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Gradient
Let 𝑓(𝑥) ∶ R𝑛 → R, then vector, which contains all first-order partial
derivatives:

∇𝑓(𝑥) = 𝑑𝑓
𝑑𝑥 =

⎛⎜⎜⎜⎜⎜
⎝

𝜕𝑓
𝜕𝑥1𝜕𝑓
𝜕𝑥2
⋮

𝜕𝑓
𝜕𝑥𝑛

⎞⎟⎟⎟⎟⎟
⎠

named gradient of 𝑓(𝑥). This vector indicates the direction of the
steepest ascent. Thus, vector −∇𝑓(𝑥) means the direction of the
steepest descent of the function in the point. Moreover, the gradient
vector is always orthogonal to the contour line in the point.

Example

For the function 𝑓(𝑥, 𝑦) = 𝑥2 + 𝑦2, the
gradient is:

∇𝑓(𝑥, 𝑦) = [2𝑥
2𝑦]

This gradient points in the direction of
the steepest ascent of the function.

Question

How does the magnitude of the gradient
relate to the steepness of the function?
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Hessian
Let 𝑓(𝑥) ∶ R𝑛 → R, then matrix containing all the second-order
partial derivatives:

𝑓″(𝑥) = ∇2𝑓(𝑥) = 𝜕2𝑓
𝜕𝑥𝑖𝜕𝑥𝑗

=
⎛⎜⎜⎜⎜⎜
⎝

𝜕2𝑓
𝜕𝑥1𝜕𝑥1

𝜕2𝑓
𝜕𝑥1𝜕𝑥2

… 𝜕2𝑓
𝜕𝑥1𝜕𝑥𝑛

𝜕2𝑓
𝜕𝑥2𝜕𝑥1

𝜕2𝑓
𝜕𝑥2𝜕𝑥2

… 𝜕2𝑓
𝜕𝑥2𝜕𝑥𝑛

⋮ ⋮ ⋱ ⋮
𝜕2𝑓

𝜕𝑥𝑛𝜕𝑥1
𝜕2𝑓

𝜕𝑥𝑛𝜕𝑥2
… 𝜕2𝑓

𝜕𝑥𝑛𝜕𝑥𝑛

⎞⎟⎟⎟⎟⎟
⎠

Hessian could be a tensor in such a way: (𝑓(𝑥) ∶ R𝑛 → R𝑚) is just 3d
tensor, every slice is just hessian of corresponding scalar function
(∇2𝑓1(𝑥), … , ∇2𝑓𝑚(𝑥)).

Example

For the function 𝑓(𝑥, 𝑦) = 𝑥2 + 𝑦2, the
Hessian is:

𝐻𝑓(𝑥, 𝑦) = [2 0
0 2]

This matrix provides information about the
curvature of the function in different directions.

Question

How can the Hessian matrix be used to
determine the concavity or convexity of a
function?
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Schwartz theorem
Let 𝑓 ∶ R𝑛 → R be a function. If the mixed partial
derivatives 𝜕2𝑓

𝜕𝑥𝑖𝜕𝑥𝑗
and 𝜕2𝑓

𝜕𝑥𝑗𝜕𝑥𝑖
are both continuous on an

open set containing a point 𝑎, then they are equal at the
point 𝑎. That is,

𝜕2𝑓
𝜕𝑥𝑖𝜕𝑥𝑗

(𝑎) = 𝜕2𝑓
𝜕𝑥𝑗𝜕𝑥𝑖

(𝑎)

Given the Schwartz theorem, if the mixed partials are
continuous on an open set, the Hessian matrix is
symmetric. This means that the entries above the main
diagonal mirror those below the main diagonal.:

𝜕2𝑓
𝜕𝑥𝑖𝜕𝑥𝑗

= 𝜕2𝑓
𝜕𝑥𝑗𝜕𝑥𝑖

∇2𝑓(𝑥) = (∇2𝑓(𝑥))𝑇

This symmetry simplifies computations and analysis
involving the Hessian matrix in various applications,
particularly in optimization.

Schwartz counterexample

𝑓(𝑥, 𝑦) = {
𝑥𝑦(𝑥2−𝑦2)

𝑥2+𝑦2 for (𝑥, 𝑦) ≠ (0, 0),
0 for (𝑥, 𝑦) = (0, 0).

Counterexample ♣

−2

−1

0

1

2

One can verify, that 𝜕2𝑓
𝜕𝑥𝜕𝑦 (0, 0) ≠ 𝜕2𝑓

𝜕𝑦𝜕𝑥 (0, 0), al-
though the mixed partial derivatives do exist, and at
every other point the symmetry does hold.
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Jacobian
The extension of the gradient of multidimensional
𝑓(𝑥) ∶ R𝑛 → R𝑚 is the following matrix:

𝐽𝑓 = 𝑓 ′(𝑥) = 𝑑𝑓
𝑑𝑥𝑇 =

⎛⎜⎜⎜⎜⎜
⎝

𝜕𝑓1
𝜕𝑥1

𝜕𝑓2
𝜕𝑥1

… 𝜕𝑓𝑚
𝜕𝑥1𝜕𝑓1

𝜕𝑥2
𝜕𝑓2
𝜕𝑥2

… 𝜕𝑓𝑚
𝜕𝑥2

⋮ ⋮ ⋱ ⋮
𝜕𝑓1
𝜕𝑥𝑛

𝜕𝑓2
𝜕𝑥𝑛

… 𝜕𝑓𝑚
𝜕𝑥𝑛

⎞⎟⎟⎟⎟⎟
⎠

This matrix provides information about the rate of change
of the function with respect to its inputs.

