
Automatic Differentiation

Daniil Merkulov
Optimization for ML. Faculty of Computer Science. HSE University

1

https://fmin.xyz
https://hse25.fmin.xyz
https://github.com/MerkulovDaniil/hse25
https://t.me/fminxyz

Automatic Differentiation

Automatic Differentiation 2

https://fmin.xyz
https://hse25.fmin.xyz
https://github.com/MerkulovDaniil/hse25
https://t.me/fminxyz

Figure 1: When you got the idea

Figure 2: This is not autograd

Problem

Suppose we need to solve the following problem:

𝐿(𝑤) → min
𝑤∈R𝑑

• Such problems typically arise in machine learning, when you need to find suitable parameters 𝑤 of an ML model
(i.e. train a neural network).

• You may use a lot of algorithms to approach this problem. Still, given the modern size of the problem, where 𝑑
could be dozens of billions it is very challenging to solve this problem without information about the gradients
using zero-order optimization algorithms.

• That is why it would be beneficial to be able to calculate the gradient vector ∇𝑤𝐿 = (𝜕𝐿
𝜕𝑤1

, … , 𝜕𝐿
𝜕𝑤𝑑

)𝑇
.

• Typically, first-order methods perform much better in huge-scale optimization, while second-order methods
require too much memory.

Automatic Differentiation 5

https://fmin.xyz
https://hse25.fmin.xyz
https://github.com/MerkulovDaniil/hse25
https://t.me/fminxyz

Problem

Suppose we need to solve the following problem:

𝐿(𝑤) → min
𝑤∈R𝑑

• Such problems typically arise in machine learning, when you need to find suitable parameters 𝑤 of an ML model
(i.e. train a neural network).

• You may use a lot of algorithms to approach this problem. Still, given the modern size of the problem, where 𝑑
could be dozens of billions it is very challenging to solve this problem without information about the gradients
using zero-order optimization algorithms.

• That is why it would be beneficial to be able to calculate the gradient vector ∇𝑤𝐿 = (𝜕𝐿
𝜕𝑤1

, … , 𝜕𝐿
𝜕𝑤𝑑

)𝑇
.

• Typically, first-order methods perform much better in huge-scale optimization, while second-order methods
require too much memory.

Automatic Differentiation 5

https://fmin.xyz
https://hse25.fmin.xyz
https://github.com/MerkulovDaniil/hse25
https://t.me/fminxyz

Problem

Suppose we need to solve the following problem:

𝐿(𝑤) → min
𝑤∈R𝑑

• Such problems typically arise in machine learning, when you need to find suitable parameters 𝑤 of an ML model
(i.e. train a neural network).

• You may use a lot of algorithms to approach this problem. Still, given the modern size of the problem, where 𝑑
could be dozens of billions it is very challenging to solve this problem without information about the gradients
using zero-order optimization algorithms.

• That is why it would be beneficial to be able to calculate the gradient vector ∇𝑤𝐿 = (𝜕𝐿
𝜕𝑤1

, … , 𝜕𝐿
𝜕𝑤𝑑

)𝑇
.

• Typically, first-order methods perform much better in huge-scale optimization, while second-order methods
require too much memory.

Automatic Differentiation 5

https://fmin.xyz
https://hse25.fmin.xyz
https://github.com/MerkulovDaniil/hse25
https://t.me/fminxyz

Problem

Suppose we need to solve the following problem:

𝐿(𝑤) → min
𝑤∈R𝑑

• Such problems typically arise in machine learning, when you need to find suitable parameters 𝑤 of an ML model
(i.e. train a neural network).

• You may use a lot of algorithms to approach this problem. Still, given the modern size of the problem, where 𝑑
could be dozens of billions it is very challenging to solve this problem without information about the gradients
using zero-order optimization algorithms.

• That is why it would be beneficial to be able to calculate the gradient vector ∇𝑤𝐿 = (𝜕𝐿
𝜕𝑤1

, … , 𝜕𝐿
𝜕𝑤𝑑

)𝑇
.

• Typically, first-order methods perform much better in huge-scale optimization, while second-order methods
require too much memory.

Automatic Differentiation 5

https://fmin.xyz
https://hse25.fmin.xyz
https://github.com/MerkulovDaniil/hse25
https://t.me/fminxyz

Problem

Suppose we need to solve the following problem:

𝐿(𝑤) → min
𝑤∈R𝑑

• Such problems typically arise in machine learning, when you need to find suitable parameters 𝑤 of an ML model
(i.e. train a neural network).

• You may use a lot of algorithms to approach this problem. Still, given the modern size of the problem, where 𝑑
could be dozens of billions it is very challenging to solve this problem without information about the gradients
using zero-order optimization algorithms.

• That is why it would be beneficial to be able to calculate the gradient vector ∇𝑤𝐿 = (𝜕𝐿
𝜕𝑤1

, … , 𝜕𝐿
𝜕𝑤𝑑

)𝑇
.

• Typically, first-order methods perform much better in huge-scale optimization, while second-order methods
require too much memory.

Automatic Differentiation 5

https://fmin.xyz
https://hse25.fmin.xyz
https://github.com/MerkulovDaniil/hse25
https://t.me/fminxyz

Example: multidimensional scaling

Suppose, we have a pairwise distance matrix for 𝑁 𝑑-dimensional objects 𝐷 ∈ R𝑁×𝑁 . Given this matrix, we aim to
recover the initial coordinates 𝑊𝑖 ∈ R𝑑, 𝑖 = 1, … , 𝑁 .

𝐿(𝑊) =
𝑁

∑
𝑖,𝑗=1

(‖𝑊𝑖 − 𝑊𝑗‖2
2 − 𝐷𝑖,𝑗)

2 → min
𝑊∈R𝑁×𝑑

Link to a nice visualization ♣, where one can see, that gradient-free methods handle this problem much slower,
especially in higher dimensions.

Question

Is it somehow connected with PCA?

Automatic Differentiation 6

http://www.benfrederickson.com/numerical-optimization/
https://fmin.xyz
https://hse25.fmin.xyz
https://github.com/MerkulovDaniil/hse25
https://t.me/fminxyz

Example: multidimensional scaling

Suppose, we have a pairwise distance matrix for 𝑁 𝑑-dimensional objects 𝐷 ∈ R𝑁×𝑁 . Given this matrix, we aim to
recover the initial coordinates 𝑊𝑖 ∈ R𝑑, 𝑖 = 1, … , 𝑁 .

𝐿(𝑊) =
𝑁

∑
𝑖,𝑗=1

(‖𝑊𝑖 − 𝑊𝑗‖2
2 − 𝐷𝑖,𝑗)

2 → min
𝑊∈R𝑁×𝑑

Link to a nice visualization ♣, where one can see, that gradient-free methods handle this problem much slower,
especially in higher dimensions.

Question

Is it somehow connected with PCA?

Automatic Differentiation 6

http://www.benfrederickson.com/numerical-optimization/
https://fmin.xyz
https://hse25.fmin.xyz
https://github.com/MerkulovDaniil/hse25
https://t.me/fminxyz

Example: multidimensional scaling

Suppose, we have a pairwise distance matrix for 𝑁 𝑑-dimensional objects 𝐷 ∈ R𝑁×𝑁 . Given this matrix, we aim to
recover the initial coordinates 𝑊𝑖 ∈ R𝑑, 𝑖 = 1, … , 𝑁 .

𝐿(𝑊) =
𝑁

∑
𝑖,𝑗=1

(‖𝑊𝑖 − 𝑊𝑗‖2
2 − 𝐷𝑖,𝑗)

2 → min
𝑊∈R𝑁×𝑑

Link to a nice visualization ♣, where one can see, that gradient-free methods handle this problem much slower,
especially in higher dimensions.

Question

Is it somehow connected with PCA?

Automatic Differentiation 6

http://www.benfrederickson.com/numerical-optimization/
https://fmin.xyz
https://hse25.fmin.xyz
https://github.com/MerkulovDaniil/hse25
https://t.me/fminxyz

Example: multidimensional scaling

Figure 3: Link to the animation

Automatic Differentiation 7

https://fmin.xyz/docs/visualizations/mds.mp4
https://fmin.xyz
https://hse25.fmin.xyz
https://github.com/MerkulovDaniil/hse25
https://t.me/fminxyz

Example: Gradient Descent without gradient
Suppose we need to solve the following problem:

𝐿(𝑤) → min
𝑤∈R𝑑

with the Gradient Descent (GD) algorithm:

𝑤𝑘+1 = 𝑤𝑘 − 𝛼𝑘∇𝑤𝐿(𝑤𝑘)
Is it possible to replace ∇𝑤𝐿(𝑤𝑘) using only zero-order
information?
Yes, but at a cost.
One can consider 2-point gradient estimator1 𝐺:

𝐺 = 𝑑 𝐿(𝑤 + 𝜀𝑣) − 𝐿(𝑤 − 𝜀𝑣)
2𝜀 𝑣,

where 𝑣 is spherically symmetric.
4 2 0 2 4

x

4

2

0

2

4

y

Trajectories with Contour Plot
GD
2-P Estimator GD
Start Point
Optimal Point

Figure 4: “Illustration of two-point estimator of Gradient Descent”

1I suggest a nice presentation about gradient-free methods

Automatic Differentiation 8

https://scholar.harvard.edu/files/yujietang/files/slides_2019_zero-order_opt_tutorial.pdf
https://fmin.xyz
https://hse25.fmin.xyz
https://github.com/MerkulovDaniil/hse25
https://t.me/fminxyz

Example: Gradient Descent without gradient
Suppose we need to solve the following problem:

𝐿(𝑤) → min
𝑤∈R𝑑

with the Gradient Descent (GD) algorithm:

𝑤𝑘+1 = 𝑤𝑘 − 𝛼𝑘∇𝑤𝐿(𝑤𝑘)

Is it possible to replace ∇𝑤𝐿(𝑤𝑘) using only zero-order
information?
Yes, but at a cost.
One can consider 2-point gradient estimator1 𝐺:

𝐺 = 𝑑 𝐿(𝑤 + 𝜀𝑣) − 𝐿(𝑤 − 𝜀𝑣)
2𝜀 𝑣,

where 𝑣 is spherically symmetric.
4 2 0 2 4

x

4

2

0

2

4

y

Trajectories with Contour Plot
GD
2-P Estimator GD
Start Point
Optimal Point

Figure 4: “Illustration of two-point estimator of Gradient Descent”

1I suggest a nice presentation about gradient-free methods

Automatic Differentiation 8

https://scholar.harvard.edu/files/yujietang/files/slides_2019_zero-order_opt_tutorial.pdf
https://fmin.xyz
https://hse25.fmin.xyz
https://github.com/MerkulovDaniil/hse25
https://t.me/fminxyz

Example: Gradient Descent without gradient
Suppose we need to solve the following problem:

𝐿(𝑤) → min
𝑤∈R𝑑

with the Gradient Descent (GD) algorithm:

𝑤𝑘+1 = 𝑤𝑘 − 𝛼𝑘∇𝑤𝐿(𝑤𝑘)
Is it possible to replace ∇𝑤𝐿(𝑤𝑘) using only zero-order
information?

Yes, but at a cost.
One can consider 2-point gradient estimator1 𝐺:

𝐺 = 𝑑 𝐿(𝑤 + 𝜀𝑣) − 𝐿(𝑤 − 𝜀𝑣)
2𝜀 𝑣,

where 𝑣 is spherically symmetric.
4 2 0 2 4

x

4

2

0

2

4

y

Trajectories with Contour Plot
GD
2-P Estimator GD
Start Point
Optimal Point

Figure 4: “Illustration of two-point estimator of Gradient Descent”

1I suggest a nice presentation about gradient-free methods

Automatic Differentiation 8

https://scholar.harvard.edu/files/yujietang/files/slides_2019_zero-order_opt_tutorial.pdf
https://fmin.xyz
https://hse25.fmin.xyz
https://github.com/MerkulovDaniil/hse25
https://t.me/fminxyz

Example: Gradient Descent without gradient
Suppose we need to solve the following problem:

𝐿(𝑤) → min
𝑤∈R𝑑

with the Gradient Descent (GD) algorithm:

𝑤𝑘+1 = 𝑤𝑘 − 𝛼𝑘∇𝑤𝐿(𝑤𝑘)
Is it possible to replace ∇𝑤𝐿(𝑤𝑘) using only zero-order
information?
Yes, but at a cost.

