Daniil Merkulov

c
10
=]
AD
=]
=
()
]
&=
(@]
=
=)
(1]
£
(=]
]
-
<

Optimization for ML. Faculty of Computer Science. HSE University

https://fmin.xyz
https://hse25.fmin.xyz
https://github.com/MerkulovDaniil/hse25
https://t.me/fminxyz

‘f — min
Tz

Automatic Differentiation

Automatic Differentiation

https://fmin.xyz
https://hse25.fmin.xyz
https://github.com/MerkulovDaniil/hse25
https://t.me/fminxyz

@dpiponi@mathstodon.xyz
@sigfpe

| think the first 40 years or so of automatic differentiation was largely

people not using it because they didn't believe such an algorithm could
possibly exist.

11:36 PM - Sep 17, 2019

@X 126 Q 159 [13 e

Figure 1: When you got the idea

Figure 2: This is not autograd

Problem

Suppose we need to solve the following problem:

— mi . -
‘/ §ny1r; Automatic Differentiation

L(w) — min
weR4

https://fmin.xyz
https://hse25.fmin.xyz
https://github.com/MerkulovDaniil/hse25
https://t.me/fminxyz

Problem

Suppose we need to solve the following problem:

L(w) — min
weR4

® Such problems typically arise in machine learning, when you need to find suitable parameters w of an ML model
(i-e. train a neural network).

‘f% 5“.}‘2 Automatic Differentiation 0 O

https://fmin.xyz
https://hse25.fmin.xyz
https://github.com/MerkulovDaniil/hse25
https://t.me/fminxyz

Problem

Suppose we need to solve the following problem:

L(w) — min
weR4

® Such problems typically arise in machine learning, when you need to find suitable parameters w of an ML model
(i-e. train a neural network).

® You may use a lot of algorithms to approach this problem. Still, given the modern size of the problem, where d
could be dozens of billions it is very challenging to solve this problem without information about the gradients
using zero-order optimization algorithms.

‘f% 5“.}‘2 Automatic Differentiation 0 O

https://fmin.xyz
https://hse25.fmin.xyz
https://github.com/MerkulovDaniil/hse25
https://t.me/fminxyz

Problem

Suppose we need to solve the following problem:

L(w) — min
weR?
® Such problems typically arise in machine learning, when you need to find suitable parameters w of an ML model

(i-e. train a neural network).

® You may use a lot of algorithms to approach this problem. Still, given the modern size of the problem, where d
could be dozens of billions it is very challenging to solve this problem without information about the gradients
using zero-order optimization algorithms.

. or \T
® That is why it would be beneficial to be able to calculate the gradient vector VL = ((’;}wL s ey ade)
1 d

‘f% 5“.}‘2 Automatic Differentiation 0 O

https://fmin.xyz
https://hse25.fmin.xyz
https://github.com/MerkulovDaniil/hse25
https://t.me/fminxyz

Problem

Suppose we need to solve the following problem:

L(w) — min
weR4

Such problems typically arise in machine learning, when you need to find suitable parameters w of an ML model
(i-e. train a neural network).

® You may use a lot of algorithms to approach this problem. Still, given the modern size of the problem, where d
could be dozens of billions it is very challenging to solve this problem without information about the gradients
using zero-order optimization algorithms.

. o \T
That is why it would be beneficial to be able to calculate the gradient vector VL = ((’;}le s ey 8‘)“1)
Typically, first-order methods perform much better in huge-scale optimization, while second-order methods

require too much memory.

‘f% EHA}‘; Automatic Differentiation 0 O

https://fmin.xyz
https://hse25.fmin.xyz
https://github.com/MerkulovDaniil/hse25
https://t.me/fminxyz

Example: multidimensional scaling

Suppose, we have a pairwise distance matrix for N d-dimensional objects D € RN*¥ Given this matrix, we aim to
recover the initial coordinates W, € R, i =1,..., N.

‘f - Wy‘rﬁ Automatic Differentiation 0 O

http://www.benfrederickson.com/numerical-optimization/
https://fmin.xyz
https://hse25.fmin.xyz
https://github.com/MerkulovDaniil/hse25
https://t.me/fminxyz

Example: multidimensional scaling

Suppose, we have a pairwise distance matrix for N d-dimensional objects D € RN*¥ Given this matrix, we aim to
recover the initial coordinates W, € R, i =1,..., N.

N

2 .

LW) =Y (IW,=W,|3—D,;)" - min
i,j=1

WeRNxd

‘f - Wy‘rﬁ Automatic Differentiation 0 O

http://www.benfrederickson.com/numerical-optimization/
https://fmin.xyz
https://hse25.fmin.xyz
https://github.com/MerkulovDaniil/hse25
https://t.me/fminxyz

Example: multidimensional scaling

Suppose, we have a pairwise distance matrix for N d-dimensional objects D € RN*¥ Given this matrix, we aim to
recover the initial coordinates W, € R, i =1,..., N.

N
2 .
LW) = (IW; =W,|3~D;;)" — min
ii=1

WeRNxd

Link to a nice visualization &, where one can see, that gradient-free methods handle this problem much slower,
especially in higher dimensions.

i Question

Is it somehow connected with PCA?

‘f%m‘; Automatic Differentiation 0 O

http://www.benfrederickson.com/numerical-optimization/
https://fmin.xyz
https://hse25.fmin.xyz
https://github.com/MerkulovDaniil/hse25
https://t.me/fminxyz

Example: multidimensional scaling

BupMuHrem Canx‘r-ﬂ:‘repﬁypr p—
Nofnor ®
o rambypr oK Hogs:
NapusdEnsH Bepmam MERKES™ HORESRAR yepa
apwxg MuHCK °
(] Bapwasa g Camapa
Mpara g
Mionxers \wes, BOPOHEX
Magpua mnnan® BN 5 xape
© Bapcenona [] ry ® Bonrorpan
° , Benrpan one.;cfocmu-na'ﬂt!y
by @ byxapect Kpackona
o Copns® PacytP
Crambyn
L]
@fminxyz
10?
— Gradient Descent
~— Nelder-Mead
L, 100
3
107
1 2 4 5 6
FLOPs. 1le6

Figure 3: Link to the animation

‘f - ;nyl,'; Automatic Differentiation

https://fmin.xyz/docs/visualizations/mds.mp4
https://fmin.xyz
https://hse25.fmin.xyz
https://github.com/MerkulovDaniil/hse25
https://t.me/fminxyz

Example: Gradient Descent without gradient

Suppose we need to solve the following problem:

L(w) — min
weR4

— mi . -
‘/ ?qyu} Automatic Differentiation

https://scholar.harvard.edu/files/yujietang/files/slides_2019_zero-order_opt_tutorial.pdf
https://fmin.xyz
https://hse25.fmin.xyz
https://github.com/MerkulovDaniil/hse25
https://t.me/fminxyz

Example: Gradient Descent without gradient

Suppose we need to solve the following problem:
L(w) — min
weR?

with the Gradient Descent (GD) algorithm:

Wiy = Wy, — @, V,, L(wy)

— mi . -
‘/ Wy‘rﬁ Automatic Differentiation

https://scholar.harvard.edu/files/yujietang/files/slides_2019_zero-order_opt_tutorial.pdf
https://fmin.xyz
https://hse25.fmin.xyz
https://github.com/MerkulovDaniil/hse25
https://t.me/fminxyz

Example: Gradient Descent without gradient

Suppose we need to solve the following problem:

L(w) — min
weR4

with the Gradient Descent (GD) algorithm:

Wiy = Wy, — @, V,, L(wy)

Is it possible to replace V
information?

L(wy,) using only zero-order

w

— mi . -
‘/ §ny1r; Automatic Differentiation

https://scholar.harvard.edu/files/yujietang/files/slides_2019_zero-order_opt_tutorial.pdf
https://fmin.xyz
https://hse25.fmin.xyz
https://github.com/MerkulovDaniil/hse25
https://t.me/fminxyz

Example: Gradient Descent without gradient
Suppose we need to solve the following problem:

L(w) — min
weR4

with the Gradient Descent (GD) algorithm:

Wiy = Wy, — @, V,, L(wy)

Is it possible to replace V,,L(w,,) using only zero-order
information?
Yes, but at a cost.

1] suggest a nice presentation about gradient-free methods

— mi . -
‘/ fny"; Automatic Differentiation

https://scholar.harvard.edu/files/yujietang/files/slides_2019_zero-order_opt_tutorial.pdf
https://fmin.xyz
https://hse25.fmin.xyz
https://github.com/MerkulovDaniil/hse25
https://t.me/fminxyz

Example: Gradient Descent without gradient
Suppose we need to solve the following problem:
L — mi
(W) =

with the Gradient Descent (GD) algorithm:

Wiy = Wy, — @, V,, L(wy)

Is it possible to replace V,,L(w,,) using only zero-order

information?