Question

Can we connect those three definitions above (gra-
dient, jacobian, and hessian) using a single correct
statement?

Example

For the function

𝑓(𝑥, 𝑦) = [𝑥 + 𝑦
𝑥 − 𝑦] ,

the Jacobian is:

𝐽𝑓(𝑥, 𝑦) = [1 1
1 −1]

Question

How does the Jacobian matrix relate to the gradient
for scalar-valued functions?

Matrix calculus 6
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Summary

𝑓(𝑥) ∶ 𝑋 → 𝑌 ; 𝜕𝑓(𝑥)
𝜕𝑥 ∈ 𝐺

X Y G Name
R R R 𝑓 ′(𝑥) (derivative)
R𝑛 R R𝑛 𝜕𝑓

𝜕𝑥𝑖
(gradient)

R𝑛 R𝑚 R𝑛×𝑚 𝜕𝑓𝑖
𝜕𝑥𝑗

(jacobian)

R𝑚×𝑛 R R𝑚×𝑛 𝜕𝑓
𝜕𝑥𝑖𝑗
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First-order Taylor approximation

The first-order Taylor approximation, also known as the linear approximation, is
centered around some point 𝑥0. If 𝑓 ∶ R𝑛 → R is a differentiable function, then its
first-order Taylor approximation is given by:

𝑓𝐼
𝑥0

(𝑥) = 𝑓(𝑥0) + ∇𝑓(𝑥0)𝑇 (𝑥 − 𝑥0)
Where:

• 𝑓(𝑥0) is the value of the function at the point 𝑥0.

• ∇𝑓(𝑥0) is the gradient of the function at the point 𝑥0.
It is very usual to replace the 𝑓(𝑥) with 𝑓𝐼

𝑥0
(𝑥) near the point 𝑥0 for simple

analysis of some approaches. Figure 1: First order Taylor
approximation near the point 𝑥0
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Second-order Taylor approximation

The second-order Taylor approximation, also known as the quadratic
approximation, includes the curvature of the function. For a twice-differentiable
function 𝑓 ∶ R𝑛 → R, its second-order Taylor approximation centered at some
point 𝑥0 is:

𝑓𝐼𝐼
𝑥0

(𝑥) = 𝑓(𝑥0) + ∇𝑓(𝑥0)𝑇 (𝑥 − 𝑥0) + 1
2(𝑥 − 𝑥0)𝑇 ∇2𝑓(𝑥0)(𝑥 − 𝑥0)

Where ∇2𝑓(𝑥0) is the Hessian matrix of 𝑓 at the point 𝑥0.

When using the linear approximation of the function is not sufficient one can
consider replacing the 𝑓(𝑥) with 𝑓𝐼𝐼

𝑥0
(𝑥) near the point 𝑥0. In general, Taylor

approximations give us a way to locally approximate functions. The first-order
approximation is a plane tangent to the function at the point 𝑥0, while the
second-order approximation includes the curvature and is represented by a
parabola. These approximations are especially useful in optimization and numerical
methods because they provide a tractable way to work with complex functions.

Figure 2: Second order Taylor
approximation near the point 𝑥0
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Differentials

Theorem

Let 𝑥 ∈ 𝑆 be an interior point of the set 𝑆, and let 𝐷 ∶ 𝑈 → 𝑉 be a linear operator. We say that the function
𝑓 is differentiable at the point 𝑥 with derivative 𝐷 if for all sufficiently small ℎ ∈ 𝑈 the following decomposition
holds:

𝑓(𝑥 + ℎ) = 𝑓(𝑥) + 𝐷[ℎ] + 𝑜(‖ℎ‖)
If for any linear operator 𝐷 ∶ 𝑈 → 𝑉 the function 𝑓 is not differentiable at the point 𝑥 with derivative 𝐷, then
we say that 𝑓 is not differentiable at the point 𝑥.
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Differentials

After obtaining the differential notation of 𝑑𝑓 we can retrieve the gradient using the following formula:

𝑑𝑓(𝑥) = ⟨∇𝑓(𝑥), 𝑑𝑥⟩

Then, if we have a differential of the above form and we need to calculate the second derivative of the matrix/vector
function, we treat “old” 𝑑𝑥 as the constant 𝑑𝑥1, then calculate 𝑑(𝑑𝑓) = 𝑑2𝑓(𝑥)