One can consider 2-point gradient estimator1 𝐺:

𝐺 = 𝑑 𝐿(𝑤 + 𝜀𝑣) − 𝐿(𝑤 − 𝜀𝑣)
2𝜀 𝑣,

where 𝑣 is spherically symmetric.
4 2 0 2 4

x

4

2

0

2

4

y

Trajectories with Contour Plot
GD
2-P Estimator GD
Start Point
Optimal Point

Figure 4: “Illustration of two-point estimator of Gradient Descent”

1I suggest a nice presentation about gradient-free methods
Automatic Differentiation 8

https://scholar.harvard.edu/files/yujietang/files/slides_2019_zero-order_opt_tutorial.pdf
https://fmin.xyz
https://hse25.fmin.xyz
https://github.com/MerkulovDaniil/hse25
https://t.me/fminxyz

Example: Gradient Descent without gradient
Suppose we need to solve the following problem:

𝐿(𝑤) → min
𝑤∈R𝑑

with the Gradient Descent (GD) algorithm:

𝑤𝑘+1 = 𝑤𝑘 − 𝛼𝑘∇𝑤𝐿(𝑤𝑘)
Is it possible to replace ∇𝑤𝐿(𝑤𝑘) using only zero-order
information?
Yes, but at a cost.
One can consider 2-point gradient estimator1 𝐺:

𝐺 = 𝑑 𝐿(𝑤 + 𝜀𝑣) − 𝐿(𝑤 − 𝜀𝑣)
2𝜀 𝑣,

where 𝑣 is spherically symmetric.

4 2 0 2 4
x

4

2

0

2

4

y

Trajectories with Contour Plot
GD
2-P Estimator GD
Start Point
Optimal Point

Figure 4: “Illustration of two-point estimator of Gradient Descent”

1I suggest a nice presentation about gradient-free methods
Automatic Differentiation 8

https://scholar.harvard.edu/files/yujietang/files/slides_2019_zero-order_opt_tutorial.pdf
https://fmin.xyz
https://hse25.fmin.xyz
https://github.com/MerkulovDaniil/hse25
https://t.me/fminxyz

Example: Gradient Descent without gradient
Suppose we need to solve the following problem:

𝐿(𝑤) → min
𝑤∈R𝑑

with the Gradient Descent (GD) algorithm:

𝑤𝑘+1 = 𝑤𝑘 − 𝛼𝑘∇𝑤𝐿(𝑤𝑘)
Is it possible to replace ∇𝑤𝐿(𝑤𝑘) using only zero-order
information?
Yes, but at a cost.
One can consider 2-point gradient estimator1 𝐺:

𝐺 = 𝑑 𝐿(𝑤 + 𝜀𝑣) − 𝐿(𝑤 − 𝜀𝑣)
2𝜀 𝑣,

where 𝑣 is spherically symmetric.
4 2 0 2 4

x

4

2

0

2

4

y

Trajectories with Contour Plot
GD
2-P Estimator GD
Start Point
Optimal Point

Figure 4: “Illustration of two-point estimator of Gradient Descent”

1I suggest a nice presentation about gradient-free methods
Automatic Differentiation 8

https://scholar.harvard.edu/files/yujietang/files/slides_2019_zero-order_opt_tutorial.pdf
https://fmin.xyz
https://hse25.fmin.xyz
https://github.com/MerkulovDaniil/hse25
https://t.me/fminxyz

Example: finite differences gradient descent

𝑤𝑘+1 = 𝑤𝑘 − 𝛼𝑘𝐺

One can also consider the idea of finite differences:

𝐺 =
𝑑

∑
𝑖=1

𝐿(𝑤 + 𝜀𝑒𝑖) − 𝐿(𝑤 − 𝜀𝑒𝑖)
2𝜀 𝑒𝑖

Open In Colab ♣

4 2 0 2 4
x

4

2

0

2

4

y

Trajectories with Contour Plot
Gradient Descent
Finite Differences Gradient Descent
Start Point
Optimal Point

Figure 5: “Illustration of finite differences estimator of Gradient
Descent”

Automatic Differentiation 9

https://colab.research.google.com/github/MerkulovDaniil/optim/blob/master/assets/Notebooks/Zero_order_GD.ipynb
https://fmin.xyz
https://hse25.fmin.xyz
https://github.com/MerkulovDaniil/hse25
https://t.me/fminxyz

Example: finite differences gradient descent

𝑤𝑘+1 = 𝑤𝑘 − 𝛼𝑘𝐺
One can also consider the idea of finite differences:

𝐺 =
𝑑

∑
𝑖=1

𝐿(𝑤 + 𝜀𝑒𝑖) − 𝐿(𝑤 − 𝜀𝑒𝑖)
2𝜀 𝑒𝑖

Open In Colab ♣

4 2 0 2 4
x

4

2

0

2

4

y

Trajectories with Contour Plot
Gradient Descent
Finite Differences Gradient Descent
Start Point
Optimal Point

Figure 5: “Illustration of finite differences estimator of Gradient
Descent”

Automatic Differentiation 9

https://colab.research.google.com/github/MerkulovDaniil/optim/blob/master/assets/Notebooks/Zero_order_GD.ipynb
https://fmin.xyz
https://hse25.fmin.xyz
https://github.com/MerkulovDaniil/hse25
https://t.me/fminxyz

The curse of dimensionality for zero-order methods 2

min
𝑥∈R𝑛

𝑓(𝑥)

GD: 𝑥𝑘+1 = 𝑥𝑘 − 𝛼𝑘∇𝑓(𝑥𝑘) Zero order GD: 𝑥𝑘+1 = 𝑥𝑘 − 𝛼𝑘𝐺,

where 𝐺 is a 2-point or multi-point estimator of the gradient.

𝑓(𝑥) - smooth 𝑓(𝑥) - smooth and convex 𝑓(𝑥) - smooth and strongly convex

GD ‖∇𝑓(𝑥𝑘)‖2 ≈ 𝒪 (1
𝑘) 𝑓(𝑥𝑘) − 𝑓∗ ≈ 𝒪 (1

𝑘) ‖𝑥𝑘 − 𝑥∗‖2 ≈ 𝒪 ((1 − 𝜇
𝐿)

𝑘
)

Zero order
GD

‖∇𝑓(𝑥𝑘)‖2 ≈ 𝒪 (𝑛
𝑘) 𝑓(𝑥𝑘) − 𝑓∗ ≈ 𝒪 (𝑛

𝑘) ‖𝑥𝑘 − 𝑥∗‖2 ≈ 𝒪 ((1 − 𝜇
𝑛𝐿)

𝑘
)

For 2-point estimators, you can’t make the dependence better than on √𝑛 !

2Optimal rates for zero-order convex optimization: the power of two function evaluations

Automatic Differentiation 10

https://arxiv.org/pdf/1312.2139
https://fmin.xyz
https://hse25.fmin.xyz
https://github.com/MerkulovDaniil/hse25
https://t.me/fminxyz

The curse of dimensionality for zero-order methods 2

min
𝑥∈R𝑛

𝑓(𝑥)

GD: 𝑥𝑘+1 = 𝑥𝑘 − 𝛼𝑘∇𝑓(𝑥𝑘) Zero order GD: 𝑥𝑘+1 = 𝑥𝑘 − 𝛼𝑘𝐺,

where 𝐺 is a 2-point or multi-point estimator of the gradient.

𝑓(𝑥) - smooth 𝑓(𝑥) - smooth and convex 𝑓(𝑥) - smooth and strongly convex

GD ‖∇𝑓(𝑥𝑘)‖2 ≈ 𝒪 (1
𝑘) 𝑓(𝑥𝑘) − 𝑓∗ ≈ 𝒪 (1

𝑘) ‖𝑥𝑘 − 𝑥∗‖2 ≈ 𝒪 ((1 − 𝜇
𝐿)

𝑘
)

Zero order
GD

‖∇𝑓(𝑥𝑘)‖2 ≈ 𝒪 (𝑛
𝑘) 𝑓(𝑥𝑘) − 𝑓∗ ≈ 𝒪 (𝑛

𝑘) ‖𝑥𝑘 − 𝑥∗‖2 ≈ 𝒪 ((1 − 𝜇
𝑛𝐿)

𝑘
)

For 2-point estimators, you can’t make the dependence better than on √𝑛 !

2Optimal rates for zero-order convex optimization: the power of two function evaluations
Automatic Differentiation 10

https://arxiv.org/pdf/1312.2139
https://fmin.xyz
https://hse25.fmin.xyz
https://github.com/MerkulovDaniil/hse25
https://t.me/fminxyz

The curse of dimensionality for zero-order methods 2

min
𝑥∈R𝑛

𝑓(𝑥)

GD: 𝑥𝑘+1 = 𝑥𝑘 − 𝛼𝑘∇𝑓(𝑥𝑘) Zero order GD: 𝑥𝑘+1 = 𝑥𝑘 − 𝛼𝑘𝐺,

where 𝐺 is a 2-point or multi-point estimator of the gradient.

𝑓(𝑥) - smooth 𝑓(𝑥) - smooth and convex 𝑓(𝑥) - smooth and strongly convex

GD ‖∇𝑓(𝑥𝑘)‖2 ≈ 𝒪 (1
𝑘) 𝑓(𝑥𝑘) − 𝑓∗ ≈ 𝒪 (1

𝑘) ‖𝑥𝑘 − 𝑥∗‖2 ≈ 𝒪 ((1 − 𝜇
𝐿)

𝑘
)

Zero order
GD

‖∇𝑓(𝑥𝑘)‖2 ≈ 𝒪 (𝑛
𝑘) 𝑓(𝑥𝑘) − 𝑓∗ ≈ 𝒪 (𝑛

𝑘) ‖𝑥𝑘 − 𝑥∗‖2 ≈ 𝒪 ((1 − 𝜇
𝑛𝐿)

𝑘
)

For 2-point estimators, you can’t make the dependence better than on √𝑛 !

2Optimal rates for zero-order convex optimization: the power of two function evaluations
Automatic Differentiation 10

https://arxiv.org/pdf/1312.2139
https://fmin.xyz
https://hse25.fmin.xyz
https://github.com/MerkulovDaniil/hse25
https://t.me/fminxyz

Finite differences

The naive approach to getting approximate values of gradients is the Finite differences approach. For each
coordinate, one can calculate the partial derivative approximation:

𝜕𝐿
𝜕𝑤𝑘

(𝑤) ≈ 𝐿(𝑤 + 𝜀𝑒𝑘) − 𝐿(𝑤)
𝜀 , 𝑒𝑘 = (0, … , 1

𝑘
, … , 0)

Question

If the time needed for one calculation of 𝐿(𝑤) is 𝑇 , what is the time needed for calculating ∇𝑤𝐿 with this
approach?
Answer 2𝑑𝑇 , which is extremely long for the huge scale optimization. Moreover, this exact scheme is unstable,
which means that you will have to choose between accuracy and stability.
Theorem
There is an algorithm to compute ∇𝑤𝐿 in 𝒪(𝑇) operations. 3

3Linnainmaa S. The representation of the cumulative rounding error of an algorithm as a Taylor expansion of the local rounding errors. Master’s
Thesis (in Finnish), Univ. Helsinki, 1970.

Automatic Differentiation 11

https://fmin.xyz
https://hse25.fmin.xyz
https://github.com/MerkulovDaniil/hse25
https://t.me/fminxyz

Finite differences

The naive approach to getting approximate values of gradients is the Finite differences approach. For each
coordinate, one can calculate the partial derivative approximation:

𝜕𝐿
𝜕𝑤𝑘

(𝑤) ≈ 𝐿(𝑤 + 𝜀𝑒𝑘) − 𝐿(𝑤)
𝜀 , 𝑒𝑘 = (0, … , 1

𝑘
, … , 0)

Question

If the time needed for one calculation of 𝐿(𝑤) is 𝑇 , what is the time needed for calculating ∇𝑤𝐿 with this
approach?

Answer 2𝑑𝑇 , which is extremely long for the huge scale optimization. Moreover, this exact scheme is unstable,
which means that you will have to choose between accuracy and stability.
Theorem
There is an algorithm to compute ∇𝑤𝐿 in 𝒪(𝑇) operations. 3

3Linnainmaa S. The representation of the cumulative rounding error of an algorithm as a Taylor expansion of the local rounding errors. Master’s
Thesis (in Finnish), Univ. Helsinki, 1970.

Automatic Differentiation 11

https://fmin.xyz
https://hse25.fmin.xyz
https://github.com/MerkulovDaniil/hse25
https://t.me/fminxyz

Finite differences

The naive approach to getting approximate values of gradients is the Finite differences approach. For each
coordinate, one can calculate the partial derivative approximation:

𝜕𝐿
𝜕𝑤𝑘

(𝑤) ≈ 𝐿(𝑤 + 𝜀𝑒𝑘) − 𝐿(𝑤)
𝜀 , 𝑒𝑘 = (0, … , 1

𝑘
, … , 0)

Question

If the time needed for one calculation of 𝐿(𝑤) is 𝑇 , what is the time needed for calculating ∇𝑤𝐿 with this
approach?
Answer 2𝑑𝑇 , which is extremely long for the huge scale optimization. Moreover, this exact scheme is unstable,
which means that you will have to choose between accuracy and stability.

Theorem
There is an algorithm to compute ∇𝑤𝐿 in 𝒪(𝑇) operations. 3

3Linnainmaa S. The representation of the cumulative rounding error of an algorithm as a Taylor expansion of the local rounding errors. Master’s
Thesis (in Finnish), Univ. Helsinki, 1970.