Yes, but at a cost.

One can consider 2-point gradient estimator' G:
(w+ev) — L(w—ev)

L
G=d
2 v

where v is spherically symmetric.

1] suggest a nice presentation about gradient-free methods

— mi . -
‘/ 51'1;!; Automatic Differentiation

https://scholar.harvard.edu/files/yujietang/files/slides_2019_zero-order_opt_tutorial.pdf
https://fmin.xyz
https://hse25.fmin.xyz
https://github.com/MerkulovDaniil/hse25
https://t.me/fminxyz

Example: Gradient Descent without gradient

Suppose we need to solve the following problem:

L(w) — min

weR?

with the Gradient Descent (GD) algorithm:

Is it possible to replace V

Wiy = Wy, — @, V,, L(wy)

information?
Yes, but at a cost.
One can consider 2-point gradient estimator' G:

L
G=d

w

L(wy,) using only zero-order

(w+ev) — L(w—ev)

v
2 ’

where v is spherically symmetric.

1] suggest a nice presentation about gradient-free methods

‘f — min
Tz

Automatic Differentiation

Trajectories with Contour Plot

—o— GD
2-P Estimator GD

1 Start Point
Optimal Point

Figure 4: “lllustration of two-point estimator of Gradient Descent

"

https://scholar.harvard.edu/files/yujietang/files/slides_2019_zero-order_opt_tutorial.pdf
https://fmin.xyz
https://hse25.fmin.xyz
https://github.com/MerkulovDaniil/hse25
https://t.me/fminxyz

Example: finite differences gradient descent

Wiy = wy — .G

— mi O .
‘f ;nyu} Automatic Differentiation

https://colab.research.google.com/github/MerkulovDaniil/optim/blob/master/assets/Notebooks/Zero_order_GD.ipynb
https://fmin.xyz
https://hse25.fmin.xyz
https://github.com/MerkulovDaniil/hse25
https://t.me/fminxyz

Example: finite differences gradient descent

Wiy = wy — .G

Trajectories with Contour Plot

One can also consider the idea of finite differences: —o— Gradient Descent
| —< Finite Differences Gradient Descent
@ Start Point
d Optimal Point
L(w +ee;) — L(w — ee;) *x
G= E €;
2e 2
=1
Open In Colab &
> 0
]
o]
-4 -2 (5 2 4

Figure 5: “lllustration of finite differences estimator of Gradient
Descent”

— mi . -
‘f ?qyu} Automatic Differentiation

https://colab.research.google.com/github/MerkulovDaniil/optim/blob/master/assets/Notebooks/Zero_order_GD.ipynb
https://fmin.xyz
https://hse25.fmin.xyz
https://github.com/MerkulovDaniil/hse25
https://t.me/fminxyz

The curse of dimensionality for zero-order methods >

min f(z)

— mi O .
‘f ;nyul Automatic Differentiation

10

https://arxiv.org/pdf/1312.2139
https://fmin.xyz
https://hse25.fmin.xyz
https://github.com/MerkulovDaniil/hse25
https://t.me/fminxyz

The curse of dimensionality for zero-order methods 2

min f(z)

GD: zp = 2, — .V f(x}) Zero order GD: z;_; =z, — o, G,

where GG is a 2-point or multi-point estimator of the gradient.

2Qptimal rates for zero-order convex optimization: the power of two function evaluations

— mi . -
‘f Wy‘rﬁ Automatic Differentiation

10

https://arxiv.org/pdf/1312.2139
https://fmin.xyz
https://hse25.fmin.xyz
https://github.com/MerkulovDaniil/hse25
https://t.me/fminxyz

The curse of dimensionality for zero-order methods 2

min f(z)

GD: zp = 2, — .V f(x}) Zero order GD: z;_; =z, — o, G,

where GG is a 2-point or multi-point estimator of the gradient.

f(z) - smooth f(z) - smooth and convex f(z) - smooth and strongly convex
1 1 Ak
2 o - _fx - k2 _ =
GD Vil ~0 () fa)-r~o(;) oy a7~ 0 ((1-4)")
2 o ﬁ Y S E 12 _ © F
Zer()GICDerer IV ()| ~ O (k) flay) — f* ~ 0(k> Iz, —z*|2 ~ O ((1 FL))

For 2-point estimators, you can’'t make the dependence better than on /n !

2Qptimal rates for zero-order convex optimization: the power of two function evaluations
‘f% 5“.}‘2 Automatic Differentiation 0O

10

https://arxiv.org/pdf/1312.2139
https://fmin.xyz
https://hse25.fmin.xyz
https://github.com/MerkulovDaniil/hse25
https://t.me/fminxyz

Finite differences

The naive approach to getting approximate values of gradients is the Finite differences approach. For each
coordinate, one can calculate the partial derivative approximation:

oL L(w+ eey,) — L(w)

— e~ = U
8wk (w) c 9 €k (07 7k7 70)

3Linnainmaa S. The representation of the cumulative rounding error of an algorithm as a Taylor expansion of the local rounding errors. Master’s
Thesis (in Finnish), Univ. Helsinki, 1970.

‘f% fn.}‘; Automatic Differentiation P00 O 11

https://fmin.xyz
https://hse25.fmin.xyz
https://github.com/MerkulovDaniil/hse25
https://t.me/fminxyz

Finite differences

The naive approach to getting approximate values of gradients is the Finite differences approach. For each
coordinate, one can calculate the partial derivative approximation:

oL L(w+ eey,) — L(w)

— e~ = U
8wk (w) c 9 €k (07 7k7 70)

i Question

If the time needed for one calculation of L(w) is T', what is the time needed for calculating VL with this
approach?

https://fmin.xyz
https://hse25.fmin.xyz
https://github.com/MerkulovDaniil/hse25
https://t.me/fminxyz

Finite differences

The naive approach to getting approximate values of gradients is the Finite differences approach. For each
coordinate, one can calculate the partial derivative approximation:

oL o L(w+ee,) — L(w) B
8wk(w) ~ 5 , e = (O,...7%,...70)

Question

If the time needed for one calculation of L(w) is T', what is the time needed for calculating VL with this

approach?
Answer 2dT', which is extremely long for the huge scale optimization. Moreover, this exact scheme is unstable,

which means that you will have to choose between accuracy and stability.

https://fmin.xyz
https://hse25.fmin.xyz
https://github.com/MerkulovDaniil/hse25
https://t.me/fminxyz

Finite differences

The naive approach to getting approximate values of gradients is the Finite differences approach. For each
coordinate, one can calculate the partial derivative approximation:

oL L(w+ eey,) — L(w)

— e~ = U
8wk (’UJ) c 9 €k (07 7k7 70)

i Question

If the time needed for one calculation of L(w) is T', what is the time needed for calculating VL with this
approach?

Answer 2dT', which is extremely long for the huge scale optimization. Moreover, this exact scheme is unstable,
which means that you will have to choose between accuracy and stability.

Theorem

There is an algorithm to compute V., L in O(T) operations. 3

3Linnainmaa S. The representation of the cumulative rounding error of an algorithm as a Taylor expansion of the local rounding errors. Master’s
Thesis (in Finnish), Univ. Helsinki, 1970.

‘f% 5“.}‘2 Automatic Differentiation 0O

11

https://fmin.xyz
https://hse25.fmin.xyz
https://github.com/MerkulovDaniil/hse25
https://t.me/fminxyz

Forward mode automatic differentiation
To dive deep into the idea of automatic differentiation we will consider a simple function for calculating derivatives:

L(wy,wy) = wy logw, + y/wy logw,

‘f - Wy‘rﬁ Automatic Differentiation 0O

12

https://fmin.xyz
https://hse25.fmin.xyz
https://github.com/MerkulovDaniil/hse25
https://t.me/fminxyz

Forward mode automatic differentiation
To dive deep into the idea of automatic differentiation we will consider a simple function for calculating derivatives:

L(wy,wy) = wy logw, + y/wy logw,

Let's draw a computational graph of this function:

L(wl, w2) = ws logw; + /w2 logw;

=)
o HD s B Dy S

Figure 6: Illustration of computation graph of primitive arithmetic operations for the function L(w, ws)

‘f% 5“.}‘2 Automatic Differentiation 0O

12

https://fmin.xyz
https://hse25.fmin.xyz
https://github.com/MerkulovDaniil/hse25
https://t.me/fminxyz

Forward mode automatic differentiation
To dive deep into the idea of automatic differentiation we will consider a simple function for calculating derivatives:

