix.
i Theorem
Let k = min(d,,,d,) be the "width" of the network, and define
V ={(Wy,...,Wp) | rank(IL,W;) = k}.

Then, every critical point of L(WW) in V is a global minimum, while every critical point in the complement V¢
is a saddle point.

3Global optimality conditions for deep neural networks
‘f - §“}‘l Convexity in ML
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