Automatic Differentiation 11

https://fmin.xyz
https://hse25.fmin.xyz
https://github.com/MerkulovDaniil/hse25
https://t.me/fminxyz

Finite differences

The naive approach to getting approximate values of gradients is the Finite differences approach. For each
coordinate, one can calculate the partial derivative approximation:

𝜕𝐿
𝜕𝑤𝑘

(𝑤) ≈ 𝐿(𝑤 + 𝜀𝑒𝑘) − 𝐿(𝑤)
𝜀 , 𝑒𝑘 = (0, … , 1

𝑘
, … , 0)

Question

If the time needed for one calculation of 𝐿(𝑤) is 𝑇 , what is the time needed for calculating ∇𝑤𝐿 with this
approach?
Answer 2𝑑𝑇 , which is extremely long for the huge scale optimization. Moreover, this exact scheme is unstable,
which means that you will have to choose between accuracy and stability.
Theorem
There is an algorithm to compute ∇𝑤𝐿 in 𝒪(𝑇) operations. 3

3Linnainmaa S. The representation of the cumulative rounding error of an algorithm as a Taylor expansion of the local rounding errors. Master’s
Thesis (in Finnish), Univ. Helsinki, 1970.

Automatic Differentiation 11

https://fmin.xyz
https://hse25.fmin.xyz
https://github.com/MerkulovDaniil/hse25
https://t.me/fminxyz

Forward mode automatic differentiation
To dive deep into the idea of automatic differentiation we will consider a simple function for calculating derivatives:

𝐿(𝑤1, 𝑤2) = 𝑤2 log𝑤1 + √𝑤2 log𝑤1

Let’s draw a computational graph of this function:

Figure 6: Illustration of computation graph of primitive arithmetic operations for the function 𝐿(𝑤1, 𝑤2)

Let’s go from the beginning of the graph to the end and calculate the derivative 𝜕𝐿
𝜕𝑤1

.

Automatic Differentiation 12

https://fmin.xyz
https://hse25.fmin.xyz
https://github.com/MerkulovDaniil/hse25
https://t.me/fminxyz

Forward mode automatic differentiation
To dive deep into the idea of automatic differentiation we will consider a simple function for calculating derivatives:

𝐿(𝑤1, 𝑤2) = 𝑤2 log𝑤1 + √𝑤2 log𝑤1

Let’s draw a computational graph of this function:

Figure 6: Illustration of computation graph of primitive arithmetic operations for the function 𝐿(𝑤1, 𝑤2)

Let’s go from the beginning of the graph to the end and calculate the derivative 𝜕𝐿
𝜕𝑤1

.

Automatic Differentiation 12

https://fmin.xyz
https://hse25.fmin.xyz
https://github.com/MerkulovDaniil/hse25
https://t.me/fminxyz

Forward mode automatic differentiation
To dive deep into the idea of automatic differentiation we will consider a simple function for calculating derivatives:

𝐿(𝑤1, 𝑤2) = 𝑤2 log𝑤1 + √𝑤2 log𝑤1

Let’s draw a computational graph of this function:

Figure 6: Illustration of computation graph of primitive arithmetic operations for the function 𝐿(𝑤1, 𝑤2)

Let’s go from the beginning of the graph to the end and calculate the derivative 𝜕𝐿
𝜕𝑤1

.
Automatic Differentiation 12

https://fmin.xyz
https://hse25.fmin.xyz
https://github.com/MerkulovDaniil/hse25
https://t.me/fminxyz

Forward mode automatic differentiation

Figure 7: Illustration of forward mode automatic differentiation

Function
𝑤1 = 𝑤1, 𝑤2 = 𝑤2

Derivative
𝜕𝑤1
𝜕𝑤1

= 1, 𝜕𝑤2
𝜕𝑤1

= 0

Automatic Differentiation 12

https://fmin.xyz
https://hse25.fmin.xyz
https://github.com/MerkulovDaniil/hse25
https://t.me/fminxyz

Forward mode automatic differentiation

Figure 7: Illustration of forward mode automatic differentiation

Function
𝑤1 = 𝑤1, 𝑤2 = 𝑤2

Derivative
𝜕𝑤1
𝜕𝑤1

= 1, 𝜕𝑤2
𝜕𝑤1

= 0

Automatic Differentiation 12

https://fmin.xyz
https://hse25.fmin.xyz
https://github.com/MerkulovDaniil/hse25
https://t.me/fminxyz

Forward mode automatic differentiation

Figure 8: Illustration of forward mode automatic differentiation

Function
𝑣1 = log𝑤1

Derivative
𝜕𝑣1
𝜕𝑤1

= 𝜕𝑣1
𝜕𝑤1

𝜕𝑤1
𝜕𝑤1

= 1
𝑤1

1

Automatic Differentiation 12

https://fmin.xyz
https://hse25.fmin.xyz
https://github.com/MerkulovDaniil/hse25
https://t.me/fminxyz

Forward mode automatic differentiation

Figure 8: Illustration of forward mode automatic differentiation

Function
𝑣1 = log𝑤1

Derivative
𝜕𝑣1
𝜕𝑤1

= 𝜕𝑣1
𝜕𝑤1

𝜕𝑤1
𝜕𝑤1

= 1
𝑤1

1

Automatic Differentiation 12

https://fmin.xyz
https://hse25.fmin.xyz
https://github.com/MerkulovDaniil/hse25
https://t.me/fminxyz

Forward mode automatic differentiation

Figure 8: Illustration of forward mode automatic differentiation

Function
𝑣1 = log𝑤1

Derivative
𝜕𝑣1
𝜕𝑤1

= 𝜕𝑣1
𝜕𝑤1

𝜕𝑤1
𝜕𝑤1

= 1
𝑤1

1

Automatic Differentiation 12

https://fmin.xyz
https://hse25.fmin.xyz
https://github.com/MerkulovDaniil/hse25
https://t.me/fminxyz

Forward mode automatic differentiation

Figure 9: Illustration of forward mode automatic differentiation

Function
𝑣2 = 𝑤2𝑣1

Derivative
𝜕𝑣2
𝜕𝑤1

= 𝜕𝑣2
𝜕𝑣1

𝜕𝑣1
𝜕𝑤1

+ 𝜕𝑣2
𝜕𝑤2

𝜕𝑤2
𝜕𝑤1

= 𝑤2
𝜕𝑣1
𝜕𝑤1

+ 𝑣1
𝜕𝑤2
𝜕𝑤1

Automatic Differentiation 12

https://fmin.xyz
https://hse25.fmin.xyz
https://github.com/MerkulovDaniil/hse25
https://t.me/fminxyz

Forward mode automatic differentiation

Figure 9: Illustration of forward mode automatic differentiation

Function
𝑣2 = 𝑤2𝑣1

Derivative
𝜕𝑣2
𝜕𝑤1

= 𝜕𝑣2
𝜕𝑣1

𝜕𝑣1
𝜕𝑤1

+ 𝜕𝑣2
𝜕𝑤2

𝜕𝑤2
𝜕𝑤1

= 𝑤2
𝜕𝑣1
𝜕𝑤1

+ 𝑣1
𝜕𝑤2
𝜕𝑤1

Automatic Differentiation 12

https://fmin.xyz
https://hse25.fmin.xyz
https://github.com/MerkulovDaniil/hse25
https://t.me/fminxyz

Forward mode automatic differentiation

Figure 9: Illustration of forward mode automatic differentiation

Function
𝑣2 = 𝑤2𝑣1

Derivative
𝜕𝑣2
𝜕𝑤1

= 𝜕𝑣2
𝜕𝑣1

𝜕𝑣1
𝜕𝑤1

+ 𝜕𝑣2
𝜕𝑤2

𝜕𝑤2
𝜕𝑤1

= 𝑤2
𝜕𝑣1
𝜕𝑤1

+ 𝑣1
𝜕𝑤2
𝜕𝑤1

Automatic Differentiation 12

https://fmin.xyz
https://hse25.fmin.xyz
https://github.com/MerkulovDaniil/hse25
https://t.me/fminxyz

Forward mode automatic differentiation

Figure 10: Illustration of forward mode automatic differentiation

Function
𝑣3 = √𝑣2

Derivative
𝜕𝑣3
𝜕𝑤1

= 𝜕𝑣3
𝜕𝑣2

𝜕𝑣2
𝜕𝑤1

= 1
2√𝑣2

𝜕𝑣2
𝜕𝑤1

Automatic Differentiation 12

https://fmin.xyz
https://hse25.fmin.xyz
https://github.com/MerkulovDaniil/hse25
https://t.me/fminxyz

Forward mode automatic differentiation

Figure 10: Illustration of forward mode automatic differentiation

Function
𝑣3 = √𝑣2

Derivative
𝜕𝑣3
𝜕𝑤1

= 𝜕𝑣3
𝜕𝑣2

𝜕𝑣2
𝜕𝑤1

= 1
2√𝑣2

𝜕𝑣2
𝜕𝑤1

Automatic Differentiation 12

https://fmin.xyz
https://hse25.fmin.xyz
https://github.com/MerkulovDaniil/hse25
https://t.me/fminxyz

Forward mode automatic differentiation

Figure 10: Illustration of forward mode automatic differentiation

Function
𝑣3 = √𝑣2

Derivative
𝜕𝑣3
𝜕𝑤1

= 𝜕𝑣3
𝜕𝑣2

𝜕𝑣2
𝜕𝑤1

= 1
2√𝑣2

𝜕𝑣2
𝜕𝑤1

Automatic Differentiation 12

https://fmin.xyz
https://hse25.fmin.xyz
https://github.com/MerkulovDaniil/hse25
https://t.me/fminxyz

Forward mode automatic differentiation

Figure 11: Illustration of forward mode automatic differentiation

Function
𝐿 = 𝑣2 + 𝑣3

Derivative
𝜕𝐿

𝜕𝑤1
= 𝜕𝐿

𝜕𝑣2
𝜕𝑣2
𝜕𝑤1

+ 𝜕𝐿
𝜕𝑣3

𝜕𝑣3
𝜕𝑤1

= 1 𝜕𝑣2
𝜕𝑤1

+ 1 𝜕𝑣3
𝜕𝑤1

Automatic Differentiation 12

https://fmin.xyz
https://hse25.fmin.xyz
https://github.com/MerkulovDaniil/hse25
https://t.me/fminxyz

Forward mode automatic differentiation

Figure 11: Illustration of forward mode automatic differentiation

Function
𝐿 = 𝑣2 + 𝑣3

Derivative
𝜕𝐿

𝜕𝑤1
= 𝜕𝐿

𝜕𝑣2
𝜕𝑣2
𝜕𝑤1

+ 𝜕𝐿
𝜕𝑣3

𝜕𝑣3
𝜕𝑤1

= 1 𝜕𝑣2
𝜕𝑤1

+ 1 𝜕𝑣3
𝜕𝑤1

Automatic Differentiation 12

https://fmin.xyz
https://hse25.fmin.xyz
https://github.com/MerkulovDaniil/hse25
https://t.me/fminxyz

Forward mode automatic differentiation

Figure 11: Illustration of forward mode automatic differentiation

Function
𝐿 = 𝑣2 + 𝑣3

Derivative
𝜕𝐿

𝜕𝑤1
= 𝜕𝐿

𝜕𝑣2
𝜕𝑣2
𝜕𝑤1

+ 𝜕𝐿
𝜕𝑣3

𝜕𝑣3
𝜕𝑤1

= 1 𝜕𝑣2
𝜕𝑤1

+ 1 𝜕𝑣3
𝜕𝑤1

Automatic Differentiation 12

https://fmin.xyz
https://hse25.fmin.xyz
https://github.com/MerkulovDaniil/hse25
https://t.me/fminxyz

Make the similar computations for 𝜕𝐿
𝜕𝑤2

Figure 12: Illustration of computation graph of primitive arithmetic operations for the function 𝐿(𝑤1, 𝑤2)

Automatic Differentiation 13

https://fmin.xyz
https://hse25.fmin.xyz
https://github.com/MerkulovDaniil/hse25
https://t.me/fminxyz

Forward mode automatic differentiation example

Figure 13: Illustration of forward mode automatic differentiation

Function
𝑤1 = 𝑤1, 𝑤2 = 𝑤2

Derivative
𝜕𝑤1
𝜕𝑤2

= 0, 𝜕𝑤2
𝜕𝑤2

= 1

Automatic Differentiation 13

https://fmin.xyz
https://hse25.fmin.xyz
https://github.com/MerkulovDaniil/hse25
https://t.me/fminxyz

Forward mode automatic differentiation example

Figure 14: Illustration of forward mode automatic differentiation

Function
𝑣1 = log𝑤1

Derivative
𝜕𝑣1
𝜕𝑤2

= 𝜕𝑣1
𝜕𝑤1

𝜕𝑤1
𝜕𝑤2

= 1
𝑤1

⋅ 0

Automatic Differentiation 13

https://fmin.xyz
https://hse25.fmin.xyz
https://github.com/MerkulovDaniil/hse25
https://t.me/fminxyz