L(wy,wy) = wy logw, + y/wy logw,

Let's draw a computational graph of this function:

L(wl, w2) = ws logw; + /w2 logw;

=)
o HD s B Dy S

Figure 6: Illustration of computation graph of primitive arithmetic operations for the function L(w, ws)

) . .. 0L
Let's go from the beginning of the graph to the end and calculate the derivative Yo
wy
‘f% 5“.}‘2 Automatic Differentiation 0O

12

https://fmin.xyz
https://hse25.fmin.xyz
https://github.com/MerkulovDaniil/hse25
https://t.me/fminxyz

Forward mode automatic differentiation

w 6w1

E)— " am
() w sz
2 8’11)1

Figure 7: lllustration of forward mode automatic differentiation

Function
Wy = Wy, Wy = Wy

— mi . -
‘/ m‘; Automatic Differentiation

12

https://fmin.xyz
https://hse25.fmin.xyz
https://github.com/MerkulovDaniil/hse25
https://t.me/fminxyz

Forward mode automatic differentiation

()
p D T e S D S

w 6w1

E)— " am
() w sz
2 8’11)1

Figure 7: lllustration of forward mode automatic differentiation

Function Derivativea
_ _ w w
Wy = Wy, Wy = Wy —l-1,-"2=90
ow, ow,

— mi . -
‘f m‘; Automatic Differentiation

12

https://fmin.xyz
https://hse25.fmin.xyz
https://github.com/MerkulovDaniil/hse25
https://t.me/fminxyz

Forward mode automatic differentiation

‘/ — min
2oz

i
‘3

Figure 8: lllustration of forward mode automatic differentiation

Automatic Differentiation

12

https://fmin.xyz
https://hse25.fmin.xyz
https://github.com/MerkulovDaniil/hse25
https://t.me/fminxyz

Forward mode automatic differentiation

i
‘3

Figure 8: lllustration of forward mode automatic differentiation

Function
vy = logw,

‘/ — min
Tz

Automatic Differentiation

12

https://fmin.xyz
https://hse25.fmin.xyz
https://github.com/MerkulovDaniil/hse25
https://t.me/fminxyz

Forward mode automatic differentiation

Figure 8: lllustration of forward mode automatic differentiation

Function Derivative
_ dvy _ Ovy Ow; __ 1
vy = logw, ow, — Ow; Ow; _ w,;

— mi . -
‘f m‘; Automatic Differentiation

12

https://fmin.xyz
https://hse25.fmin.xyz
https://github.com/MerkulovDaniil/hse25
https://t.me/fminxyz

Forward mode automatic differentiation

(=)
e ED g B Ry S

v 8’1)1
1y o
V2, 53—
81.02 a’l.U1
w27 aw
1

Figure 9: lllustration of forward mode automatic differentiation

— mi . -
‘/ 5“.}‘2 Automatic Differentiation

12

https://fmin.xyz
https://hse25.fmin.xyz
https://github.com/MerkulovDaniil/hse25
https://t.me/fminxyz

Forward mode automatic differentiation

(=)
e ED g B Ry S

v 8’1)1
1y o
V2, 53—
81.02 a’l.U1
w27 aw
1

Figure 9: lllustration of forward mode automatic differentiation

Function
Uy = Waly

— mi . -
‘/ 5“.}‘2 Automatic Differentiation

12

https://fmin.xyz
https://hse25.fmin.xyz
https://github.com/MerkulovDaniil/hse25
https://t.me/fminxyz

Forward mode automatic differentiation
v,

) @ 6v2
V2,
81.02 Bwl

'LUQ, 8w

Figure 9: lllustration of forward mode automatic differentiation

Function Derivative
_ Jvy, __ Ovy Ovy Ovy Qwy Ovy
Vy = Wy = —= =
2 2°1 Ow, Ov, Ow, Ow, Ow, Wo Ow,

— mi . -
‘f m‘; Automatic Differentiation

ED g B Ry S

Ty

9u)2

12

https://fmin.xyz
https://hse25.fmin.xyz
https://github.com/MerkulovDaniil/hse25
https://t.me/fminxyz

Forward mode automatic differentiation

i
!

Figure 10: Illustration of forward mode automatic differentiation

— mi . -
‘/ 5“.}‘2 Automatic Differentiation

12

https://fmin.xyz
https://hse25.fmin.xyz
https://github.com/MerkulovDaniil/hse25
https://t.me/fminxyz

Forward mode automatic differentiation

i
!

Figure 10: Illustration of forward mode automatic differentiation

Function
V3 = 1/Usq

— mi . -
‘/ 5“.}‘2 Automatic Differentiation

12

https://fmin.xyz
https://hse25.fmin.xyz
https://github.com/MerkulovDaniil/hse25
https://t.me/fminxyz

Forward mode automatic differentiation

i
!

Figure 10: Illustration of forward mode automatic differentiation

Function Derivative
_ Ovg _ Ovg vy _ 1 Ovuy
Uz = /U2 Ow; ~— Ovy, Owy — 2,/vy Ow,

— mi . -
‘f m‘; Automatic Differentiation

12

https://fmin.xyz
https://hse25.fmin.xyz
https://github.com/MerkulovDaniil/hse25
https://t.me/fminxyz

Forward mode automatic differentiation

E Dy B ey =

01)2

V2, aw]_ @ 6L
L, —
6’03 8w1

'U3, aw
1

Figure 11: lllustration of forward mode automatic differentiation

— mi . -
‘/ 5“.}‘2 Automatic Differentiation

12

https://fmin.xyz
https://hse25.fmin.xyz
https://github.com/MerkulovDaniil/hse25
https://t.me/fminxyz

Forward mode automatic differentiation

E Dy B ey =

01)2

V2, aw]_ @ 6L
L, —
8’03 8w1

'U3, aw
1

Figure 11: lllustration of forward mode automatic differentiation

Function
L =vy + vy

— mi . -
‘/ 5“.}‘2 Automatic Differentiation

12

https://fmin.xyz
https://hse25.fmin.xyz
https://github.com/MerkulovDaniil/hse25
https://t.me/fminxyz

Forward mode automatic differentiation

v 0’02
L, —
Y 8’03 8’11.)1
3 awl

Figure 11: lllustration of forward mode automatic differentiation

Function Derivative
AL _ OL vy | 9L Ovy _ 10vy
Ow, ~ Ovy Ow, vy Ow, ~ T Ow,

L =vy + vy

— mi . -
‘f m‘; Automatic Differentiation

E Dy B ey =

1 Ovg

ow,

12

https://fmin.xyz
https://hse25.fmin.xyz
https://github.com/MerkulovDaniil/hse25
https://t.me/fminxyz

_ . oL
Make the similar computations for ——
ow,

L(wy,w2) = wselogw; + 1/ wszlogw

Figure 12: Illustration of computation graph of primitive arithmetic operations for the function L(wy, ws)

— mi Lo -
‘f m‘; Automatic Differentiation

13

https://fmin.xyz
https://hse25.fmin.xyz
https://github.com/MerkulovDaniil/hse25
https://t.me/fminxyz

Forward mode automatic differentiation example
w 6w1
(e)— B
() w sz
2 8’11)2

Figure 13: Illustration of forward mode automatic differentiation

Function Derivativea
_ _ w w
Wy = Wy, Wy = Wy L0 2=1
ow, Ow,

— mi . -
‘f 51'1;!; Automatic Differentiation

13

https://fmin.xyz
https://hse25.fmin.xyz
https://github.com/MerkulovDaniil/hse25
https://t.me/fminxyz

Forward mode automatic differentiation example

e N g T T g SR

8w1 @ 8111
wi, —8w2 —>.—> VU1, —ng

Figure 14: lllustration of forward mode automatic differentiation

Function Derivative
_ Ovy __ Ovy Owy __ 1 |
vy = logw, Ow, — Owy Ow, — wy 0

— mi . -
‘f fny"; Automatic Differentiation

13

https://fmin.xyz
https://hse25.fmin.xyz
https://github.com/MerkulovDaniil/hse25
https://t.me/fminxyz

Forward mode automatic differentiation example

U1, 35—

V2, 5—
8’(.02 sz

w2) 8w

Figure 15: Illustration of forward mode automatic differentiation

Function Derivative
_ Jvy, __ Ovy Ovy Ovy Qwy Ovy 9u)2
Uy = Wyl Ow, — Ovy Ow,y Ow, Ow, Wo Owy +tuig

— mi . -
‘f 51'1;!; Automatic Differentiation

13

https://fmin.xyz
https://hse25.fmin.xyz
https://github.com/MerkulovDaniil/hse25
https://t.me/fminxyz

Forward mode automatic differentiation example

i
!