𝑑2𝑓(𝑥) = ⟨∇2𝑓(𝑥)𝑑𝑥1, 𝑑𝑥⟩ = ⟨𝐻𝑓(𝑥)𝑑𝑥1, 𝑑𝑥⟩
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Differential properties

Let 𝐴 and 𝐵 be the constant matrices, while 𝑋 and 𝑌 are the variables (or matrix functions).
• 𝑑𝐴 = 0

• 𝑑(𝛼𝑋) = 𝛼(𝑑𝑋)
• 𝑑(𝐴𝑋𝐵) = 𝐴(𝑑𝑋)𝐵
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Matrix calculus. Example 1

Example

Find 𝑑𝑓, ∇𝑓(𝑥), if 𝑓(𝑥) = ⟨𝑥, 𝐴𝑥⟩ − 𝑏𝑇 𝑥 + 𝑐.
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Matrix calculus. Example 2
Example

Find 𝑑𝑓, ∇𝑓(𝑥), if 𝑓(𝑥) = ln⟨𝑥, 𝐴𝑥⟩.

1. It is essential for 𝐴 to be positive definite, because it is the argument of a logarithm. So, 𝐴 ∈ S𝑛
++Let’s find the

differential first:

𝑑𝑓 = 𝑑 (ln⟨𝑥, 𝐴𝑥⟩) = 𝑑 (⟨𝑥, 𝐴𝑥⟩)
⟨𝑥, 𝐴𝑥⟩ = ⟨𝑑𝑥, 𝐴𝑥⟩ + ⟨𝑥, 𝑑(𝐴𝑥)⟩

⟨𝑥, 𝐴𝑥⟩ =

= ⟨𝐴𝑥, 𝑑𝑥⟩ + ⟨𝑥, 𝐴𝑑𝑥⟩
⟨𝑥, 𝐴𝑥⟩ = ⟨𝐴𝑥, 𝑑𝑥⟩ + ⟨𝐴𝑇 𝑥, 𝑑𝑥⟩

⟨𝑥, 𝐴𝑥⟩ = ⟨(𝐴 + 𝐴𝑇 )𝑥, 𝑑𝑥⟩
⟨𝑥, 𝐴𝑥⟩

2. Note, that our main goal is to derive the form 𝑑𝑓 = ⟨⋅, 𝑑𝑥⟩

𝑑𝑓 = ⟨ 2𝐴𝑥
⟨𝑥, 𝐴𝑥⟩ , 𝑑𝑥⟩

Hence, the gradient is ∇𝑓(𝑥) = 2𝐴𝑥
⟨𝑥, 𝐴𝑥⟩
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Matrix calculus. Example 3

Example

Find 𝑑𝑓, ∇𝑓(𝑋), if 𝑓(𝑋) = ⟨𝑆, 𝑋⟩ − log det𝑋.

Matrix calculus 15

https://fmin.xyz
https://hse25.fmin.xyz
https://github.com/MerkulovDaniil/hse25
https://t.me/fminxyz


Line search
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Problem
Suppose, we have a problem of minimization of a function 𝑓(𝑥) ∶ R → R of scalar variable:

𝑓(𝑥) → min
𝑥∈R

Sometimes, we refer to a similar problem of finding the minimum on the line segment [𝑎, 𝑏]:

𝑓(𝑥) → min
𝑥∈[𝑎,𝑏]

Example

A typical example of a line search problem is selecting the appropriate stepsize for the gradient descent algorithm:

𝑥𝑘+1 = 𝑥𝑘 − 𝛼∇𝑓(𝑥𝑘)
𝛼 = argmin 𝑓(𝑥𝑘+1)

Line search is a fundamental optimization problem that is crucial to solving complex tasks. To simplify the problem,
let’s assume that the function, 𝑓(𝑥), is unimodal, meaning it has a single peak or valley.
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Unimodal function

Definition

Function 𝑓(𝑥) is called unimodal on [𝑎, 𝑏], if there is 𝑥∗ ∈ [𝑎, 𝑏], that 𝑓(𝑥1) > 𝑓(𝑥2) ∀𝑎 ≤ 𝑥1 < 𝑥2 < 𝑥∗
and 𝑓(𝑥1) < 𝑓(𝑥2) ∀𝑥∗ < 𝑥1 < 𝑥2 ≤ 𝑏

Figure 3: Examples of unimodal functions
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Key property of unimodal functions
Let 𝑓(𝑥) be an unimodal function on [𝑎, 𝑏]. Then if 𝑥1 < 𝑥2 ∈ [𝑎, 𝑏], then:

• if 𝑓(𝑥1) ≤ 𝑓(𝑥2) → 𝑥∗ ∈ [𝑎, 𝑥2]

• if 𝑓(𝑥1) ≥ 𝑓(𝑥2) → 𝑥∗ ∈ [𝑥1, 𝑏]
Proof Let’s prove the first statement. On the contrary, suppose that 𝑓(𝑥1) ≤ 𝑓(𝑥2), but 𝑥∗ > 𝑥2. Then, necessarily,
𝑥1 < 𝑥2 < 𝑥∗, and by the unimodality of the function 𝑓(𝑥) the inequality: 𝑓(𝑥1) > 𝑓(𝑥2) must be satisfied. We
have obtained a contradiction.
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Dichotomy method
We aim to solve the following problem:

𝑓(𝑥) → min
𝑥∈[𝑎,𝑏]

We divide a segment into two equal parts and choose the
one that contains the solution of the problem using the
values of functions, based on the key property described
above. Our goal after one iteration of the method is to
halve the solution region.