Forward mode automatic differentiation example

Figure 15: Illustration of forward mode automatic differentiation

Function
𝑣2 = 𝑤2𝑣1

Derivative
𝜕𝑣2
𝜕𝑤2

= 𝜕𝑣2
𝜕𝑣1

𝜕𝑣1
𝜕𝑤2

+ 𝜕𝑣2
𝜕𝑤2

𝜕𝑤2
𝜕𝑤2

= 𝑤2
𝜕𝑣1
𝜕𝑤2

+ 𝑣1
𝜕𝑤2
𝜕𝑤2

Automatic Differentiation 13

https://fmin.xyz
https://hse25.fmin.xyz
https://github.com/MerkulovDaniil/hse25
https://t.me/fminxyz

Forward mode automatic differentiation example

Figure 16: Illustration of forward mode automatic differentiation

Function
𝑣3 = √𝑣2

Derivative
𝜕𝑣3
𝜕𝑤2

= 𝜕𝑣3
𝜕𝑣2

𝜕𝑣2
𝜕𝑤2

= 1
2√𝑣2

𝜕𝑣2
𝜕𝑤2

Automatic Differentiation 13

https://fmin.xyz
https://hse25.fmin.xyz
https://github.com/MerkulovDaniil/hse25
https://t.me/fminxyz

Forward mode automatic differentiation example

Figure 17: Illustration of forward mode automatic differentiation

Function
𝐿 = 𝑣2 + 𝑣3

Derivative
𝜕𝐿

𝜕𝑤2
= 𝜕𝐿

𝜕𝑣2
𝜕𝑣2
𝜕𝑤2

+ 𝜕𝐿
𝜕𝑣3

𝜕𝑣3
𝜕𝑤2

= 1 𝜕𝑣2
𝜕𝑤2

+ 1 𝜕𝑣3
𝜕𝑤2

Automatic Differentiation 13

https://fmin.xyz
https://hse25.fmin.xyz
https://github.com/MerkulovDaniil/hse25
https://t.me/fminxyz

Forward mode automatic differentiation algorithm
Suppose, we have a computational graph 𝑣𝑖, 𝑖 ∈ [1; 𝑁].
Our goal is to calculate the derivative of the output of this
graph with respect to some input variable 𝑤𝑘, i.e.

𝜕𝑣𝑁
𝜕𝑤𝑘

.
This idea implies propagation of the gradient with respect
to the input variable from start to end, that is why we can
introduce the notation:

𝑣𝑖 = 𝜕𝑣𝑖
𝜕𝑤𝑘

Figure 18: Illustration of forward chain rule to calculate the
derivative of the function 𝐿 with respect to 𝑤𝑘.

• For 𝑖 = 1, … , 𝑁 :

• Compute 𝑣𝑖 as a function of its parents (inputs)
𝑥1, … , 𝑥𝑡𝑖 :

𝑣𝑖 = 𝑣𝑖(𝑥1, … , 𝑥𝑡𝑖)
• Compute the derivative 𝑣𝑖 using the forward chain rule:

𝑣𝑖 =
𝑡𝑖

∑
𝑗=1

𝜕𝑣𝑖
𝜕𝑥𝑗

𝜕𝑥𝑗
𝜕𝑤𝑘

Note, that this approach does not require storing all
intermediate computations, but one can see, that for
calculating the derivative 𝜕𝐿

𝜕𝑤𝑘
we need 𝒪(𝑇) operations.

This means, that for the whole gradient, we need 𝑑𝒪(𝑇)
operations, which is the same as for finite differences, but
we do not have stability issues, or inaccuracies now (the
formulas above are exact).

Automatic Differentiation 14

https://fmin.xyz
https://hse25.fmin.xyz
https://github.com/MerkulovDaniil/hse25
https://t.me/fminxyz

Forward mode automatic differentiation algorithm
Suppose, we have a computational graph 𝑣𝑖, 𝑖 ∈ [1; 𝑁].
Our goal is to calculate the derivative of the output of this
graph with respect to some input variable 𝑤𝑘, i.e.

𝜕𝑣𝑁
𝜕𝑤𝑘

.
This idea implies propagation of the gradient with respect
to the input variable from start to end, that is why we can
introduce the notation:

𝑣𝑖 = 𝜕𝑣𝑖
𝜕𝑤𝑘

Figure 18: Illustration of forward chain rule to calculate the
derivative of the function 𝐿 with respect to 𝑤𝑘.

• For 𝑖 = 1, … , 𝑁 :

• Compute 𝑣𝑖 as a function of its parents (inputs)
𝑥1, … , 𝑥𝑡𝑖 :

𝑣𝑖 = 𝑣𝑖(𝑥1, … , 𝑥𝑡𝑖)
• Compute the derivative 𝑣𝑖 using the forward chain rule:

𝑣𝑖 =
𝑡𝑖

∑
𝑗=1

𝜕𝑣𝑖
𝜕𝑥𝑗

𝜕𝑥𝑗
𝜕𝑤𝑘

Note, that this approach does not require storing all
intermediate computations, but one can see, that for
calculating the derivative 𝜕𝐿

𝜕𝑤𝑘
we need 𝒪(𝑇) operations.

This means, that for the whole gradient, we need 𝑑𝒪(𝑇)
operations, which is the same as for finite differences, but
we do not have stability issues, or inaccuracies now (the
formulas above are exact).

Automatic Differentiation 14

https://fmin.xyz
https://hse25.fmin.xyz
https://github.com/MerkulovDaniil/hse25
https://t.me/fminxyz

Forward mode automatic differentiation algorithm
Suppose, we have a computational graph 𝑣𝑖, 𝑖 ∈ [1; 𝑁].
Our goal is to calculate the derivative of the output of this
graph with respect to some input variable 𝑤𝑘, i.e.

𝜕𝑣𝑁
𝜕𝑤𝑘

.
This idea implies propagation of the gradient with respect
to the input variable from start to end, that is why we can
introduce the notation:

𝑣𝑖 = 𝜕𝑣𝑖
𝜕𝑤𝑘

Figure 18: Illustration of forward chain rule to calculate the
derivative of the function 𝐿 with respect to 𝑤𝑘.

• For 𝑖 = 1, … , 𝑁 :

• Compute 𝑣𝑖 as a function of its parents (inputs)
𝑥1, … , 𝑥𝑡𝑖 :

𝑣𝑖 = 𝑣𝑖(𝑥1, … , 𝑥𝑡𝑖)
• Compute the derivative 𝑣𝑖 using the forward chain rule:

𝑣𝑖 =
𝑡𝑖

∑
𝑗=1

𝜕𝑣𝑖
𝜕𝑥𝑗

𝜕𝑥𝑗
𝜕𝑤𝑘

Note, that this approach does not require storing all
intermediate computations, but one can see, that for
calculating the derivative 𝜕𝐿

𝜕𝑤𝑘
we need 𝒪(𝑇) operations.

This means, that for the whole gradient, we need 𝑑𝒪(𝑇)
operations, which is the same as for finite differences, but
we do not have stability issues, or inaccuracies now (the
formulas above are exact).

Automatic Differentiation 14

https://fmin.xyz
https://hse25.fmin.xyz
https://github.com/MerkulovDaniil/hse25
https://t.me/fminxyz

Forward mode automatic differentiation algorithm
Suppose, we have a computational graph 𝑣𝑖, 𝑖 ∈ [1; 𝑁].
Our goal is to calculate the derivative of the output of this
graph with respect to some input variable 𝑤𝑘, i.e.

𝜕𝑣𝑁
𝜕𝑤𝑘

.
This idea implies propagation of the gradient with respect
to the input variable from start to end, that is why we can
introduce the notation:

𝑣𝑖 = 𝜕𝑣𝑖
𝜕𝑤𝑘

Figure 18: Illustration of forward chain rule to calculate the
derivative of the function 𝐿 with respect to 𝑤𝑘.

• For 𝑖 = 1, … , 𝑁 :
• Compute 𝑣𝑖 as a function of its parents (inputs)

𝑥1, … , 𝑥𝑡𝑖 :
𝑣𝑖 = 𝑣𝑖(𝑥1, … , 𝑥𝑡𝑖)

• Compute the derivative 𝑣𝑖 using the forward chain rule:

𝑣𝑖 =
𝑡𝑖

∑
𝑗=1

𝜕𝑣𝑖
𝜕𝑥𝑗

𝜕𝑥𝑗
𝜕𝑤𝑘

Note, that this approach does not require storing all
intermediate computations, but one can see, that for
calculating the derivative 𝜕𝐿

𝜕𝑤𝑘
we need 𝒪(𝑇) operations.

This means, that for the whole gradient, we need 𝑑𝒪(𝑇)
operations, which is the same as for finite differences, but
we do not have stability issues, or inaccuracies now (the
formulas above are exact).

Automatic Differentiation 14

https://fmin.xyz
https://hse25.fmin.xyz
https://github.com/MerkulovDaniil/hse25
https://t.me/fminxyz

Forward mode automatic differentiation algorithm
Suppose, we have a computational graph 𝑣𝑖, 𝑖 ∈ [1; 𝑁].
Our goal is to calculate the derivative of the output of this
graph with respect to some input variable 𝑤𝑘, i.e.

𝜕𝑣𝑁
𝜕𝑤𝑘

.
This idea implies propagation of the gradient with respect
to the input variable from start to end, that is why we can
introduce the notation:

𝑣𝑖 = 𝜕𝑣𝑖
𝜕𝑤𝑘

Figure 18: Illustration of forward chain rule to calculate the
derivative of the function 𝐿 with respect to 𝑤𝑘.

• For 𝑖 = 1, … , 𝑁 :
• Compute 𝑣𝑖 as a function of its parents (inputs)

𝑥1, … , 𝑥𝑡𝑖 :
𝑣𝑖 = 𝑣𝑖(𝑥1, … , 𝑥𝑡𝑖)

• Compute the derivative 𝑣𝑖 using the forward chain rule:

𝑣𝑖 =
𝑡𝑖

∑
𝑗=1

𝜕𝑣𝑖
𝜕𝑥𝑗

𝜕𝑥𝑗
𝜕𝑤𝑘

Note, that this approach does not require storing all
intermediate computations, but one can see, that for
calculating the derivative 𝜕𝐿

𝜕𝑤𝑘
we need 𝒪(𝑇) operations.

This means, that for the whole gradient, we need 𝑑𝒪(𝑇)
operations, which is the same as for finite differences, but
we do not have stability issues, or inaccuracies now (the
formulas above are exact).

Automatic Differentiation 14

https://fmin.xyz
https://hse25.fmin.xyz
https://github.com/MerkulovDaniil/hse25
https://t.me/fminxyz

Forward mode automatic differentiation algorithm
Suppose, we have a computational graph 𝑣𝑖, 𝑖 ∈ [1; 𝑁].
Our goal is to calculate the derivative of the output of this
graph with respect to some input variable 𝑤𝑘, i.e.

𝜕𝑣𝑁
𝜕𝑤𝑘

.
This idea implies propagation of the gradient with respect
to the input variable from start to end, that is why we can
introduce the notation:

𝑣𝑖 = 𝜕𝑣𝑖
𝜕𝑤𝑘

Figure 18: Illustration of forward chain rule to calculate the
derivative of the function 𝐿 with respect to 𝑤𝑘.

• For 𝑖 = 1, … , 𝑁 :
• Compute 𝑣𝑖 as a function of its parents (inputs)

𝑥1, … , 𝑥𝑡𝑖 :
𝑣𝑖 = 𝑣𝑖(𝑥1, … , 𝑥𝑡𝑖)

• Compute the derivative 𝑣𝑖 using the forward chain rule:

𝑣𝑖 =
𝑡𝑖

∑
𝑗=1

𝜕𝑣𝑖
𝜕𝑥𝑗

𝜕𝑥𝑗
𝜕𝑤𝑘

Note, that this approach does not require storing all
intermediate computations, but one can see, that for
calculating the derivative 𝜕𝐿

𝜕𝑤𝑘
we need 𝒪(𝑇) operations.

This means, that for the whole gradient, we need 𝑑𝒪(𝑇)
operations, which is the same as for finite differences, but
we do not have stability issues, or inaccuracies now (the
formulas above are exact).

Automatic Differentiation 14

https://fmin.xyz
https://hse25.fmin.xyz
https://github.com/MerkulovDaniil/hse25
https://t.me/fminxyz

Forward mode automatic differentiation algorithm
Suppose, we have a computational graph 𝑣𝑖, 𝑖 ∈ [1; 𝑁].
Our goal is to calculate the derivative of the output of this
graph with respect to some input variable 𝑤𝑘, i.e.

𝜕𝑣𝑁
𝜕𝑤𝑘

.
This idea implies propagation of the gradient with respect
to the input variable from start to end, that is why we can
introduce the notation:

𝑣𝑖 = 𝜕𝑣𝑖
𝜕𝑤𝑘

Figure 18: Illustration of forward chain rule to calculate the
derivative of the function 𝐿 with respect to 𝑤𝑘.