Figure 16: Illustration of forward mode automatic differentiation

Function Derivative
_ Ovg _ Ovg vy _ 1 Ovuy
Uz = /U2 Owy — vy Owy — 2,/Uy Owy

— mi . -
‘f 51'1;!; Automatic Differentiation

13

https://fmin.xyz
https://hse25.fmin.xyz
https://github.com/MerkulovDaniil/hse25
https://t.me/fminxyz

Forward mode automatic differentiation example

E Dy B ey =

81)2

Vg, ——
8’03 8’[112

U3, 3
8’11)2

Figure 17: lllustration of forward mode automatic differentiation

Function Derivative
L OL vy | OL Ovy _ vy | 1 0vg

L =v,+vg dw, Ovy Ows vy Owy T Owy Ow,y

— mi . -
‘f m‘; Automatic Differentiation

13

https://fmin.xyz
https://hse25.fmin.xyz
https://github.com/MerkulovDaniil/hse25
https://t.me/fminxyz

Forward mode automatic differentiation algorithm
Suppose, we have a computational graph v;,i € [1; N].
Our goal is to calculate the derivative of the output of this
. . . . aUN
graph with respect to some input variable wy, i.e. o,
This idea implies propagation of the gradient with respkect
to the input variable from start to end, that is why we can

introduce the notation:

— mi . -
‘/ 51'1;!; Automatic Differentiation

14

https://fmin.xyz
https://hse25.fmin.xyz
https://github.com/MerkulovDaniil/hse25
https://t.me/fminxyz

Forward mode automatic differentiation algorithm
Suppose, we have a computational graph v;,i € [1; N].
Our goal is to calculate the derivative of the output of this
. . . . aUN
graph with respect to some input variable wy, i.e. o,
This idea implies propagation of the gradient with respkect
to the input variable from start to end, that is why we can

introduce the notation:

__ Oy
/l)'. =
b Owy,
oz
Z1, Twl
. oy v; = vi(@1, ..., @)
2 Bun
ti))
oz, Ov; _ Z Ov; Ozx;
Ty, ka Owy, = Oz; Owy,

Figure 18: Illustration of forward chain rule to calculate the
derivative of the function L with respect to wy,.

— mi . -
‘/ 51'1;!; Automatic Differentiation

14

https://fmin.xyz
https://hse25.fmin.xyz
https://github.com/MerkulovDaniil/hse25
https://t.me/fminxyz

Forward mode automatic differentiation algorithm

Suppose, we have a computational graph v;,i € [1; N]. ® Fori=1,..

Our goal is to calculate the derivative of the output of this
. . . . aUN
graph with respect to some input variable wy, i.e. o,
W,

This idea implies propagation of the gradient with respect

to the input variable from start to end, that is why we can

introduce the notation:

__ Oy
/l)'. =
b Owy,
oz
Z1, Twl
. oy v; = vi(@1, ..., @)
2 Bun
ti))
oz, Ov; _ Z Ov; Ozx;
Ty, ka Owy, = Oz; Owy,

Figure 18: Illustration of forward chain rule to calculate the
derivative of the function L with respect to wy,.

— mi . -
‘/ 51'1;!; Automatic Differentiation

, N

14

https://fmin.xyz
https://hse25.fmin.xyz
https://github.com/MerkulovDaniil/hse25
https://t.me/fminxyz

Forward mode automatic differentiation algorithm

Suppose, we have a computational graph v;,i € [1; N]. ® Fori=1,..,N:

Our goal is to calculate the derivative of the output of this ® Compute v; as a function of its parents (inputs)
. . . . Ouy Lpseees Ty

graph with respect to some input variable wy, i.e. . v =Ty, 7))

This idea implies propagation of the gradient with respect
to the input variable from start to end, that is why we can
introduce the notation:

__ Oy
=
¢ 6wk
oz
. P, v = vi(T1, ..., Ty;)
2 Bun
ti .
oz, Ov; _ Z Ov; Ozx;
Ty, ka Owy, = Oz; Owy,

Figure 18: Illustration of forward chain rule to calculate the
derivative of the function L with respect to wy,.
‘/ - 51'1;!; Automatic Differentiation @ 0

https://fmin.xyz
https://hse25.fmin.xyz
https://github.com/MerkulovDaniil/hse25
https://t.me/fminxyz

Forward mode automatic differentiation algorithm

Suppose, we have a computational graph v;,i € [1; N]. ® Fori=1,..,N:
Our goal is to calculate the derivative of the output of this ® Compute v; as a function of its parents (inputs)
. . . . Ouy Lpseees Ty
graph with respect to some input variable w;, i.e. ——. v; = v (g, . 3y
8wk (2 i\l thad 71
This idea implies propagation of the gradient with respect ¢ Compute the derivative W using the forward chain rule:
to the input variable from start to end, that is why we can o0, 9
introduce the notation: T = Vi
7 Oz Owk
Oy
' Owy,
Oz,
1y
0
Bl:: v; = vi(@1, ..., @)
T2, 5
v, Ov; Ozx;
Oz, i _ i 05
Ty, WZ Owy, Z Oz; By,

Figure 18: Illustration of forward chain rule to calculate the
derivative of the function L with respect to wy,.
l/%ﬁ}‘i Automatic Differentiation @0 O 14

https://fmin.xyz
https://hse25.fmin.xyz
https://github.com/MerkulovDaniil/hse25
https://t.me/fminxyz

Forward mode automatic differentiation algorithm

Suppose, we have a computational graph v;,i € [1; N]. ® Fori=1,..,N:
Our goal is to calculate the derivative of the output of this ® Compute v; as a function of its parents (inputs)
. . . . Ouy Lpseees Ty
graph with respect to some input variable w;, i.e. ——. v; = v (g, . 3y
8wk (2 i\l thad 71
This idea implies propagation of the gradient with respect ¢ Compute the derivative W using the forward chain rule:
to the input variable from start to end, that is why we can o0, 9
introduce the notation: T = Vi
7 Oz Owk
Oy
' Owy,
Oz,
1y
0
Bl:: v; = vi(@1, ..., @)
T2, 5
v, Ov; Ozx;
Oz, i _ i 05
Ty, WZ Owy, Z Oz; By,

Figure 18: Illustration of forward chain rule to calculate the
derivative of the function L with respect to wy,.
l/%ﬁ}‘i Automatic Differentiation @0 O 14

https://fmin.xyz
https://hse25.fmin.xyz
https://github.com/MerkulovDaniil/hse25
https://t.me/fminxyz

Forward mode automatic differentiation algorithm

Suppose, we have a computational graph v;,i € [1; N]. ® Fori=1,..,N:
Our goal is to calculate the derivative of the output of this ® Compute v; as a function of its parents (inputs)
. . . . aUN m17..7mt1
graph with respect to some input variable wy, i.e. 8710,6 v; = vy, e, 7))
This idea implies propagation of the gradient with respect ¢ Compute the derivative W using the forward chain rule:
to the input variable from start to end, that is why we can P
introduce the notation: T = Ov; O,
— Oz Owk
__ Oy
i dwy, Note, that this approach does not require storing all
intermediate computations, but one can see, that for
P calculating the derivative % we need O(T') operations.
2z
‘Z‘;j v = vi(@1,. .., T, This means, that for the whole gradient, we need dO(T')
" s operations, which is the same as for finite differences, but
. i Z dv; da; we do not have stability issues, or inaccuracies now (the
% By dui da; dw formulas above are exact).