Figure 4: Dichotomy method for unimodal function
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Dichotomy method
We measure the function value at the middle of the line
segment

Figure 5: Dichotomy method for unimodal function
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Dichotomy method
To apply the key property we perform another
measurement.

Figure 6: Dichotomy method for unimodal function
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Dichotomy method
We select the target line segment. In this case, we are
lucky since we already halved the solution region. But that
is not always the case.

Figure 7: Dichotomy method for unimodal function

Line search 20

https://fmin.xyz
https://hse25.fmin.xyz
https://github.com/MerkulovDaniil/hse25
https://t.me/fminxyz


Dichotomy method
Let’s consider another unimodal function.

Figure 8: Dichotomy method for unimodal function

Line search 20

https://fmin.xyz
https://hse25.fmin.xyz
https://github.com/MerkulovDaniil/hse25
https://t.me/fminxyz


Dichotomy method
Measure the middle of the line segment.

Figure 9: Dichotomy method for unimodal function
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Dichotomy method
Get another measurement.

Figure 10: Dichotomy method for unimodal function
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Dichotomy method
Select the target line segment. You can see, that the
obtained line segment is not half of the initial one. It is
3
4 (𝑏 − 𝑎). So to fix it we need another step of the
algorithm.

Figure 11: Dichotomy method for unimodal function
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Dichotomy method
After another additional measurement, we will surely get
2
3

3
4 (𝑏 − 𝑎) = 1

2 (𝑏 − 𝑎)

Figure 12: Dichotomy method for unimodal function
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Dichotomy method
To sum it up, each subsequent iteration will require at
most two function value measurements.

Figure 13: Dichotomy method for unimodal function
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Dichotomy method. Algorithm

def binary_search(f, a, b, epsilon):
c = (a + b) / 2

while abs(b - a) > epsilon:
y = (a + c) / 2.0
if f(y) <= f(c):

b = c
c = y

else:
z = (b + c) / 2.0

if f(c) <= f(z):
a = y
b = z

else:
a = c
c = z

return c

Line search 21

https://fmin.xyz
https://hse25.fmin.xyz
https://github.com/MerkulovDaniil/hse25
https://t.me/fminxyz


Dichotomy method. Bounds
The length of the line segment on 𝑘-th iteration:

Δ𝑘 = 𝑏𝑘 − 𝑎𝑘 = 1
2𝑘 (𝑏 − 𝑎)

For unimodal functions, this holds if we select the middle of a segment as an output of the iteration 𝑥𝑘+1:

|𝑥𝑘 − 𝑥∗| ≤ Δ𝑘
2 ≤ 1

2𝑘+1 (𝑏 − 𝑎) ≤ (0.5)𝑘+1 ⋅ (𝑏 − 𝑎)

Note, that at each iteration we ask oracle no more, than 2 times, so the number of function evaluations is 𝑁 = 2 ⋅ 𝑘,
which implies:

|𝑥𝑘+1 − 𝑥∗| ≤ (0.5) 𝑁
2 +1 ⋅ (𝑏 − 𝑎) ≤ (0.707)𝑁 𝑏 − 𝑎

2
By marking the right side of the last inequality for 𝜀, we get the number of method iterations needed to achieve 𝜀
accuracy:

𝐾 = ⌈log2
𝑏 − 𝑎

𝜀 − 1⌉
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Golden-section search

The idea is quite similar to the dichotomy method. There are two golden points on the line segment (left and right)
and the insightful idea is, that on the next iteration, one of the points will remain the golden point.

Figure 14: Key idea, that allows us to decrease function evaluations
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Golden-section search. Algorithm

def golden_search(f, a, b, epsilon):
tau = (sqrt(5) + 1) / 2
y = a + (b - a) / tau**2
z = a + (b - a) / tau
while b - a > epsilon:

if f(y) <= f(z):
b = z
z = y
y = a + (b - a) / tau**2

else:
a = y
y = z
z = a + (b - a) / tau

return (a + b) / 2
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Golden-section search. Bounds

|𝑥𝑘 − 𝑥∗| ≤ 𝑏𝑘 − 𝑎𝑘
2 = ( 1

𝜏 )
𝑁 𝑏 − 𝑎

2 ≈ 0.618𝑘 𝑏 − 𝑎
2

where 𝜏 =
√

5+1
2 .

• The geometric progression constant is larger for the golden-section method compared to the dichotomy method:
0.618 is worse than 0.5.