• For 𝑖 = 1, … , 𝑁 :
• Compute 𝑣𝑖 as a function of its parents (inputs)

𝑥1, … , 𝑥𝑡𝑖 :
𝑣𝑖 = 𝑣𝑖(𝑥1, … , 𝑥𝑡𝑖)

• Compute the derivative 𝑣𝑖 using the forward chain rule:

𝑣𝑖 =
𝑡𝑖

∑
𝑗=1

𝜕𝑣𝑖
𝜕𝑥𝑗

𝜕𝑥𝑗
𝜕𝑤𝑘

Note, that this approach does not require storing all
intermediate computations, but one can see, that for
calculating the derivative 𝜕𝐿

𝜕𝑤𝑘
we need 𝒪(𝑇) operations.

This means, that for the whole gradient, we need 𝑑𝒪(𝑇)
operations, which is the same as for finite differences, but
we do not have stability issues, or inaccuracies now (the
formulas above are exact).

Automatic Differentiation 14

https://fmin.xyz
https://hse25.fmin.xyz
https://github.com/MerkulovDaniil/hse25
https://t.me/fminxyz

Backward mode automatic differentiation
We will consider the same function with a computational graph:

Figure 19: Illustration of computation graph of primitive arithmetic operations for the function 𝐿(𝑤1, 𝑤2)

Assume, that we have some values of the parameters 𝑤1, 𝑤2 and we have already performed a forward pass (i.e. single
propagation through the computational graph from left to right). Suppose, also, that we somehow saved all
intermediate values of 𝑣𝑖. Let’s go from the end of the graph to the beginning and calculate the derivatives
𝜕𝐿
𝜕𝑤1

, 𝜕𝐿
𝜕𝑤2

:

Automatic Differentiation 16

https://fmin.xyz
https://hse25.fmin.xyz
https://github.com/MerkulovDaniil/hse25
https://t.me/fminxyz

Backward mode automatic differentiation
We will consider the same function with a computational graph:

Figure 19: Illustration of computation graph of primitive arithmetic operations for the function 𝐿(𝑤1, 𝑤2)

Assume, that we have some values of the parameters 𝑤1, 𝑤2 and we have already performed a forward pass (i.e. single
propagation through the computational graph from left to right). Suppose, also, that we somehow saved all
intermediate values of 𝑣𝑖. Let’s go from the end of the graph to the beginning and calculate the derivatives
𝜕𝐿
𝜕𝑤1

, 𝜕𝐿
𝜕𝑤2

:

Automatic Differentiation 16

https://fmin.xyz
https://hse25.fmin.xyz
https://github.com/MerkulovDaniil/hse25
https://t.me/fminxyz

Backward mode automatic differentiation example

Figure 20: Illustration of backward mode automatic differentiation

Derivatives
𝜕𝐿
𝜕𝐿 = 1

Automatic Differentiation 16

https://fmin.xyz
https://hse25.fmin.xyz
https://github.com/MerkulovDaniil/hse25
https://t.me/fminxyz

Backward mode automatic differentiation example

Figure 20: Illustration of backward mode automatic differentiation

Derivatives

𝜕𝐿
𝜕𝐿 = 1

Automatic Differentiation 16

https://fmin.xyz
https://hse25.fmin.xyz
https://github.com/MerkulovDaniil/hse25
https://t.me/fminxyz

Backward mode automatic differentiation example

Figure 20: Illustration of backward mode automatic differentiation

Derivatives
𝜕𝐿
𝜕𝐿 = 1

Automatic Differentiation 16

https://fmin.xyz
https://hse25.fmin.xyz
https://github.com/MerkulovDaniil/hse25
https://t.me/fminxyz

Backward mode automatic differentiation example

Figure 21: Illustration of backward mode automatic differentiation

Derivatives
𝜕𝐿
𝜕𝑣3

= 𝜕𝐿
𝜕𝐿

𝜕𝐿
𝜕𝑣3

= 𝜕𝐿
𝜕𝐿1

Automatic Differentiation 16

https://fmin.xyz
https://hse25.fmin.xyz
https://github.com/MerkulovDaniil/hse25
https://t.me/fminxyz

Backward mode automatic differentiation example

Figure 21: Illustration of backward mode automatic differentiation

Derivatives

𝜕𝐿
𝜕𝑣3

= 𝜕𝐿
𝜕𝐿

𝜕𝐿
𝜕𝑣3

= 𝜕𝐿
𝜕𝐿1

Automatic Differentiation 16

https://fmin.xyz
https://hse25.fmin.xyz
https://github.com/MerkulovDaniil/hse25
https://t.me/fminxyz

Backward mode automatic differentiation example

Figure 21: Illustration of backward mode automatic differentiation

Derivatives
𝜕𝐿
𝜕𝑣3

= 𝜕𝐿
𝜕𝐿

𝜕𝐿
𝜕𝑣3

= 𝜕𝐿
𝜕𝐿1

Automatic Differentiation 16

https://fmin.xyz
https://hse25.fmin.xyz
https://github.com/MerkulovDaniil/hse25
https://t.me/fminxyz

Backward mode automatic differentiation example

Figure 22: Illustration of backward mode automatic differentiation

Derivatives
𝜕𝐿
𝜕𝑣2

= 𝜕𝐿
𝜕𝑣3

𝜕𝑣3
𝜕𝑣2

+ 𝜕𝐿
𝜕𝐿

𝜕𝐿
𝜕𝑣2

= 𝜕𝐿
𝜕𝑣3

1
2√𝑣2

+ 𝜕𝐿
𝜕𝐿1

Automatic Differentiation 16

https://fmin.xyz
https://hse25.fmin.xyz
https://github.com/MerkulovDaniil/hse25
https://t.me/fminxyz

Backward mode automatic differentiation example

Figure 22: Illustration of backward mode automatic differentiation

Derivatives

𝜕𝐿
𝜕𝑣2

= 𝜕𝐿
𝜕𝑣3

𝜕𝑣3
𝜕𝑣2

+ 𝜕𝐿
𝜕𝐿

𝜕𝐿
𝜕𝑣2

= 𝜕𝐿
𝜕𝑣3

1
2√𝑣2

+ 𝜕𝐿
𝜕𝐿1

Automatic Differentiation 16

https://fmin.xyz
https://hse25.fmin.xyz
https://github.com/MerkulovDaniil/hse25
https://t.me/fminxyz

Backward mode automatic differentiation example

Figure 22: Illustration of backward mode automatic differentiation

Derivatives
𝜕𝐿
𝜕𝑣2

= 𝜕𝐿
𝜕𝑣3

𝜕𝑣3
𝜕𝑣2

+ 𝜕𝐿
𝜕𝐿

𝜕𝐿
𝜕𝑣2

= 𝜕𝐿
𝜕𝑣3

1
2√𝑣2

+ 𝜕𝐿
𝜕𝐿1

Automatic Differentiation 16

https://fmin.xyz
https://hse25.fmin.xyz
https://github.com/MerkulovDaniil/hse25
https://t.me/fminxyz

Backward mode automatic differentiation example

Figure 23: Illustration of backward mode automatic differentiation

Derivatives
𝜕𝐿
𝜕𝑣1

= 𝜕𝐿
𝜕𝑣2

𝜕𝑣2
𝜕𝑣1

= 𝜕𝐿
𝜕𝑣2

𝑤2

Automatic Differentiation 16

https://fmin.xyz
https://hse25.fmin.xyz
https://github.com/MerkulovDaniil/hse25
https://t.me/fminxyz

Backward mode automatic differentiation example

Figure 23: Illustration of backward mode automatic differentiation

Derivatives

𝜕𝐿
𝜕𝑣1

= 𝜕𝐿
𝜕𝑣2

𝜕𝑣2
𝜕𝑣1

= 𝜕𝐿
𝜕𝑣2

𝑤2

Automatic Differentiation 16

https://fmin.xyz
https://hse25.fmin.xyz
https://github.com/MerkulovDaniil/hse25
https://t.me/fminxyz

Backward mode automatic differentiation example

Figure 23: Illustration of backward mode automatic differentiation

Derivatives
𝜕𝐿
𝜕𝑣1

= 𝜕𝐿
𝜕𝑣2

𝜕𝑣2
𝜕𝑣1

= 𝜕𝐿
𝜕𝑣2

𝑤2

Automatic Differentiation 16

https://fmin.xyz
https://hse25.fmin.xyz
https://github.com/MerkulovDaniil/hse25
https://t.me/fminxyz

Backward mode automatic differentiation example

Figure 24: Illustration of backward mode automatic differentiation

Derivatives
𝜕𝐿
𝜕𝑤1

= 𝜕𝐿
𝜕𝑣1

𝜕𝑣1
𝜕𝑤1

= 𝜕𝐿
𝜕𝑣1

1
𝑤1

𝜕𝐿
𝜕𝑤2

= 𝜕𝐿
𝜕𝑣2

𝜕𝑣2
𝜕𝑤2

= 𝜕𝐿
𝜕𝑣1

𝑣1

Automatic Differentiation 16

https://fmin.xyz
https://hse25.fmin.xyz
https://github.com/MerkulovDaniil/hse25
https://t.me/fminxyz

Backward mode automatic differentiation example

Figure 24: Illustration of backward mode automatic differentiation

Derivatives

𝜕𝐿
𝜕𝑤1

= 𝜕𝐿
𝜕𝑣1

𝜕𝑣1
𝜕𝑤1

= 𝜕𝐿
𝜕𝑣1

1
𝑤1

𝜕𝐿
𝜕𝑤2

= 𝜕𝐿
𝜕𝑣2

𝜕𝑣2
𝜕𝑤2

= 𝜕𝐿
𝜕𝑣1

𝑣1

Automatic Differentiation 16

https://fmin.xyz
https://hse25.fmin.xyz
https://github.com/MerkulovDaniil/hse25
https://t.me/fminxyz

Backward mode automatic differentiation example

Figure 24: Illustration of backward mode automatic differentiation

Derivatives
𝜕𝐿
𝜕𝑤1

= 𝜕𝐿
𝜕𝑣1

𝜕𝑣1
𝜕𝑤1

= 𝜕𝐿
𝜕𝑣1

1
𝑤1

𝜕𝐿
𝜕𝑤2

= 𝜕𝐿
𝜕𝑣2

𝜕𝑣2
𝜕𝑤2

= 𝜕𝐿
𝜕𝑣1

𝑣1

Automatic Differentiation 16

https://fmin.xyz
https://hse25.fmin.xyz
https://github.com/MerkulovDaniil/hse25
https://t.me/fminxyz

Backward (reverse) mode automatic differentiation

Question

Note, that for the same price of computations as it was in the forward mode we have the full vector of gradient
∇𝑤𝐿. Is it a free lunch? What is the cost of acceleration?

Answer Note, that for using the reverse mode AD you need to store all intermediate computations from the
forward pass. This problem could be somehow mitigated with the gradient checkpointing approach, which
involves necessary recomputations of some intermediate values. This could significantly reduce the memory
footprint of the large machine-learning model.

Automatic Differentiation 17

https://fmin.xyz
https://hse25.fmin.xyz
https://github.com/MerkulovDaniil/hse25
https://t.me/fminxyz

Backward (reverse) mode automatic differentiation

Question

Note, that for the same price of computations as it was in the forward mode we have the full vector of gradient
∇𝑤𝐿. Is it a free lunch? What is the cost of acceleration?
Answer Note, that for using the reverse mode AD you need to store all intermediate computations from the
forward pass. This problem could be somehow mitigated with the gradient checkpointing approach, which
involves necessary recomputations of some intermediate values. This could significantly reduce the memory
footprint of the large machine-learning model.

Automatic Differentiation 17

https://fmin.xyz
https://hse25.fmin.xyz
https://github.com/MerkulovDaniil/hse25
https://t.me/fminxyz

Reverse mode automatic differentiation algorithm
Suppose, we have a computational graph 𝑣𝑖, 𝑖 ∈ [1; 𝑁].
Our goal is to calculate the derivative of the output of this
graph with respect to all inputs variable 𝑤,
i.e. ∇𝑤𝑣𝑁 = (𝜕𝑣𝑁

𝜕𝑤1
, … , 𝜕𝑣𝑁

𝜕𝑤𝑑
)𝑇

. This idea implies
propagation of the gradient of the function with respect to
the intermediate variables from the end to the origin, that
is why we can introduce the notation:

𝑣𝑖 = 𝜕𝐿
𝜕𝑣𝑖

= 𝜕𝑣𝑁
𝜕𝑣𝑖

Figure 25: Illustration of reverse chain rule to calculate the
derivative of the function 𝐿 with respect to the node 𝑣𝑖.