Figure 18: Illustration of forward chain rule to calculate the
derivative of the function L with respect to wy,.
‘f% fn.}‘; Automatic Differentiation P00 O 14

https://fmin.xyz
https://hse25.fmin.xyz
https://github.com/MerkulovDaniil/hse25
https://t.me/fminxyz

There 1S another

Backward mode automatic differentiation

We will consider the same function with a computational graph:

L(wl, ’IU2) = ws logwy + v/ ws log wy

=)
o HD e D e D S

Figure 19: lllustration of computation graph of primitive arithmetic operations for the function L(wy, ws)

— mi . -
‘f 5“.}‘2 Automatic Differentiation

16

https://fmin.xyz
https://hse25.fmin.xyz
https://github.com/MerkulovDaniil/hse25
https://t.me/fminxyz

Backward mode automatic differentiation

We will consider the same function with a computational graph:

L(wl, ’IU2) = ws logwy + v/ ws log wy

=)
o HD e D e D S

Figure 19: lllustration of computation graph of primitive arithmetic operations for the function L(wy, ws)

Assume, that we have some values of the parameters w;, w, and we have already performed a forward pass (i.e. single
propagation through the computational graph from left to right). Suppose, also, that we somehow saved all

intermediate values of v;. Let's go from the end of the graph to the beginning and calculate the derivatives
oL 0L

ow,’ dwy

‘f% fn.}‘; Automatic Differentiation P00 O 16

https://fmin.xyz
https://hse25.fmin.xyz
https://github.com/MerkulovDaniil/hse25
https://t.me/fminxyz

Backward mode automatic differentiation example

o HD s B Dy S

gt ——C-urw

Figure 20: Illustration of backward mode automatic differentiation

— mi . -
‘/ 51'1;!; Automatic Differentiation

16

https://fmin.xyz
https://hse25.fmin.xyz
https://github.com/MerkulovDaniil/hse25
https://t.me/fminxyz

Backward mode automatic differentiation example

o HD s B Dy S

gt ——C-urw

Figure 20: Illustration of backward mode automatic differentiation

Derivatives

— mi . -
‘/ 51'1;!; Automatic Differentiation

16

https://fmin.xyz
https://hse25.fmin.xyz
https://github.com/MerkulovDaniil/hse25
https://t.me/fminxyz

Backward mode automatic differentiation example

o HD s B Dy S

gt ——C-urw

Figure 20: Illustration of backward mode automatic differentiation

Derivatives

OL
oL

— mi . -
‘f 51'1;!; Automatic Differentiation

16

https://fmin.xyz
https://hse25.fmin.xyz
https://github.com/MerkulovDaniil/hse25
https://t.me/fminxyz

Backward mode automatic differentiation example
2o
6’03 6_L

Figure 21: Illustration of backward mode automatic differentiation

— mi . -
‘/ m‘; Automatic Differentiation

16

https://fmin.xyz
https://hse25.fmin.xyz
https://github.com/MerkulovDaniil/hse25
https://t.me/fminxyz

Backward mode automatic differentiation example
2o
6’03 6_L

Figure 21: Illustration of backward mode automatic differentiation

Derivatives

— mi . -
‘/ 51'1;!; Automatic Differentiation

16

https://fmin.xyz
https://hse25.fmin.xyz
https://github.com/MerkulovDaniil/hse25
https://t.me/fminxyz

Backward mode automatic differentiation example
2o
6’03 6_L

Figure 21: Illustration of backward mode automatic differentiation

Derivatives
oL _oLor
vy OL Ovy
oL
=1
oL

— mi . -
‘f 51'1;!; Automatic Differentiation

16

https://fmin.xyz
https://hse25.fmin.xyz
https://github.com/MerkulovDaniil/hse25
https://t.me/fminxyz

Backward mode automatic differentiation example

()
o e e g S

/ 8113
ooy <G
(9L

Figure 22: lllustration of backward mode automatic differentiation

— mi . -
‘/ m‘; Automatic Differentiation

16

https://fmin.xyz
https://hse25.fmin.xyz
https://github.com/MerkulovDaniil/hse25
https://t.me/fminxyz

Backward mode automatic differentiation example

()
@ = Togu) ‘I’
(1)
/ 8113
ooy <G
(9L

Figure 22: lllustration of backward mode automatic differentiation

Derivatives

— mi . -
‘/ 51'1;!; Automatic Differentiation

16

https://fmin.xyz
https://hse25.fmin.xyz
https://github.com/MerkulovDaniil/hse25
https://t.me/fminxyz

Backward mode automatic differentiation example

oL
8’[13

L e
By " 9L
oL

Figure 22: lllustration of backward mode automatic differentiation

Derivatives

oL _ oL ov, oL oL

vy Ovy Ovy OL Ov,
_oL 1 oL
T Ovs 2. /05 OL

— mi . -
‘f m‘; Automatic Differentiation

16

https://fmin.xyz
https://hse25.fmin.xyz
https://github.com/MerkulovDaniil/hse25
https://t.me/fminxyz

Backward mode automatic differentiation example
Do O 2
3—111 @ Ovy

Figure 23: lllustration of backward mode automatic differentiation

— mi . -
‘/ m‘; Automatic Differentiation

16

https://fmin.xyz
https://hse25.fmin.xyz
https://github.com/MerkulovDaniil/hse25
https://t.me/fminxyz

Backward mode automatic differentiation example
Do O 2
3—111 @ Ovy

Figure 23: lllustration of backward mode automatic differentiation

Derivatives

— mi . -
‘/ 51'1;!; Automatic Differentiation

16

https://fmin.xyz
https://hse25.fmin.xyz
https://github.com/MerkulovDaniil/hse25
https://t.me/fminxyz

Backward mode automatic differentiation example
Do O 2
3—111 @ Ovy

Figure 23: lllustration of backward mode automatic differentiation

Derivatives
oL _ oL ow,
dv, Ovy Ovy
oL
= —w
dvy 2

— mi . -
‘f m‘; Automatic Differentiation

16

https://fmin.xyz
https://hse25.fmin.xyz
https://github.com/MerkulovDaniil/hse25
https://t.me/fminxyz

Backward mode automatic differentiation example

‘/ — min
2oz

Automatic Differentiation

g B R S

oL
ow 1

oL
81)1

<—@<—
oL :) oL

011)2 8_1)2

Figure 24: lllustration of backward mode automatic differentiation

16

https://fmin.xyz
https://hse25.fmin.xyz
https://github.com/MerkulovDaniil/hse25
https://t.me/fminxyz

Backward mode automatic differentiation example

Derivatives

‘/ — min
Tz

Automatic Differentiation

g B R S

oL
ow 1

oL
81)1

<—@<—
oL :) oL

011)2 8_1)2

Figure 24: lllustration of backward mode automatic differentiation

16

https://fmin.xyz
https://hse25.fmin.xyz
https://github.com/MerkulovDaniil/hse25
https://t.me/fminxyz

Backward mode automatic differentiation example
oL

Bwl

oL
81)1

<—@<—
oL :) oL

011)2 8_1)2

Figure 24: lllustration of backward mode automatic differentiation

Derivatives

OL OL v, 9L 1 OL 0L dv, 9L

Ow, Ov, dw, Ov, w, 3711)2787%31112707)1”1

— mi . -
‘f 5“.}‘2 Automatic Differentiation

16

https://fmin.xyz
https://hse25.fmin.xyz
https://github.com/MerkulovDaniil/hse25
https://t.me/fminxyz

Backward (reverse) mode automatic differentiation

i Question

Note, that for the same price of computations as it was in the forward mode we have the full vector of gradient
VL. Is it a free lunch? What is the cost of acceleration?

https://fmin.xyz
https://hse25.fmin.xyz
https://github.com/MerkulovDaniil/hse25
https://t.me/fminxyz

Backward (reverse) mode automatic differentiation

i Question

Note, that for the same price of computations as it was in the forward mode we have the full vector of gradient
VL. Is it a free lunch? What is the cost of acceleration?

Answer Note, that for using the reverse mode AD you need to store all intermediate computations from the
forward pass. This problem could be somehow mitigated with the gradient checkpointing approach, which
involves necessary recomputations of some intermediate values. This could significantly reduce the memory
footprint of the large machine-learning model.

— mi . -
‘f 5“.}‘2 Automatic Differentiation

17

https://fmin.xyz
https://hse25.fmin.xyz
https://github.com/MerkulovDaniil/hse25
https://t.me/fminxyz

Reverse mode automatic differentiation algorithm

Suppose, we have a computational graph v;,i € [1; N].
Our goal is to calculate the derivative of the output of this

graph with respect to all inputs variable w,

ie. V, oy = (BUN Guy

Ow, " dwy

T

) . This idea implies
propagation of the gradient of the function with respect to
the intermediate variables from the end to the origin, that

is why we can introduce the notation:

Figure 25: lllustration of reverse chain rule to calculate the
derivative of the function L with respect to the node v;.

‘/ — min
Tz

0L 0wy
Ui_@vi Oy,

Automatic Differentiation

3

Memory: vy

oL
oz,
oL

Oz

oL
Oz,

* FORWARD PASS
Fori=1,...,N:

18

https://fmin.xyz
https://hse25.fmin.xyz
https://github.com/MerkulovDaniil/hse25
https://t.me/fminxyz

Reverse mode automatic differentiation algorithm

Suppose, we have a computational graph v;,i € [1; N].
Our goal is to calculate the derivative of the output of this

graph with respect to all inputs variable w,

ie. V, oy = (BUN Guy

Ow, " dwy

T
) . This idea implies
propagation of the gradient of the function with respect to
the intermediate variables from the end to the origin, that

is why we can introduce the notation:

Figure 25: lllustration of reverse chain rule to calculate the
derivative of the function L with respect to the node v;.