• The number of function calls is fewer for the golden-section method compared to the dichotomy method: 0.707
is worse than 0.618. For each iteration of the dichotomy method (except the first one), the function is evaluated
no more than twice, whereas for the golden-section method, it is evaluated no more than once per iteration.
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Successive parabolic interpolation

Sampling 3 points of a function determines a unique parabola. Using this information we will go directly to its
minimum. Suppose, we have 3 points 𝑥1 < 𝑥2 < 𝑥3 such that line segment [𝑥1, 𝑥3] contains minimum of a function
𝑓(𝑥). Then, we need to solve the following system of equations:

𝑎𝑥2
𝑖 + 𝑏𝑥𝑖 + 𝑐 = 𝑓𝑖 = 𝑓(𝑥𝑖), 𝑖 = 1, 2, 3

Note, that this system is linear since we need to solve it on 𝑎, 𝑏, 𝑐. The minimum of this parabola will be calculated as:

𝑢 = − 𝑏
2𝑎 = 𝑥2 − (𝑥2 − 𝑥1)2(𝑓2 − 𝑓3) − (𝑥2 − 𝑥3)2(𝑓2 − 𝑓1)

2 [(𝑥2 − 𝑥1)(𝑓2 − 𝑓3) − (𝑥2 − 𝑥3)(𝑓2 − 𝑓1)]

Note, that if 𝑓2 < 𝑓1, 𝑓2 < 𝑓3, then 𝑢 will lie in [𝑥1, 𝑥3]
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Successive parabolic interpolation. Algorithm 1

def parabola_search(f, x1, x2, x3, epsilon):
f1, f2, f3 = f(x1), f(x2), f(x3)

while x3 - x1 > epsilon:
u = x2 - ((x2 - x1)**2*(f2 - f3) - (x2 - x3)**2*(f2 - f1))/(2*((x2 - x1)*(f2 - f3) - (x2 - x3)*(f2 - f1)))
fu = f(u)

if x2 <= u:
if f2 <= fu:

x1, x2, x3 = x1, x2, u
f1, f2, f3 = f1, f2, fu

else:
x1, x2, x3 = x2, u, x3
f1, f2, f3 = f2, fu, f3

else:
if fu <= f2:

x1, x2, x3 = x1, u, x2
f1, f2, f3 = f1, fu, f2

else:
x1, x2, x3 = u, x2, x3
f1, f2, f3 = fu, f2, f3

return (x1 + x3) / 2

1The convergence of this method is superlinear, but local, which means, that you can take profit from using this method only near some neighbor of
optimum. Here is the proof of superlinear convergence of order 1.32.
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Inexact line search
Sometimes, it is sufficient to find a solution that
approximately solves our problem. This is a very typical
scenario for the mentioned stepsize selection problem.

𝑥𝑘+1 = 𝑥𝑘 − 𝛼∇𝑓(𝑥𝑘)
𝛼 = argmin 𝑓(𝑥𝑘+1)

Consider a scalar function 𝜙(𝛼) at a point 𝑥𝑘:

𝜙(𝛼) = 𝑓(𝑥𝑘 − 𝛼∇𝑓(𝑥𝑘)), 𝛼 ≥ 0

The first-order approximation of 𝜙(𝛼) near 𝛼 = 0 is:

𝜙(𝛼) ≈ 𝑓(𝑥𝑘) − 𝛼∇𝑓(𝑥𝑘)𝑇 ∇𝑓(𝑥𝑘)

Figure 15: Illustration of Taylor approximation of 𝜙𝐼
0(𝛼)

Line search 29

https://fmin.xyz
https://hse25.fmin.xyz
https://github.com/MerkulovDaniil/hse25
https://t.me/fminxyz


Inexact line search
Sometimes, it is sufficient to find a solution that
approximately solves our problem. This is a very typical
scenario for the mentioned stepsize selection problem.

𝑥𝑘+1 = 𝑥𝑘 − 𝛼∇𝑓(𝑥𝑘)
𝛼 = argmin 𝑓(𝑥𝑘+1)

Consider a scalar function 𝜙(𝛼) at a point 𝑥𝑘:

𝜙(𝛼) = 𝑓(𝑥𝑘 − 𝛼∇𝑓(𝑥𝑘)), 𝛼 ≥ 0

The first-order approximation of 𝜙(𝛼) near 𝛼 = 0 is:

𝜙(𝛼) ≈ 𝑓(𝑥𝑘) − 𝛼∇𝑓(𝑥𝑘)𝑇 ∇𝑓(𝑥𝑘)

Figure 15: Illustration of Taylor approximation of 𝜙𝐼
0(𝛼)

Line search 29

https://fmin.xyz
https://hse25.fmin.xyz
https://github.com/MerkulovDaniil/hse25
https://t.me/fminxyz


Inexact line search
Sometimes, it is sufficient to find a solution that
approximately solves our problem. This is a very typical
scenario for the mentioned stepsize selection problem.