• FORWARD PASS
For 𝑖 = 1, … , 𝑁 :

• Compute and store the values of 𝑣𝑖 as a function of its
parents (inputs)

• BACKWARD PASS
For 𝑖 = 𝑁, … , 1:

• Compute the derivative 𝑣𝑖 using the backward chain
rule and information from all of its children (outputs)
(𝑥1, … , 𝑥𝑡𝑖):

𝑣𝑖 = 𝜕𝐿
𝜕𝑣𝑖

=
𝑡𝑖

∑
𝑗=1

𝜕𝐿
𝜕𝑥𝑗

𝜕𝑥𝑗
𝜕𝑣𝑖

Automatic Differentiation 18

https://fmin.xyz
https://hse25.fmin.xyz
https://github.com/MerkulovDaniil/hse25
https://t.me/fminxyz

Reverse mode automatic differentiation algorithm
Suppose, we have a computational graph 𝑣𝑖, 𝑖 ∈ [1; 𝑁].
Our goal is to calculate the derivative of the output of this
graph with respect to all inputs variable 𝑤,
i.e. ∇𝑤𝑣𝑁 = (𝜕𝑣𝑁

𝜕𝑤1
, … , 𝜕𝑣𝑁

𝜕𝑤𝑑
)𝑇

. This idea implies
propagation of the gradient of the function with respect to
the intermediate variables from the end to the origin, that
is why we can introduce the notation:

𝑣𝑖 = 𝜕𝐿
𝜕𝑣𝑖

= 𝜕𝑣𝑁
𝜕𝑣𝑖

Figure 25: Illustration of reverse chain rule to calculate the
derivative of the function 𝐿 with respect to the node 𝑣𝑖.

• FORWARD PASS
For 𝑖 = 1, … , 𝑁 :

• Compute and store the values of 𝑣𝑖 as a function of its
parents (inputs)

• BACKWARD PASS
For 𝑖 = 𝑁, … , 1:

• Compute the derivative 𝑣𝑖 using the backward chain
rule and information from all of its children (outputs)
(𝑥1, … , 𝑥𝑡𝑖):

𝑣𝑖 = 𝜕𝐿
𝜕𝑣𝑖

=
𝑡𝑖

∑
𝑗=1

𝜕𝐿
𝜕𝑥𝑗

𝜕𝑥𝑗
𝜕𝑣𝑖

Automatic Differentiation 18

https://fmin.xyz
https://hse25.fmin.xyz
https://github.com/MerkulovDaniil/hse25
https://t.me/fminxyz

Reverse mode automatic differentiation algorithm
Suppose, we have a computational graph 𝑣𝑖, 𝑖 ∈ [1; 𝑁].
Our goal is to calculate the derivative of the output of this
graph with respect to all inputs variable 𝑤,
i.e. ∇𝑤𝑣𝑁 = (𝜕𝑣𝑁

𝜕𝑤1
, … , 𝜕𝑣𝑁

𝜕𝑤𝑑
)𝑇

. This idea implies
propagation of the gradient of the function with respect to
the intermediate variables from the end to the origin, that
is why we can introduce the notation:

𝑣𝑖 = 𝜕𝐿
𝜕𝑣𝑖

= 𝜕𝑣𝑁
𝜕𝑣𝑖

Figure 25: Illustration of reverse chain rule to calculate the
derivative of the function 𝐿 with respect to the node 𝑣𝑖.

• FORWARD PASS
For 𝑖 = 1, … , 𝑁 :

• Compute and store the values of 𝑣𝑖 as a function of its
parents (inputs)

• BACKWARD PASS
For 𝑖 = 𝑁, … , 1:

• Compute the derivative 𝑣𝑖 using the backward chain
rule and information from all of its children (outputs)
(𝑥1, … , 𝑥𝑡𝑖):

𝑣𝑖 = 𝜕𝐿
𝜕𝑣𝑖

=
𝑡𝑖

∑
𝑗=1

𝜕𝐿
𝜕𝑥𝑗

𝜕𝑥𝑗
𝜕𝑣𝑖

Automatic Differentiation 18

https://fmin.xyz
https://hse25.fmin.xyz
https://github.com/MerkulovDaniil/hse25
https://t.me/fminxyz

Reverse mode automatic differentiation algorithm
Suppose, we have a computational graph 𝑣𝑖, 𝑖 ∈ [1; 𝑁].
Our goal is to calculate the derivative of the output of this
graph with respect to all inputs variable 𝑤,
i.e. ∇𝑤𝑣𝑁 = (𝜕𝑣𝑁

𝜕𝑤1
, … , 𝜕𝑣𝑁

𝜕𝑤𝑑
)𝑇

. This idea implies
propagation of the gradient of the function with respect to
the intermediate variables from the end to the origin, that
is why we can introduce the notation:

𝑣𝑖 = 𝜕𝐿
𝜕𝑣𝑖

= 𝜕𝑣𝑁
𝜕𝑣𝑖

Figure 25: Illustration of reverse chain rule to calculate the
derivative of the function 𝐿 with respect to the node 𝑣𝑖.

• FORWARD PASS
For 𝑖 = 1, … , 𝑁 :

• Compute and store the values of 𝑣𝑖 as a function of its
parents (inputs)

• BACKWARD PASS
For 𝑖 = 𝑁, … , 1:

• Compute the derivative 𝑣𝑖 using the backward chain
rule and information from all of its children (outputs)
(𝑥1, … , 𝑥𝑡𝑖):

𝑣𝑖 = 𝜕𝐿
𝜕𝑣𝑖

=
𝑡𝑖

∑
𝑗=1

𝜕𝐿
𝜕𝑥𝑗

𝜕𝑥𝑗
𝜕𝑣𝑖

Automatic Differentiation 18

https://fmin.xyz
https://hse25.fmin.xyz
https://github.com/MerkulovDaniil/hse25
https://t.me/fminxyz

Choose your fighter

Figure 26: Which mode would you choose for
calculating gradients there?

Question

Which of the AD modes would you choose (forward/ reverse)
for the following computational graph of primitive arithmetic op-
erations? Suppose, you are needed to compute the jacobian
𝐽 = { 𝜕𝐿𝑖

𝜕𝑤𝑗
}

𝑖,𝑗

Answer Note, that the reverse mode computational time is
proportional to the number of outputs here, while the forward mode
works proportionally to the number of inputs there. This is why it
would be a good idea to consider the forward mode AD.

Automatic Differentiation 19

https://fmin.xyz
https://hse25.fmin.xyz
https://github.com/MerkulovDaniil/hse25
https://t.me/fminxyz

Choose your fighter

Figure 26: Which mode would you choose for
calculating gradients there?

Question

Which of the AD modes would you choose (forward/ reverse)
for the following computational graph of primitive arithmetic op-
erations? Suppose, you are needed to compute the jacobian
𝐽 = { 𝜕𝐿𝑖

𝜕𝑤𝑗
}

𝑖,𝑗

Answer Note, that the reverse mode computational time is
proportional to the number of outputs here, while the forward mode
works proportionally to the number of inputs there. This is why it
would be a good idea to consider the forward mode AD.

Automatic Differentiation 19

https://fmin.xyz
https://hse25.fmin.xyz
https://github.com/MerkulovDaniil/hse25
https://t.me/fminxyz

Choose your fighter

Figure 27: ♣ This graph nicely illustrates the idea of choice between the modes. The 𝑛 = 100 dimension is fixed and the graph
presents the time needed for Jacobian calculation w.r.t. 𝑥 for 𝑓(𝑥) = 𝐴𝑥

Automatic Differentiation 20

https://colab.research.google.com/github/MerkulovDaniil/optim/blob/master/assets/Notebooks/Autograd_and_Jax.ipynb
https://fmin.xyz
https://hse25.fmin.xyz
https://github.com/MerkulovDaniil/hse25
https://t.me/fminxyz

Choose your fighter

Figure 28: Which mode would you choose for
calculating gradients there?

Question

Which of the AD modes would you choose (forward/ reverse)
for the following computational graph of primitive arithmetic op-
erations? Suppose, you are needed to compute the jacobian
𝐽 = { 𝜕𝐿𝑖

𝜕𝑤𝑗
}

𝑖,𝑗
. Note, that 𝐺 is an arbitrary computational

graph

Answer It is generally impossible to say it without some knowledge
about the specific structure of the graph 𝐺. Note, that there are also
plenty of advanced approaches to mix forward and reverse mode AD,
based on the specific 𝐺 structure.

Automatic Differentiation 21

https://fmin.xyz
https://hse25.fmin.xyz
https://github.com/MerkulovDaniil/hse25
https://t.me/fminxyz

Choose your fighter

Figure 28: Which mode would you choose for
calculating gradients there?

Question

Which of the AD modes would you choose (forward/ reverse)
for the following computational graph of primitive arithmetic op-
erations? Suppose, you are needed to compute the jacobian
𝐽 = { 𝜕𝐿𝑖

𝜕𝑤𝑗
}

𝑖,𝑗
. Note, that 𝐺 is an arbitrary computational

graph

Answer It is generally impossible to say it without some knowledge
about the specific structure of the graph 𝐺. Note, that there are also
plenty of advanced approaches to mix forward and reverse mode AD,
based on the specific 𝐺 structure.

Automatic Differentiation 21

https://fmin.xyz
https://hse25.fmin.xyz
https://github.com/MerkulovDaniil/hse25
https://t.me/fminxyz

Feedforward Architecture
FORWARD

• 𝑣0 = 𝑥 typically we have a batch of data
𝑥 here as an input.

• For 𝑘 = 1, … , 𝑡 − 1, 𝑡:

• 𝑣𝑘 = 𝜎(𝑣𝑘−1𝑤𝑘). Note, that practically
speaking the data has dimension
𝑥 ∈ R𝑏×𝑑, where 𝑏 is the batch size (for
the single data point 𝑏 = 1). While the
weight matrix 𝑤𝑘 of a 𝑘 layer has a shape
𝑛𝑘−1 × 𝑛𝑘, where 𝑛𝑘 is the dimension of
an inner representation of the data.

• 𝐿 = 𝐿(𝑣𝑡) - calculate the loss function.

BACKWARD

• 𝑣𝑡+1 = 𝐿, 𝜕𝐿
𝜕𝐿 = 1

• For 𝑘 = 𝑡, 𝑡 − 1, … , 1:

• 𝜕𝐿
𝜕𝑣𝑘

𝑏×𝑛𝑘

= 𝜕𝐿
𝜕𝑣𝑘+1
𝑏×𝑛𝑘+1

𝜕𝑣𝑘+1
𝜕𝑣𝑘

𝑛𝑘+1×𝑛𝑘

• 𝜕𝐿
𝜕𝑤𝑘

𝑏×𝑛𝑘−1⋅𝑛𝑘

= 𝜕𝐿
𝜕𝑣𝑘+1
𝑏×𝑛𝑘+1

⋅ 𝜕𝑣𝑘+1
𝜕𝑤𝑘

𝑛𝑘+1×𝑛𝑘−1⋅𝑛𝑘

Figure 29: Feedforward neural network architecture

Automatic Differentiation 22

https://fmin.xyz
https://hse25.fmin.xyz
https://github.com/MerkulovDaniil/hse25
https://t.me/fminxyz

Feedforward Architecture
FORWARD

• 𝑣0 = 𝑥 typically we have a batch of data
𝑥 here as an input.

• For 𝑘 = 1, … , 𝑡 − 1, 𝑡:

• 𝑣𝑘 = 𝜎(𝑣𝑘−1𝑤𝑘). Note, that practically
speaking the data has dimension
𝑥 ∈ R𝑏×𝑑, where 𝑏 is the batch size (for
the single data point 𝑏 = 1). While the
weight matrix 𝑤𝑘 of a 𝑘 layer has a shape
𝑛𝑘−1 × 𝑛𝑘, where 𝑛𝑘 is the dimension of
an inner representation of the data.

• 𝐿 = 𝐿(𝑣𝑡) - calculate the loss function.

BACKWARD

• 𝑣𝑡+1 = 𝐿, 𝜕𝐿
𝜕𝐿 = 1

• For 𝑘 = 𝑡, 𝑡 − 1, … , 1:

• 𝜕𝐿
𝜕𝑣𝑘

𝑏×𝑛𝑘

= 𝜕𝐿
𝜕𝑣𝑘+1
𝑏×𝑛𝑘+1

𝜕𝑣𝑘+1
𝜕𝑣𝑘

𝑛𝑘+1×𝑛𝑘

• 𝜕𝐿
𝜕𝑤𝑘

𝑏×𝑛𝑘−1⋅𝑛𝑘

= 𝜕𝐿
𝜕𝑣𝑘+1
𝑏×𝑛𝑘+1

⋅ 𝜕𝑣𝑘+1
𝜕𝑤𝑘

𝑛𝑘+1×𝑛𝑘−1⋅𝑛𝑘

Figure 29: Feedforward neural network architecture

Automatic Differentiation 22

https://fmin.xyz
https://hse25.fmin.xyz
https://github.com/MerkulovDaniil/hse25
https://t.me/fminxyz

Feedforward Architecture
FORWARD

• 𝑣0 = 𝑥 typically we have a batch of data
𝑥 here as an input.

• For 𝑘 = 1, … , 𝑡 − 1, 𝑡:
• 𝑣𝑘 = 𝜎(𝑣𝑘−1𝑤𝑘). Note, that practically

speaking the data has dimension
𝑥 ∈ R𝑏×𝑑, where 𝑏 is the batch size (for
the single data point 𝑏 = 1). While the
weight matrix 𝑤𝑘 of a 𝑘 layer has a shape
𝑛𝑘−1 × 𝑛𝑘, where 𝑛𝑘 is the dimension of
an inner representation of the data.