‘/ — min
Tz

0L 0wy
Ui_@vi Oy,

Automatic Differentiation

3

Memory: vy

oL
oz,
oL

Oz

oL
Oz,

* FORWARD PASS
Fori=1,...,N:

® Compute and store the values of v; as a function of its

parents (inputs)

18

https://fmin.xyz
https://hse25.fmin.xyz
https://github.com/MerkulovDaniil/hse25
https://t.me/fminxyz

Reverse mode automatic differentiation algorithm

Suppose, we have a computational graph v;,i € [1; N].
Our goal is to calculate the derivative of the output of this

graph with respect to all inputs variable w,

T

e, Uy = (225, 22) 7. This idea implies
propagation of the gradient of the function with respect to
the intermediate variables from the end to the origin, that

? dwy

is why we can introduce the notation:

Figure 25: lllustration of reverse chain rule to calculate the
derivative of the function L with respect to the node v;.

‘f — min
Tz

0L 0wy
Ui_@vi Oy,

3

Memory: vy

Automatic Differentiation

oL
oz,
oL

Oz

oL
Oz,

* FORWARD PASS
Fori=1,...,N:

® Compute and store the values of v; as a function of its

parents (inputs)
* BACKWARD PASS
Fori=N,...

)

1:

18

https://fmin.xyz
https://hse25.fmin.xyz
https://github.com/MerkulovDaniil/hse25
https://t.me/fminxyz

Reverse mode automatic differentiation algorithm

Suppose, we have a computational graph v;,i € [1; N]. °* FORWARD PASS
Our goal is to calculate the derivative of the output of this Fori=1,...,N:
graph with respect to all inputs variable w, ® Compute and store the values of v; as a function of its
T parents (inputs)
. \vi o (BUN a'uN> This id . li
ie. Vyun = (Gurs > guy) - This idea implies e BACKWARD PASS
propagation of the gradient of the function with respect to Fori=N,...,1:
the intermediate variables from the end to the origin, that ® Compute the derivative v; using the backward chain
is why we can introduce the notation: rule and information from all of its children (outputs)
(21,2,)
0L Ovy _
U= = 0L < 0L Oy
ov, Oy =t N oY
Y Qv &= Oz, Ov;
i =1 J i
Memory: vy oL
'R
or
oL . oL Oz; By
o, " 2T,
j=1
oL
Oz,

Figure 25: lllustration of reverse chain rule to calculate the
derivative of the function L with respect to the node v;.

‘f% fn.}‘; Automatic Differentiation P00 O 18

https://fmin.xyz
https://hse25.fmin.xyz
https://github.com/MerkulovDaniil/hse25
https://t.me/fminxyz

Choose your fighter

Figure 26: Which mode would you choose for
calculating gradients there?

1 Question

Which of the AD modes would you choose (forward/ reverse)
for the following computational graph of primitive arithmetic op-
erations? Suppose, you are needed to compute the jacobian
g { oL, }
dw; »

¥

OO

‘/% 5“.}‘2 Automatic Differentiation 0O

https://fmin.xyz
https://hse25.fmin.xyz
https://github.com/MerkulovDaniil/hse25
https://t.me/fminxyz

Choose your fighter

Figure 26: Which mode would you choose for
calculating gradients there?

Question

Which of the AD modes would you choose (forward/ reverse)
for the following computational graph of primitive arithmetic op-
erations? Suppose, you are needed to compute the jacobian
g { oL, }
dw; »

¥

Answer Note, that the reverse mode computational time is
proportional to the number of outputs here, while the forward mode
works proportionally to the number of inputs there. This is why it
would be a good idea to consider the forward mode AD.

OO

‘f% fu.}‘; Automatic Differentiation P00 O 19

https://fmin.xyz
https://hse25.fmin.xyz
https://github.com/MerkulovDaniil/hse25
https://t.me/fminxyz

Choose your fighter

Comparison of Forward Mode and Reverse Mode AD. f(x) = Ax

10°Y — Forward Mode AD
—— Reverse Mode AD

= = =

o o o
L L 3
n s L

Time for V,f calculation, (seconds)

,_.

=)
&
"

1072 107t 10° 10! 102
Ratio m/n

Figure 27: & This graph nicely illustrates the idea of choice between the modes. The n = 100 dimension is fixed and the graph
presents the time needed for Jacobian calculation w.r.t. « for f(z) = Az

‘f - ?qyu} Automatic Differentiation P00 O 20

https://colab.research.google.com/github/MerkulovDaniil/optim/blob/master/assets/Notebooks/Autograd_and_Jax.ipynb
https://fmin.xyz
https://hse25.fmin.xyz
https://github.com/MerkulovDaniil/hse25
https://t.me/fminxyz

Choose your fighter

Figure 28: Which mode would you choose for
calculating gradients there?

1 Question

Which of the AD modes would you choose (forward/ reverse)
for the following computational graph of primitive arithmetic op-
erations? Suppose, you are needed to compute the jacobian

0L,
J = {8 z} . Note, that G is an arbitrary computational
w ;

J

i,J

5]
=
[

T
=

‘/% 5“.}‘2 Automatic Differentiation 0O

https://fmin.xyz
https://hse25.fmin.xyz
https://github.com/MerkulovDaniil/hse25
https://t.me/fminxyz

Choose your fighter

Figure 28: Which mode would you choose for
calculating gradients there?

Question

Which of the AD modes would you choose (forward/ reverse)
for the following computational graph of primitive arithmetic op-
erations? Suppose, you are needed to compute the jacobian

0L,
J = { Z} . Note, that G is an arbitrary computational

871)7‘ L
:]

graph

Answer lt is generally impossible to say it without some knowledge
about the specific structure of the graph G. Note, that there are also
plenty of advanced approaches to mix forward and reverse mode AD,
based on the specific G structure.

‘f% EHA}‘; Automatic Differentiation 0O

https://fmin.xyz
https://hse25.fmin.xyz
https://github.com/MerkulovDaniil/hse25
https://t.me/fminxyz

Feedforward Architecture

FORWARD .
® v, = z typically we have a batch of data Weights

S OROROFE OO0

b x ng b x Nkg—1 Ng—1 X Ng
BACKWARD

Figure 29: Feedforward neural network architecture

‘/ - Wy‘rﬁ Automatic Differentiation @0 O 22

https://fmin.xyz
https://hse25.fmin.xyz
https://github.com/MerkulovDaniil/hse25
https://t.me/fminxyz

Feedforward Architecture

FORWARD .
® v, = z typically we have a batch of data Weights

x here as an input. Input ° ° ° @ ° °
® Fork=1,..,t—1,t

b x ng b x Nkg—1 Ng—1 X Ng
BACKWARD

Figure 29: Feedforward neural network architecture

‘/ - Wy‘rﬁ Automatic Differentiation @0 O 22

https://fmin.xyz
https://hse25.fmin.xyz
https://github.com/MerkulovDaniil/hse25
https://t.me/fminxyz

Feedforward Architecture
FORWARD

® v, = z typically we have a batch of data @ @ Q

x here as an input. oot ° ° @ @ Q °
® Fork=1,..,t—1,t
® v, = o(v,_qwy). Note, that practically

speaking the data has dimension

2 € RP™4 where b is the batch size (for
the single data point b = 1). While the

Weights

Uk = Vk-1 Wk
weight matrix w;, of a k layer has a shape
ny_1 X Ny, where ny, is the dimension of
an inner representation of the data.
b x ny, b X ng1 N1 X N,

BACKWARD

Figure 29: Feedforward neural network architecture

l/%ﬁ}‘i Automatic Differentiation @0 O 22

https://fmin.xyz
https://hse25.fmin.xyz
https://github.com/MerkulovDaniil/hse25
https://t.me/fminxyz

Feedforward Architecture

FORWARD
® v, = z typically we have a batch of data

e DD+ A~
® Fork=1,..,t—1,t
® v, = o(v,_qwy). Note, that practically
speaking the data has dimension

2 € RP™4 where b is the batch size (for
the single data point b = 1). While the

Weights

i i Vk = Vk—1 W
weight matrix w;, of a k layer has a shape
ny_1 X Ny, where ny, is the dimension of
an inner representation of the data.
® L = L(v,) - calculate the loss function. bx bx ny Mot X Tk

BACKWARD

Figure 29: Feedforward neural network architecture

l/%ﬁ}‘i Automatic Differentiation @0 O 22

https://fmin.xyz
https://hse25.fmin.xyz
https://github.com/MerkulovDaniil/hse25
https://t.me/fminxyz

Feedforward Architecture

FORWARD
® v, = z typically we have a batch of data

e DD+ A~
® Fork=1,..,t—1,t
® v, = o(v,_qwy). Note, that practically
speaking the data has dimension