𝑥𝑘+1 = 𝑥𝑘 − 𝛼∇𝑓(𝑥𝑘)
𝛼 = argmin 𝑓(𝑥𝑘+1)

Consider a scalar function 𝜙(𝛼) at a point 𝑥𝑘:

𝜙(𝛼) = 𝑓(𝑥𝑘 − 𝛼∇𝑓(𝑥𝑘)), 𝛼 ≥ 0

The first-order approximation of 𝜙(𝛼) near 𝛼 = 0 is:

𝜙(𝛼) ≈ 𝑓(𝑥𝑘) − 𝛼∇𝑓(𝑥𝑘)𝑇 ∇𝑓(𝑥𝑘)

Figure 15: Illustration of Taylor approximation of 𝜙𝐼
0(𝛼)

Line search 29

https://fmin.xyz
https://hse25.fmin.xyz
https://github.com/MerkulovDaniil/hse25
https://t.me/fminxyz


Inexact line search. Sufficient Decrease
The inexact line search condition, known as the Armijo
condition, states that 𝛼 should provide sufficient decrease
in the function 𝑓 , satisfying:

𝑓(𝑥𝑘 − 𝛼∇𝑓(𝑥𝑘)) ≤ 𝑓(𝑥𝑘) − 𝑐1 ⋅ 𝛼∇𝑓(𝑥𝑘)𝑇 ∇𝑓(𝑥𝑘)

for some constant 𝑐1 ∈ (0, 1). Note that setting 𝑐1 = 1
corresponds to the first-order Taylor approximation of
𝜙(𝛼). However, this condition can accept very small values
of 𝛼, potentially slowing down the solution process.
Typically, 𝑐1 ≈ 10−4 is used in practice.

Example

If 𝑓(𝑥) represents a cost function in an optimization
problem, choosing an appropriate 𝑐1 value is crucial.
For instance, in a machine learning model training
scenario, an improper 𝑐1 might lead to either very
slow convergence or missing the minimum. Figure 16: Illustration of sufficient decrease condition with

coefficient 𝑐1
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Inexact line search. Goldstein Conditions
Consider two linear scalar functions 𝜙1(𝛼) and 𝜙2(𝛼):

𝜙1(𝛼) = 𝑓(𝑥𝑘) − 𝑐1𝛼‖∇𝑓(𝑥𝑘)‖2

𝜙2(𝛼) = 𝑓(𝑥𝑘) − 𝑐2𝛼‖∇𝑓(𝑥𝑘)‖2

The Goldstein-Armijo conditions locate the function 𝜙(𝛼)
between 𝜙1(𝛼) and 𝜙2(𝛼). Typically, 𝑐1 = 𝜌 and
𝑐2 = 1 − 𝜌, with 𝜌 ∈ (0, 0.5).

Figure 17: Illustration of Goldstein conditions
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Inexact line search. Curvature Condition
To avoid excessively short steps, we introduce a second
criterion:

−∇𝑓(𝑥𝑘 − 𝛼∇𝑓(𝑥𝑘))𝑇 ∇𝑓(𝑥𝑘) ≥ 𝑐2∇𝑓(𝑥𝑘)𝑇 (−∇𝑓(𝑥𝑘))

for some 𝑐2 ∈ (𝑐1, 1). Here, 𝑐1 is from the Armijo
condition.
The left-hand side is the derivative ∇𝛼𝜙(𝛼), ensuring that
the slope of 𝜙(𝛼) at the target point is at least 𝑐2 times
the initial slope ∇𝛼𝜙(𝛼)(0).
Commonly, 𝑐2 ≈ 0.9 is used for Newton or quasi-Newton
methods. Together, the sufficient decrease and curvature
conditions form the Wolfe conditions.

Figure 18: Illustration of curvature condition
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Inexact line search. Curvature Condition
To avoid excessively short steps, we introduce a second
criterion:

−∇𝑓(𝑥𝑘 − 𝛼∇𝑓(𝑥𝑘))𝑇 ∇𝑓(𝑥𝑘) ≥ 𝑐2∇𝑓(𝑥𝑘)𝑇 (−∇𝑓(𝑥𝑘))

for some 𝑐2 ∈ (𝑐1, 1). Here, 𝑐1 is from the Armijo
condition.
The left-hand side is the derivative ∇𝛼𝜙(𝛼), ensuring that
the slope of 𝜙(𝛼) at the target point is at least 𝑐2 times
the initial slope ∇𝛼𝜙(𝛼)(0).
Commonly, 𝑐2 ≈ 0.9 is used for Newton or quasi-Newton
methods. Together, the sufficient decrease and curvature
conditions form the Wolfe conditions.

Figure 18: Illustration of curvature condition
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Inexact line search. Wolfe Condition

−∇𝑓(𝑥𝑘 − 𝛼∇𝑓(𝑥𝑘))𝑇 ∇𝑓(𝑥𝑘) ≥ 𝑐2∇𝑓(𝑥𝑘)𝑇 (−∇𝑓(𝑥𝑘))

Together, the sufficient decrease and curvature conditions
form the Wolfe conditions.