• 𝐿 = 𝐿(𝑣𝑡) - calculate the loss function.

BACKWARD

• 𝑣𝑡+1 = 𝐿, 𝜕𝐿
𝜕𝐿 = 1

• For 𝑘 = 𝑡, 𝑡 − 1, … , 1:

• 𝜕𝐿
𝜕𝑣𝑘

𝑏×𝑛𝑘

= 𝜕𝐿
𝜕𝑣𝑘+1
𝑏×𝑛𝑘+1

𝜕𝑣𝑘+1
𝜕𝑣𝑘

𝑛𝑘+1×𝑛𝑘

• 𝜕𝐿
𝜕𝑤𝑘

𝑏×𝑛𝑘−1⋅𝑛𝑘

= 𝜕𝐿
𝜕𝑣𝑘+1
𝑏×𝑛𝑘+1

⋅ 𝜕𝑣𝑘+1
𝜕𝑤𝑘

𝑛𝑘+1×𝑛𝑘−1⋅𝑛𝑘

Figure 29: Feedforward neural network architecture

Automatic Differentiation 22

https://fmin.xyz
https://hse25.fmin.xyz
https://github.com/MerkulovDaniil/hse25
https://t.me/fminxyz

Feedforward Architecture
FORWARD

• 𝑣0 = 𝑥 typically we have a batch of data
𝑥 here as an input.

• For 𝑘 = 1, … , 𝑡 − 1, 𝑡:
• 𝑣𝑘 = 𝜎(𝑣𝑘−1𝑤𝑘). Note, that practically

speaking the data has dimension
𝑥 ∈ R𝑏×𝑑, where 𝑏 is the batch size (for
the single data point 𝑏 = 1). While the
weight matrix 𝑤𝑘 of a 𝑘 layer has a shape
𝑛𝑘−1 × 𝑛𝑘, where 𝑛𝑘 is the dimension of
an inner representation of the data.

• 𝐿 = 𝐿(𝑣𝑡) - calculate the loss function.
BACKWARD

• 𝑣𝑡+1 = 𝐿, 𝜕𝐿
𝜕𝐿 = 1

• For 𝑘 = 𝑡, 𝑡 − 1, … , 1:

• 𝜕𝐿
𝜕𝑣𝑘

𝑏×𝑛𝑘

= 𝜕𝐿
𝜕𝑣𝑘+1
𝑏×𝑛𝑘+1

𝜕𝑣𝑘+1
𝜕𝑣𝑘

𝑛𝑘+1×𝑛𝑘

• 𝜕𝐿
𝜕𝑤𝑘

𝑏×𝑛𝑘−1⋅𝑛𝑘

= 𝜕𝐿
𝜕𝑣𝑘+1
𝑏×𝑛𝑘+1

⋅ 𝜕𝑣𝑘+1
𝜕𝑤𝑘

𝑛𝑘+1×𝑛𝑘−1⋅𝑛𝑘

Figure 29: Feedforward neural network architecture

Automatic Differentiation 22

https://fmin.xyz
https://hse25.fmin.xyz
https://github.com/MerkulovDaniil/hse25
https://t.me/fminxyz

Feedforward Architecture
FORWARD

• 𝑣0 = 𝑥 typically we have a batch of data
𝑥 here as an input.

• For 𝑘 = 1, … , 𝑡 − 1, 𝑡:
• 𝑣𝑘 = 𝜎(𝑣𝑘−1𝑤𝑘). Note, that practically

speaking the data has dimension
𝑥 ∈ R𝑏×𝑑, where 𝑏 is the batch size (for
the single data point 𝑏 = 1). While the
weight matrix 𝑤𝑘 of a 𝑘 layer has a shape
𝑛𝑘−1 × 𝑛𝑘, where 𝑛𝑘 is the dimension of
an inner representation of the data.

• 𝐿 = 𝐿(𝑣𝑡) - calculate the loss function.
BACKWARD

• 𝑣𝑡+1 = 𝐿, 𝜕𝐿
𝜕𝐿 = 1

• For 𝑘 = 𝑡, 𝑡 − 1, … , 1:

• 𝜕𝐿
𝜕𝑣𝑘

𝑏×𝑛𝑘

= 𝜕𝐿
𝜕𝑣𝑘+1
𝑏×𝑛𝑘+1

𝜕𝑣𝑘+1
𝜕𝑣𝑘

𝑛𝑘+1×𝑛𝑘

• 𝜕𝐿
𝜕𝑤𝑘

𝑏×𝑛𝑘−1⋅𝑛𝑘

= 𝜕𝐿
𝜕𝑣𝑘+1
𝑏×𝑛𝑘+1

⋅ 𝜕𝑣𝑘+1
𝜕𝑤𝑘

𝑛𝑘+1×𝑛𝑘−1⋅𝑛𝑘

Figure 29: Feedforward neural network architecture

Automatic Differentiation 22

https://fmin.xyz
https://hse25.fmin.xyz
https://github.com/MerkulovDaniil/hse25
https://t.me/fminxyz

Feedforward Architecture
FORWARD

• 𝑣0 = 𝑥 typically we have a batch of data
𝑥 here as an input.

• For 𝑘 = 1, … , 𝑡 − 1, 𝑡:
• 𝑣𝑘 = 𝜎(𝑣𝑘−1𝑤𝑘). Note, that practically

speaking the data has dimension
𝑥 ∈ R𝑏×𝑑, where 𝑏 is the batch size (for
the single data point 𝑏 = 1). While the
weight matrix 𝑤𝑘 of a 𝑘 layer has a shape
𝑛𝑘−1 × 𝑛𝑘, where 𝑛𝑘 is the dimension of
an inner representation of the data.

• 𝐿 = 𝐿(𝑣𝑡) - calculate the loss function.
BACKWARD

• 𝑣𝑡+1 = 𝐿, 𝜕𝐿
𝜕𝐿 = 1

• For 𝑘 = 𝑡, 𝑡 − 1, … , 1:

• 𝜕𝐿
𝜕𝑣𝑘

𝑏×𝑛𝑘

= 𝜕𝐿
𝜕𝑣𝑘+1
𝑏×𝑛𝑘+1

𝜕𝑣𝑘+1
𝜕𝑣𝑘

𝑛𝑘+1×𝑛𝑘

• 𝜕𝐿
𝜕𝑤𝑘

𝑏×𝑛𝑘−1⋅𝑛𝑘

= 𝜕𝐿
𝜕𝑣𝑘+1
𝑏×𝑛𝑘+1

⋅ 𝜕𝑣𝑘+1
𝜕𝑤𝑘

𝑛𝑘+1×𝑛𝑘−1⋅𝑛𝑘

Figure 29: Feedforward neural network architecture

Automatic Differentiation 22

https://fmin.xyz
https://hse25.fmin.xyz
https://github.com/MerkulovDaniil/hse25
https://t.me/fminxyz

Feedforward Architecture
FORWARD

• 𝑣0 = 𝑥 typically we have a batch of data
𝑥 here as an input.

• For 𝑘 = 1, … , 𝑡 − 1, 𝑡:
• 𝑣𝑘 = 𝜎(𝑣𝑘−1𝑤𝑘). Note, that practically

speaking the data has dimension
𝑥 ∈ R𝑏×𝑑, where 𝑏 is the batch size (for
the single data point 𝑏 = 1). While the
weight matrix 𝑤𝑘 of a 𝑘 layer has a shape
𝑛𝑘−1 × 𝑛𝑘, where 𝑛𝑘 is the dimension of
an inner representation of the data.

• 𝐿 = 𝐿(𝑣𝑡) - calculate the loss function.
BACKWARD

• 𝑣𝑡+1 = 𝐿, 𝜕𝐿
𝜕𝐿 = 1

• For 𝑘 = 𝑡, 𝑡 − 1, … , 1:
• 𝜕𝐿

𝜕𝑣𝑘
𝑏×𝑛𝑘

= 𝜕𝐿
𝜕𝑣𝑘+1
𝑏×𝑛𝑘+1

𝜕𝑣𝑘+1
𝜕𝑣𝑘

𝑛𝑘+1×𝑛𝑘

• 𝜕𝐿
𝜕𝑤𝑘

𝑏×𝑛𝑘−1⋅𝑛𝑘

= 𝜕𝐿
𝜕𝑣𝑘+1
𝑏×𝑛𝑘+1

⋅ 𝜕𝑣𝑘+1
𝜕𝑤𝑘

𝑛𝑘+1×𝑛𝑘−1⋅𝑛𝑘

Figure 29: Feedforward neural network architecture

Automatic Differentiation 22

https://fmin.xyz
https://hse25.fmin.xyz
https://github.com/MerkulovDaniil/hse25
https://t.me/fminxyz

Feedforward Architecture
FORWARD

• 𝑣0 = 𝑥 typically we have a batch of data
𝑥 here as an input.

• For 𝑘 = 1, … , 𝑡 − 1, 𝑡:
• 𝑣𝑘 = 𝜎(𝑣𝑘−1𝑤𝑘). Note, that practically

speaking the data has dimension
𝑥 ∈ R𝑏×𝑑, where 𝑏 is the batch size (for
the single data point 𝑏 = 1). While the
weight matrix 𝑤𝑘 of a 𝑘 layer has a shape
𝑛𝑘−1 × 𝑛𝑘, where 𝑛𝑘 is the dimension of
an inner representation of the data.

• 𝐿 = 𝐿(𝑣𝑡) - calculate the loss function.
BACKWARD

• 𝑣𝑡+1 = 𝐿, 𝜕𝐿
𝜕𝐿 = 1

• For 𝑘 = 𝑡, 𝑡 − 1, … , 1:
• 𝜕𝐿

𝜕𝑣𝑘
𝑏×𝑛𝑘

= 𝜕𝐿
𝜕𝑣𝑘+1
𝑏×𝑛𝑘+1

𝜕𝑣𝑘+1
𝜕𝑣𝑘

𝑛𝑘+1×𝑛𝑘

• 𝜕𝐿
𝜕𝑤𝑘

𝑏×𝑛𝑘−1⋅𝑛𝑘

= 𝜕𝐿
𝜕𝑣𝑘+1
𝑏×𝑛𝑘+1

⋅ 𝜕𝑣𝑘+1
𝜕𝑤𝑘

𝑛𝑘+1×𝑛𝑘−1⋅𝑛𝑘

Figure 29: Feedforward neural network architecture

Automatic Differentiation 22

https://fmin.xyz
https://hse25.fmin.xyz
https://github.com/MerkulovDaniil/hse25
https://t.me/fminxyz

Hessian vector product without the Hessian

When you need some information about the curvature of the function you usually need to work with the hessian.
However, when the dimension of the problem is large it is challenging. For a scalar-valued function 𝑓 ∶ R𝑛 → R, the
Hessian at a point 𝑥 ∈ R𝑛 is written as ∇2𝑓(𝑥). A Hessian-vector product function is then able to evaluate

𝑣 ↦ ∇2𝑓(𝑥) ⋅ 𝑣

for any vector 𝑣 ∈ R𝑛. We have to use the identity

∇2𝑓(𝑥)𝑣 = ∇[𝑥 ↦ ∇𝑓(𝑥) ⋅ 𝑣] = ∇𝑔(𝑥),

where 𝑔(𝑥) = ∇𝑓(𝑥)𝑇 ⋅ 𝑣 is a new vector-valued function that dots the gradient of 𝑓 at 𝑥 with the vector 𝑣.
import jax.numpy as jnp

def hvp(f, x, v):
return grad(lambda x: jnp.vdot(grad(f)(x), v))(x)

Automatic Differentiation 23

https://fmin.xyz
https://hse25.fmin.xyz
https://github.com/MerkulovDaniil/hse25
https://t.me/fminxyz

Hessian vector product without the Hessian

When you need some information about the curvature of the function you usually need to work with the hessian.
However, when the dimension of the problem is large it is challenging. For a scalar-valued function 𝑓 ∶ R𝑛 → R, the
Hessian at a point 𝑥 ∈ R𝑛 is written as ∇2𝑓(𝑥). A Hessian-vector product function is then able to evaluate

𝑣 ↦ ∇2𝑓(𝑥) ⋅ 𝑣

for any vector 𝑣 ∈ R𝑛. We have to use the identity

∇2𝑓(𝑥)𝑣 = ∇[𝑥 ↦ ∇𝑓(𝑥) ⋅ 𝑣] = ∇𝑔(𝑥),

where 𝑔(𝑥) = ∇𝑓(𝑥)𝑇 ⋅ 𝑣 is a new vector-valued function that dots the gradient of 𝑓 at 𝑥 with the vector 𝑣.
import jax.numpy as jnp

def hvp(f, x, v):
return grad(lambda x: jnp.vdot(grad(f)(x), v))(x)

Automatic Differentiation 23

https://fmin.xyz
https://hse25.fmin.xyz
https://github.com/MerkulovDaniil/hse25
https://t.me/fminxyz