2 € RP™4 where b is the batch size (for
the single data point b = 1). While the

Weights

i i Vk = Vk—1 W
weight matrix w;, of a k layer has a shape
ny_1 X Ny, where ny, is the dimension of
an inner representation of the data.
® L = L(v,) - calculate the loss function. bx bx ny Mot X Tk

BACKWARD

Figure 29: Feedforward neural network architecture

° Ut+1:L787:1

l/%ﬁ}‘i Automatic Differentiation @0 O 22

https://fmin.xyz
https://hse25.fmin.xyz
https://github.com/MerkulovDaniil/hse25
https://t.me/fminxyz

Feedforward Architecture

FORWARD
® v, = z typically we have a batch of data

e DD+ A~
® Fork=1,..,t—1,t
® v, = o(v,_qwy). Note, that practically
speaking the data has dimension

2 € RP™4 where b is the batch size (for
the single data point b = 1). While the

Weights

. L Vk = Vg—1 w,
weight matrix w;, of a k layer has a shape
ny_1 X Ny, where ny, is the dimension of
an inner representation of the data.
® L = L(v,) - calculate the loss function. b x bx ny Mot X Mg
BACKWARD
® v, = L=—=1 Figure 29: Feedforward neural network architecture

® Fork=tt—1,..,1:

lf%ﬁ}‘i Automatic Differentiation P00 O 22

https://fmin.xyz
https://hse25.fmin.xyz
https://github.com/MerkulovDaniil/hse25
https://t.me/fminxyz

Feedforward Architecture

FORWARD
® v, = z typically we have a batch of data
x here as an input.
® Fork=1,..,t—1,t
® v, = o(v,_qwy). Note, that practically
speaking the data has dimension
2 € RP™4 where b is the batch size (for
the single data point b = 1). While the
weight matrix w;, of a k layer has a shape
ny_1 X Ny, where ny, is the dimension of
an inner representation of the data.
® L = L(v,) - calculate the loss function.
BACKWARD

® Vi1 :L’7L =1
® Fork=tt—1,..,1:
oL oL aka

81}k B 8Uk+1 avk
bxny bXmpyq Mk+1 XNk

— mi . -
‘f 51'1;!; Automatic Differentiation

Weights

Uk

Vk—1

bxnk

Figure 29: Feedforward neural network architecture

b X ng_1

Ng—1 X N

i (=) = =)=

22

https://fmin.xyz
https://hse25.fmin.xyz
https://github.com/MerkulovDaniil/hse25
https://t.me/fminxyz

Feedforward Architecture

FORWARD
® v, = z typically we have a batch of data
x here as an input.
® Fork=1,..,t—1,t
® v, = o(v,_qwy). Note, that practically
speaking the data has dimension
2 € RP™4 where b is the batch size (for
the single data point b = 1). While the
weight matrix w;, of a k layer has a shape
ny_1 X Ny, where ny, is the dimension of
an inner representation of the data.
® L = L(v,) - calculate the loss function.
BACKWARD

® Vi1 :L’7L =1
® Fork=tt—1,..,1:
oL oL aka

871),6 B 8Uk+1 avk

bxny bXmpyq Mk+1 XNk
oL _ L vy
Bwk 81}k+1 6’LUk
bxng_1ng bXnpiq Mk+1XNg—1Nk

‘f — min
Tz

Automatic Differentiation

Weights

b x ny, b X ng1 N1 X N,

Figure 29: Feedforward neural network architecture

i (=) = =)=

22

https://fmin.xyz
https://hse25.fmin.xyz
https://github.com/MerkulovDaniil/hse25
https://t.me/fminxyz

Hessian vector product without the Hessian

When you need some information about the curvature of the function you usually need to work with the hessian.
However, when the dimension of the problem is large it is challenging. For a scalar-valued function f : R™ — R, the
Hessian at a point = € R™ is written as V2 f(z). A Hessian-vector product function is then able to evaluate

K/AF“}‘L Automatic Differentiation D0 0

23

https://fmin.xyz
https://hse25.fmin.xyz
https://github.com/MerkulovDaniil/hse25
https://t.me/fminxyz

Hessian vector product without the Hessian

When you need some information about the curvature of the function you usually need to work with the hessian.
However, when the dimension of the problem is large it is challenging. For a scalar-valued function f : R™ — R, the
Hessian at a point = € R™ is written as V2 f(z). A Hessian-vector product function is then able to evaluate

v V2f(z) v

K/AF“}‘L Automatic Differentiation D0 0

23

https://fmin.xyz
https://hse25.fmin.xyz
https://github.com/MerkulovDaniil/hse25
https://t.me/fminxyz

Hessian vector product without the Hessian

When you need some information about the curvature of the function you usually need to work with the hessian.
However, when the dimension of the problem is large it is challenging. For a scalar-valued function f : R™ — R, the
Hessian at a point = € R™ is written as V2 f(z). A Hessian-vector product function is then able to evaluate

v V2f(z) v
for any vector v € R™. We have to use the identity
V2 f(x)v = V]z > Vf(z) -v] = Vg(),

where g(x) = Vf(x)T - v is a new vector-valued function that dots the gradient of f at with the vector v.

‘/%m‘; Automatic Differentiation D0 0

23

https://fmin.xyz
https://hse25.fmin.xyz
https://github.com/MerkulovDaniil/hse25
https://t.me/fminxyz

Hessian vector product without the Hessian

When you need some information about the curvature of the function you usually need to work with the hessian.
However, when the dimension of the problem is large it is challenging. For a scalar-valued function f : R™ — R, the
Hessian at a point = € R™ is written as V2 f(z). A Hessian-vector product function is then able to evaluate

v V2f(z) v
for any vector v € R™. We have to use the identity
V2 f(x)v = V]z > Vf(z) -v] = Vg(),

where g(x) = Vf(x)T - v is a new vector-valued function that dots the gradient of f at with the vector v.

import jax.numpy as jnp

def hvp(f, x, v):
return grad(lambda x: jnp.vdot(grad(f) (x), v)) (x)

lf%ﬁ}‘i Automatic Differentiation D0 0

23

https://fmin.xyz
https://hse25.fmin.xyz
https://github.com/MerkulovDaniil/hse25
https://t.me/fminxyz

Neural network training dynamics via Hessian spectra and hvp *

102§ \ \ \ \
1 — Before Training
107 Atter Training

10°-

(Log Scale)

=
o
W
|

Density
=
o

=
o
¢}
'

-35 -30 -25 -20 -15 -10 -5 0

Figure 30: Large negative eigenvalues disappeared after training for ResNet-32

“An Investigation into Neural Net Optimization via Hessian Eigenvalue Density

‘f - ;nyul Automatic Differentiation

2

https://arxiv.org/abs/1901.10159
https://fmin.xyz
https://hse25.fmin.xyz
https://github.com/MerkulovDaniil/hse25
https://t.me/fminxyz

Hutchinson Trace Estimation °

This example illustrates the estimation of the Hessian trace of a neural network using Hutchinson's method, which is
an algorithm to obtain such an estimate from matrix-vector products:

Let X € R¥9 and v € R? be a random vector such that E[vvT] = I. Then,

— Bact
16 Hutchinson

|V
Tr(X) = E[vT Xo] = 7 E vl X,
-1

100 107 108
Number of Samples

Figure 31: Source

B, / = Aiktochasticiestimatatiof the trace of the influence matrix for Laplacian smoothing splines - M.F. Hutchinson, 1990 0 0O 25

https://docs.backpack.pt/en/master/use_cases/example_trace_estimation.html
https://www.tandfonline.com/doi/abs/10.1080/03610919008812866
https://fmin.xyz
https://hse25.fmin.xyz
https://github.com/MerkulovDaniil/hse25
https://t.me/fminxyz

Activation checkpointing

The animated visualization of the above approaches €)

An example of using a gradient checkpointing €)

6ZeR0O: Memory Optimizations Toward Training Trillion Parameter Models

— mi . -
‘/ 51'1;!; Automatic Differentiation

26

https://github.com/cybertronai/gradient-checkpointing
https://colab.research.google.com/github/oseledets/dl2023/blob/main/seminars/seminar-10/Large_model_training_practice.ipynb
https://arxiv.org/abs/1910.02054
https://fmin.xyz
https://hse25.fmin.xyz
https://github.com/MerkulovDaniil/hse25
https://t.me/fminxyz

Activation checkpointing

The animated visualization of the above approaches €)
An example of using a gradient checkpointing €)
Real world example from GPT-2°:

® Activations in naive mode can occupy much more memory: for a sequence length of 1K and a batched size of 32,
60 GB is needed to store all intermediate activations.