Theorem

Let 𝑓 ∶ R𝑛 → R be continuously differentiable,
and let 𝜙(𝛼) = 𝑓(𝑥𝑘 − 𝛼∇𝑓(𝑥𝑘)). Assume
∇𝑓(𝑥𝑘)𝑇 𝑝𝑘 < 0, where 𝑝𝑘 = −∇𝑓(𝑥𝑘), making
𝑝𝑘 a descent direction. Also, assume 𝑓 is bounded
below along the ray {𝑥𝑘 + 𝛼𝑝𝑘 ∣ 𝛼 > 0}. We aim to
show that for 0 < 𝑐1 < 𝑐2 < 1, there exist intervals
of step lengths satisfying the Wolfe conditions.

с

Figure 19: Illustration of Wolfe condition
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Inexact line search. Wolfe Condition. Proof
1. Since 𝜙(𝛼) = 𝑓(𝑥𝑘 + 𝛼𝑝𝑘) is bounded below and

𝑙(𝛼) = 𝑓(𝑥𝑘) + 𝛼𝑐1∇𝑓(𝑥𝑘)𝑇 𝑝𝑘 is unbounded below
(as ∇𝑓(𝑥𝑘)𝑇 𝑝𝑘 < 0), the graph of 𝑙(𝛼) must
intersect the graph of 𝜙(𝛼) at least once. Let 𝛼′ > 0
be the smallest such value satisfying:

𝑓(𝑥𝑘 + 𝛼′𝑝𝑘) ≤ 𝑓(𝑥𝑘) + 𝛼′𝑐1∇𝑓(𝑥𝑘)𝑇 𝑝𝑘. (1)

This ensures the sufficient decrease condition is
satisfied.

2. By the Mean Value Theorem, there exists
𝛼″ ∈ (0, 𝛼′) such that:

𝑓(𝑥𝑘 + 𝛼′𝑝𝑘) − 𝑓(𝑥𝑘) = 𝛼′∇𝑓(𝑥𝑘 + 𝛼″𝑝𝑘)𝑇 𝑝𝑘. (2)

Substituting 𝑓(𝑥𝑘 + 𝛼′𝑝𝑘) from (1) into (2), we have:

𝛼′∇𝑓(𝑥𝑘 + 𝛼″𝑝𝑘)𝑇 𝑝𝑘 ≤ 𝛼′𝑐1∇𝑓(𝑥𝑘)𝑇 𝑝𝑘.

Dividing through by 𝛼′ > 0, this simplifies to:

∇𝑓(𝑥𝑘 + 𝛼″𝑝𝑘)𝑇 𝑝𝑘 ≤ 𝑐1∇𝑓(𝑥𝑘)𝑇 𝑝𝑘. (3)

3. Since 𝑐1 < 𝑐2 and ∇𝑓(𝑥𝑘)𝑇 𝑝𝑘 < 0, the inequality
𝑐1∇𝑓(𝑥𝑘)𝑇 𝑝𝑘 < 𝑐2∇𝑓(𝑥𝑘)𝑇 𝑝𝑘 holds. This implies
there exists 𝛼″ such that:

∇𝑓(𝑥𝑘 + 𝛼″𝑝𝑘)𝑇 𝑝𝑘 ≤ 𝑐2∇𝑓(𝑥𝑘)𝑇 𝑝𝑘. (4)

Inequalities (3) and (4) together ensure the Wolfe
conditions are satisfied.

4. For the strong Wolfe conditions, the curvature
condition:

∣∇𝑓(𝑥𝑘 + 𝛼𝑝𝑘)𝑇 𝑝𝑘∣ ≤ 𝑐2 ∣∇𝑓(𝑥𝑘)𝑇 𝑝𝑘∣ (5)

is met because ∇𝑓(𝑥𝑘 + 𝛼𝑝𝑘)𝑇 𝑝𝑘 is negative and
bounded below by 𝑐2∇𝑓(𝑥𝑘)𝑇 𝑝𝑘.

5. Due to the smoothness of 𝑓 , there exists an interval
around 𝛼″ where the Wolfe conditions (and thus the
strong Wolfe conditions) hold. Hence, the proof is
complete.
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Inexact line search. Wolfe Condition. Proof
1. Since 𝜙(𝛼) = 𝑓(𝑥𝑘 + 𝛼𝑝𝑘) is bounded below and

𝑙(𝛼) = 𝑓(𝑥𝑘) + 𝛼𝑐1∇𝑓(𝑥𝑘)𝑇 𝑝𝑘 is unbounded below
(as ∇𝑓(𝑥𝑘)𝑇 𝑝𝑘 < 0), the graph of 𝑙(𝛼) must
intersect the graph of 𝜙(𝛼) at least once. Let 𝛼′ > 0
be the smallest such value satisfying:

𝑓(𝑥𝑘 + 𝛼′𝑝𝑘) ≤ 𝑓(𝑥𝑘) + 𝛼′𝑐1∇𝑓(𝑥𝑘)𝑇 𝑝𝑘. (1)

This ensures the sufficient decrease condition is
satisfied.