Hessian vector product without the Hessian

When you need some information about the curvature of the function you usually need to work with the hessian.
However, when the dimension of the problem is large it is challenging. For a scalar-valued function 𝑓 ∶ R𝑛 → R, the
Hessian at a point 𝑥 ∈ R𝑛 is written as ∇2𝑓(𝑥). A Hessian-vector product function is then able to evaluate

𝑣 ↦ ∇2𝑓(𝑥) ⋅ 𝑣

for any vector 𝑣 ∈ R𝑛. We have to use the identity

∇2𝑓(𝑥)𝑣 = ∇[𝑥 ↦ ∇𝑓(𝑥) ⋅ 𝑣] = ∇𝑔(𝑥),

where 𝑔(𝑥) = ∇𝑓(𝑥)𝑇 ⋅ 𝑣 is a new vector-valued function that dots the gradient of 𝑓 at 𝑥 with the vector 𝑣.

import jax.numpy as jnp

def hvp(f, x, v):
return grad(lambda x: jnp.vdot(grad(f)(x), v))(x)

Automatic Differentiation 23

https://fmin.xyz
https://hse25.fmin.xyz
https://github.com/MerkulovDaniil/hse25
https://t.me/fminxyz

Hessian vector product without the Hessian

When you need some information about the curvature of the function you usually need to work with the hessian.
However, when the dimension of the problem is large it is challenging. For a scalar-valued function 𝑓 ∶ R𝑛 → R, the
Hessian at a point 𝑥 ∈ R𝑛 is written as ∇2𝑓(𝑥). A Hessian-vector product function is then able to evaluate

𝑣 ↦ ∇2𝑓(𝑥) ⋅ 𝑣

for any vector 𝑣 ∈ R𝑛. We have to use the identity

∇2𝑓(𝑥)𝑣 = ∇[𝑥 ↦ ∇𝑓(𝑥) ⋅ 𝑣] = ∇𝑔(𝑥),

where 𝑔(𝑥) = ∇𝑓(𝑥)𝑇 ⋅ 𝑣 is a new vector-valued function that dots the gradient of 𝑓 at 𝑥 with the vector 𝑣.
import jax.numpy as jnp

def hvp(f, x, v):
return grad(lambda x: jnp.vdot(grad(f)(x), v))(x)

Automatic Differentiation 23

https://fmin.xyz
https://hse25.fmin.xyz
https://github.com/MerkulovDaniil/hse25
https://t.me/fminxyz

Neural network training dynamics via Hessian spectra and hvp 4

Figure 30: Large negative eigenvalues disappeared after training for ResNet-32

4An Investigation into Neural Net Optimization via Hessian Eigenvalue Density
Automatic Differentiation 24

https://arxiv.org/abs/1901.10159
https://fmin.xyz
https://hse25.fmin.xyz
https://github.com/MerkulovDaniil/hse25
https://t.me/fminxyz

Hutchinson Trace Estimation 5

This example illustrates the estimation of the Hessian trace of a neural network using Hutchinson’s method, which is
an algorithm to obtain such an estimate from matrix-vector products:
Let 𝑋 ∈ R𝑑×𝑑 and 𝑣 ∈ R𝑑 be a random vector such that E[𝑣𝑣𝑇] = 𝐼 . Then,

Tr(𝑋) = E[𝑣𝑇 𝑋𝑣] = 1
𝑉

𝑉
∑
𝑖=1

𝑣𝑇
𝑖 𝑋𝑣𝑖.

Figure 31: Source
5A stochastic estimator of the trace of the influence matrix for Laplacian smoothing splines - M.F. Hutchinson, 1990Automatic Differentiation 25

https://docs.backpack.pt/en/master/use_cases/example_trace_estimation.html
https://www.tandfonline.com/doi/abs/10.1080/03610919008812866
https://fmin.xyz
https://hse25.fmin.xyz
https://github.com/MerkulovDaniil/hse25
https://t.me/fminxyz

Activation checkpointing

The animated visualization of the above approaches
An example of using a gradient checkpointing

Real world example from GPT-26:

• Activations in naive mode can occupy much more memory: for a sequence length of 1K and a batched size of 32,
60 GB is needed to store all intermediate activations.

• Checkpointing activations can reduce consumption by up to 8 GB by recomputing them (33% computational
overhead)

6ZeRO: Memory Optimizations Toward Training Trillion Parameter Models
Automatic Differentiation 26

https://github.com/cybertronai/gradient-checkpointing
https://colab.research.google.com/github/oseledets/dl2023/blob/main/seminars/seminar-10/Large_model_training_practice.ipynb
https://arxiv.org/abs/1910.02054
https://fmin.xyz
https://hse25.fmin.xyz
https://github.com/MerkulovDaniil/hse25
https://t.me/fminxyz

Activation checkpointing

The animated visualization of the above approaches
An example of using a gradient checkpointing
Real world example from GPT-26:

• Activations in naive mode can occupy much more memory: for a sequence length of 1K and a batched size of 32,
60 GB is needed to store all intermediate activations.

• Checkpointing activations can reduce consumption by up to 8 GB by recomputing them (33% computational
overhead)

6ZeRO: Memory Optimizations Toward Training Trillion Parameter Models
Automatic Differentiation 26

https://github.com/cybertronai/gradient-checkpointing
https://colab.research.google.com/github/oseledets/dl2023/blob/main/seminars/seminar-10/Large_model_training_practice.ipynb
https://arxiv.org/abs/1910.02054
https://fmin.xyz
https://hse25.fmin.xyz
https://github.com/MerkulovDaniil/hse25
https://t.me/fminxyz

Activation checkpointing

The animated visualization of the above approaches
An example of using a gradient checkpointing
Real world example from GPT-26:

• Activations in naive mode can occupy much more memory: for a sequence length of 1K and a batched size of 32,
60 GB is needed to store all intermediate activations.

• Checkpointing activations can reduce consumption by up to 8 GB by recomputing them (33% computational
overhead)

6ZeRO: Memory Optimizations Toward Training Trillion Parameter Models
Automatic Differentiation 26

https://github.com/cybertronai/gradient-checkpointing
https://colab.research.google.com/github/oseledets/dl2023/blob/main/seminars/seminar-10/Large_model_training_practice.ipynb
https://arxiv.org/abs/1910.02054
https://fmin.xyz
https://hse25.fmin.xyz
https://github.com/MerkulovDaniil/hse25
https://t.me/fminxyz

What automatic differentiation (AD) is NOT:

• AD is not a finite differences

• AD is not a symbolic derivative
• AD is not just the chain rule
• AD is not just backpropagation
• AD (reverse mode) is time-efficient and
numerically stable

• AD (reverse mode) is memory inefficient
(you need to store all intermediate
computations from the forward pass).

Figure 32: Different approaches for taking derivatives

Automatic Differentiation 27

https://fmin.xyz
https://hse25.fmin.xyz
https://github.com/MerkulovDaniil/hse25
https://t.me/fminxyz

What automatic differentiation (AD) is NOT:

• AD is not a finite differences
• AD is not a symbolic derivative

• AD is not just the chain rule
• AD is not just backpropagation
• AD (reverse mode) is time-efficient and
numerically stable

• AD (reverse mode) is memory inefficient
(you need to store all intermediate
computations from the forward pass).

Figure 32: Different approaches for taking derivatives

Automatic Differentiation 27

https://fmin.xyz
https://hse25.fmin.xyz
https://github.com/MerkulovDaniil/hse25
https://t.me/fminxyz

What automatic differentiation (AD) is NOT:

• AD is not a finite differences
• AD is not a symbolic derivative
• AD is not just the chain rule

• AD is not just backpropagation
• AD (reverse mode) is time-efficient and
numerically stable

• AD (reverse mode) is memory inefficient
(you need to store all intermediate
computations from the forward pass).

Figure 32: Different approaches for taking derivatives

Automatic Differentiation 27

https://fmin.xyz
https://hse25.fmin.xyz
https://github.com/MerkulovDaniil/hse25
https://t.me/fminxyz

What automatic differentiation (AD) is NOT:

• AD is not a finite differences
• AD is not a symbolic derivative
• AD is not just the chain rule
• AD is not just backpropagation

• AD (reverse mode) is time-efficient and
numerically stable

• AD (reverse mode) is memory inefficient
(you need to store all intermediate
computations from the forward pass).

Figure 32: Different approaches for taking derivatives

Automatic Differentiation 27

https://fmin.xyz
https://hse25.fmin.xyz
https://github.com/MerkulovDaniil/hse25
https://t.me/fminxyz

What automatic differentiation (AD) is NOT:

• AD is not a finite differences
• AD is not a symbolic derivative
• AD is not just the chain rule
• AD is not just backpropagation
• AD (reverse mode) is time-efficient and
numerically stable

• AD (reverse mode) is memory inefficient
(you need to store all intermediate
computations from the forward pass).

Figure 32: Different approaches for taking derivatives

Automatic Differentiation 27

https://fmin.xyz
https://hse25.fmin.xyz
https://github.com/MerkulovDaniil/hse25
https://t.me/fminxyz

What automatic differentiation (AD) is NOT:

• AD is not a finite differences
• AD is not a symbolic derivative
• AD is not just the chain rule
• AD is not just backpropagation
• AD (reverse mode) is time-efficient and
numerically stable

• AD (reverse mode) is memory inefficient
(you need to store all intermediate
computations from the forward pass).

Figure 32: Different approaches for taking derivatives

Automatic Differentiation 27

https://fmin.xyz
https://hse25.fmin.xyz
https://github.com/MerkulovDaniil/hse25
https://t.me/fminxyz

Further reading

• I recommend reading the official Jax Autodiff Cookbook. Open In Colab ♣

• Gradient propagation through the linear least squares [seminar]
• Gradient propagation through the SVD [seminar]
• Activation checkpointing [seminar]

Automatic Differentiation 28

https://colab.research.google.com/github/MerkulovDaniil/optim/blob/master/assets/Notebooks/Autograd_and_Jax.ipynb
https://fmin.xyz
https://hse25.fmin.xyz
https://github.com/MerkulovDaniil/hse25
https://t.me/fminxyz

Further reading

• I recommend reading the official Jax Autodiff Cookbook. Open In Colab ♣
• Gradient propagation through the linear least squares [seminar]

• Gradient propagation through the SVD [seminar]
• Activation checkpointing [seminar]

Automatic Differentiation 28

https://colab.research.google.com/github/MerkulovDaniil/optim/blob/master/assets/Notebooks/Autograd_and_Jax.ipynb
https://fmin.xyz
https://hse25.fmin.xyz
https://github.com/MerkulovDaniil/hse25
https://t.me/fminxyz

Further reading

• I recommend reading the official Jax Autodiff Cookbook. Open In Colab ♣
• Gradient propagation through the linear least squares [seminar]
• Gradient propagation through the SVD [seminar]

• Activation checkpointing [seminar]

Automatic Differentiation 28

https://colab.research.google.com/github/MerkulovDaniil/optim/blob/master/assets/Notebooks/Autograd_and_Jax.ipynb
https://fmin.xyz
https://hse25.fmin.xyz
https://github.com/MerkulovDaniil/hse25
https://t.me/fminxyz

Further reading

• I recommend reading the official Jax Autodiff Cookbook. Open In Colab ♣
• Gradient propagation through the linear least squares [seminar]
• Gradient propagation through the SVD [seminar]
• Activation checkpointing [seminar]

Automatic Differentiation 28

https://colab.research.google.com/github/MerkulovDaniil/optim/blob/master/assets/Notebooks/Autograd_and_Jax.ipynb
https://fmin.xyz
https://hse25.fmin.xyz
https://github.com/MerkulovDaniil/hse25
https://t.me/fminxyz

Summary

Summary 29

https://fmin.xyz
https://hse25.fmin.xyz
https://github.com/MerkulovDaniil/hse25
https://t.me/fminxyz

Summary

Определения
1. Формула для приближенного вычисления

производной функции 𝑓(𝑥) ∶ R𝑛 → R по 𝑘-ой
координате с помощью метода конечных
разностей.

2. Пусть 𝑓 = 𝑓(𝑥1(𝑡), … , 𝑥𝑛(𝑡)). Формула для
вычисления 𝜕𝑓

𝜕𝑡 через 𝜕𝑥𝑖
𝜕𝑡 (Forward chain rule).

3. Пусть 𝐿 - функция, возвращающая скаляр, а 𝑣𝑘 -
функция, возвращающая вектор 𝑥 ∈ R𝑡. Формула
для вычисления 𝜕𝐿

𝜕𝑣𝑘
через 𝜕𝐿

𝜕𝑥𝑖
(Backward chain

rule).
4. Идея Хатчинсона для оценки следа матрицы с

помощью matvec операций.

Теоремы
1. Автоматическое дифференцирование.

Вычислительный граф. Forward/ Backward mode
(в этом вопросе нет доказательств, но необходимо
подробно описать алгоритмы).

Summary 30

https://fmin.xyz
https://hse25.fmin.xyz
https://github.com/MerkulovDaniil/hse25
https://t.me/fminxyz

	Automatic Differentiation
	Summary