6ZeR0O: Memory Optimizations Toward Training Trillion Parameter Models
‘f% fn.}‘; Automatic Differentiation P00 O 26

https://github.com/cybertronai/gradient-checkpointing
https://colab.research.google.com/github/oseledets/dl2023/blob/main/seminars/seminar-10/Large_model_training_practice.ipynb
https://arxiv.org/abs/1910.02054
https://fmin.xyz
https://hse25.fmin.xyz
https://github.com/MerkulovDaniil/hse25
https://t.me/fminxyz

Activation checkpointing

The animated visualization of the above approaches €)
An example of using a gradient checkpointing €)

Real world example from GPT-2°:

® Activations in naive mode can occupy much more memory: for a sequence length of 1K and a batched size of 32,
60 GB is needed to store all intermediate activations.
® Checkpointing activations can reduce consumption by up to 8 GB by recomputing them (33% computational

overhead)

6ZeR0O: Memory Optimizations Toward Training Trillion Parameter Models
‘f% fn.}‘; Automatic Differentiation P00 O 26

https://github.com/cybertronai/gradient-checkpointing
https://colab.research.google.com/github/oseledets/dl2023/blob/main/seminars/seminar-10/Large_model_training_practice.ipynb
https://arxiv.org/abs/1910.02054
https://fmin.xyz
https://hse25.fmin.xyz
https://github.com/MerkulovDaniil/hse25
https://t.me/fminxyz

What automatic differentiation (AD) is NOT:

® AD is not a finite differences

‘f — min
Tz

Automatic Differentiation

DIFFERENTIATON
STABLE
SYMBOLIC AUTOMATIC
sLow FAST
i MANWAL &
MUMERIC AL mPrACTIOND
UNSTABLE

Figure 32: Different approaches for taking derivatives

27

https://fmin.xyz
https://hse25.fmin.xyz
https://github.com/MerkulovDaniil/hse25
https://t.me/fminxyz

What automatic differentiation (AD) is NOT:

® AD is not a finite differences
® AD is not a symbolic derivative

‘f — min
Tz

Automatic Differentiation

DIFFERENTIATON
STABLE
SYMBOLIC AUTOMATIC
sLow FAST
i MANWAL &
MUMERIC AL mPrACTIOND
UNSTABLE

Figure 32: Different approaches for taking derivatives

27

https://fmin.xyz
https://hse25.fmin.xyz
https://github.com/MerkulovDaniil/hse25
https://t.me/fminxyz

What automatic differentiation (AD) is NOT:

® AD is not a finite differences
® AD is not a symbolic derivative
® AD is not just the chain rule

— mi O .
‘f wl} Automatic Differentiation

DIFFERENTIAT iON

SYMBOLiC

STABLE

AUTOMATIC

sLow
NUMERIC AL

FAST
MANWAL &
(W PYACTICAL)
UNSTABLE

Figure 32: Different approaches for taking derivatives

27

https://fmin.xyz
https://hse25.fmin.xyz
https://github.com/MerkulovDaniil/hse25
https://t.me/fminxyz

What automatic differentiation (AD) is NOT:

‘f — min
Tz

AD is not a finite differences
AD is not a symbolic derivative
AD is not just the chain rule
AD is not just backpropagation

Automatic Differentiation

DIFFERENTIAT iON

SYMBOLiC

STABLE

AUTOMATIC

sLow
NUMERIC AL

FAST
MANWAL &
(W PYACTICAL)
UNSTABLE

Figure 32: Different approaches for taking derivatives

27

https://fmin.xyz
https://hse25.fmin.xyz
https://github.com/MerkulovDaniil/hse25
https://t.me/fminxyz

What automatic differentiation (AD) is NOT:

AD is not a finite differences

AD is not a symbolic derivative

AD is not just the chain rule

AD is not just backpropagation

AD (reverse mode) is time-efficient and

numerically stable

‘f — min
Tz

Automatic Differentiation

DIFFERENTIAT iON

SYMBOLiC

STABLE

AUTOMATIC

SLow
NVUMERIC AL

FAST
MANWAL &
(W PYACTICAL)
UNSTABLE

Figure 32: Different approaches for taking derivatives

27

https://fmin.xyz
https://hse25.fmin.xyz
https://github.com/MerkulovDaniil/hse25
https://t.me/fminxyz

What automatic differentiation (AD) is NOT:

AD is not a finite differences

AD is not a symbolic derivative

AD is not just the chain rule

AD is not just backpropagation

AD (reverse mode) is time-efficient and
numerically stable

® AD (reverse mode) is memory inefficient
(you need to store all intermediate
computations from the forward pass).

— mi . -
‘f Wy‘l} Automatic Differentiation

DIFFERENTIAT iON

SYMBOLIC

STABLE

AUTOMATIC

SLow
NVUMERIC AL

FAST
MANWAL &
(W PYACTICAL)
UNSTABLE

Figure 32: Different approaches for taking derivatives

27

https://fmin.xyz
https://hse25.fmin.xyz
https://github.com/MerkulovDaniil/hse25
https://t.me/fminxyz

Further reading

® | recommend reading the official Jax Autodiff Cookbook. Open In Colab &

— mi . -
‘f §ny1r; Automatic Differentiation

28

https://colab.research.google.com/github/MerkulovDaniil/optim/blob/master/assets/Notebooks/Autograd_and_Jax.ipynb
https://fmin.xyz
https://hse25.fmin.xyz
https://github.com/MerkulovDaniil/hse25
https://t.me/fminxyz

Further reading

® | recommend reading the official Jax Autodiff Cookbook. Open In Colab &
® Gradient propagation through the linear least squares [seminar]

— mi . -
‘f 51'1;!; Automatic Differentiation

28

https://colab.research.google.com/github/MerkulovDaniil/optim/blob/master/assets/Notebooks/Autograd_and_Jax.ipynb
https://fmin.xyz
https://hse25.fmin.xyz
https://github.com/MerkulovDaniil/hse25
https://t.me/fminxyz

Further reading

® | recommend reading the official Jax Autodiff Cookbook. Open In Colab &
® Gradient propagation through the linear least squares [seminar]
® Gradient propagation through the SVD [seminar]

— mi . -
‘f 5“.}‘2 Automatic Differentiation

28

https://colab.research.google.com/github/MerkulovDaniil/optim/blob/master/assets/Notebooks/Autograd_and_Jax.ipynb
https://fmin.xyz
https://hse25.fmin.xyz
https://github.com/MerkulovDaniil/hse25
https://t.me/fminxyz

Further reading

| recommend reading the official Jax Autodiff Cookbook. Open In Colab &
Gradient propagation through the linear least squares [seminar]

Gradient propagation through the SVD [seminar]

Activation checkpointing [seminar]

— mi . -
‘f 5“.}‘2 Automatic Differentiation

28

https://colab.research.google.com/github/MerkulovDaniil/optim/blob/master/assets/Notebooks/Autograd_and_Jax.ipynb
https://fmin.xyz
https://hse25.fmin.xyz
https://github.com/MerkulovDaniil/hse25
https://t.me/fminxyz

‘f — min
Tz

Summary

Summary

29

https://fmin.xyz
https://hse25.fmin.xyz
https://github.com/MerkulovDaniil/hse25
https://t.me/fminxyz

Summary

Onpegenetns

1. Popmyna asis NpUBANIKEHHOrO BbIYUCAEHUS
npounssogHoii dyrkuyumn f(z) : R™ — R no k-oii
KOOPANHATE C MOMOLLbIO METOAA KOHEUHbIX
pa3HOCTEN.

2. Nycts f = f(z1(t),...,x,(t)). Popmyna ans
BbIYMC/IEHUS g—{ yepes a(;i (Forward chain rule).

3. Myctb L - cyHKLMs, BO3BpaLLAtOLLAst CKansp, a vy, -
byHKuus, Bo3BpalLatolas sekTop T € RY. ®opmyna
AN1S1 BbIYUCEH NS gTLk yepes gT:L, (Backward chain
rule).

4. Npes XaTyYnMHCOHA ANt OLEHKM Cllefa MaTpuLbl C
nomMoLlbio matvec onepauuii.

— min
‘f 2,9,z Summary

Teopembl
1. AeTomaTuyeckoe gudpepeHupoBaHue.

Boiuncnutenshbili rpacp. Forward/ Backward mode
(B 3TOM BOMpOCE HET AOKA3aTENBLCTB, HO HEOBXOAMMO
nogpobHo onncaTb anropuTMbl).

https://fmin.xyz
https://hse25.fmin.xyz
https://github.com/MerkulovDaniil/hse25
https://t.me/fminxyz

	Automatic Differentiation
	Summary