2. By the Mean Value Theorem, there exists
𝛼″ ∈ (0, 𝛼′) such that:

𝑓(𝑥𝑘 + 𝛼′𝑝𝑘) − 𝑓(𝑥𝑘) = 𝛼′∇𝑓(𝑥𝑘 + 𝛼″𝑝𝑘)𝑇 𝑝𝑘. (2)

Substituting 𝑓(𝑥𝑘 + 𝛼′𝑝𝑘) from (1) into (2), we have:

𝛼′∇𝑓(𝑥𝑘 + 𝛼″𝑝𝑘)𝑇 𝑝𝑘 ≤ 𝛼′𝑐1∇𝑓(𝑥𝑘)𝑇 𝑝𝑘.

Dividing through by 𝛼′ > 0, this simplifies to:

∇𝑓(𝑥𝑘 + 𝛼″𝑝𝑘)𝑇 𝑝𝑘 ≤ 𝑐1∇𝑓(𝑥𝑘)𝑇 𝑝𝑘. (3)

3. Since 𝑐1 < 𝑐2 and ∇𝑓(𝑥𝑘)𝑇 𝑝𝑘 < 0, the inequality
𝑐1∇𝑓(𝑥𝑘)𝑇 𝑝𝑘 < 𝑐2∇𝑓(𝑥𝑘)𝑇 𝑝𝑘 holds. This implies
there exists 𝛼″ such that:

∇𝑓(𝑥𝑘 + 𝛼″𝑝𝑘)𝑇 𝑝𝑘 ≤ 𝑐2∇𝑓(𝑥𝑘)𝑇 𝑝𝑘. (4)

Inequalities (3) and (4) together ensure the Wolfe
conditions are satisfied.

4. For the strong Wolfe conditions, the curvature
condition:

∣∇𝑓(𝑥𝑘 + 𝛼𝑝𝑘)𝑇 𝑝𝑘∣ ≤ 𝑐2 ∣∇𝑓(𝑥𝑘)𝑇 𝑝𝑘∣ (5)

is met because ∇𝑓(𝑥𝑘 + 𝛼𝑝𝑘)𝑇 𝑝𝑘 is negative and
bounded below by 𝑐2∇𝑓(𝑥𝑘)𝑇 𝑝𝑘.

5. Due to the smoothness of 𝑓 , there exists an interval
around 𝛼″ where the Wolfe conditions (and thus the
strong Wolfe conditions) hold. Hence, the proof is
complete.
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Inexact line search. Wolfe Condition. Proof
1. Since 𝜙(𝛼) = 𝑓(𝑥𝑘 + 𝛼𝑝𝑘) is bounded below and

𝑙(𝛼) = 𝑓(𝑥𝑘) + 𝛼𝑐1∇𝑓(𝑥𝑘)𝑇 𝑝𝑘 is unbounded below
(as ∇𝑓(𝑥𝑘)𝑇 𝑝𝑘 < 0), the graph of 𝑙(𝛼) must
intersect the graph of 𝜙(𝛼) at least once. Let 𝛼′ > 0
be the smallest such value satisfying:

𝑓(𝑥𝑘 + 𝛼′𝑝𝑘) ≤ 𝑓(𝑥𝑘) + 𝛼′𝑐1∇𝑓(𝑥𝑘)𝑇 𝑝𝑘. (1)

This ensures the sufficient decrease condition is
satisfied.

2. By the Mean Value Theorem, there exists
𝛼″ ∈ (0, 𝛼′) such that:

𝑓(𝑥𝑘 + 𝛼′𝑝𝑘) − 𝑓(𝑥𝑘) = 𝛼′∇𝑓(𝑥𝑘 + 𝛼″𝑝𝑘)𝑇 𝑝𝑘. (2)

Substituting 𝑓(𝑥𝑘 + 𝛼′𝑝𝑘) from (1) into (2), we have:

𝛼′∇𝑓(𝑥𝑘 + 𝛼″𝑝𝑘)𝑇 𝑝𝑘 ≤ 𝛼′𝑐1∇𝑓(𝑥𝑘)𝑇 𝑝𝑘.

Dividing through by 𝛼′ > 0, this simplifies to:

∇𝑓(𝑥𝑘 + 𝛼″𝑝𝑘)𝑇 𝑝𝑘 ≤ 𝑐1∇𝑓(𝑥𝑘)𝑇 𝑝𝑘. (3)

3. Since 𝑐1 < 𝑐2 and ∇𝑓(𝑥𝑘)𝑇 𝑝𝑘 < 0, the inequality
𝑐1∇𝑓(𝑥𝑘)𝑇 𝑝𝑘 < 𝑐2∇𝑓(𝑥𝑘)𝑇 𝑝𝑘 holds. This implies
there exists 𝛼″ such that:

∇𝑓(𝑥𝑘 + 𝛼″𝑝𝑘)𝑇 𝑝𝑘 ≤ 𝑐2∇𝑓(𝑥𝑘)𝑇 𝑝𝑘. (4)

Inequalities (3) and (4) together ensure the Wolfe
conditions are satisfied.

4. For the strong Wolfe conditions, the curvature
condition:

∣∇𝑓(𝑥𝑘 + 𝛼𝑝𝑘)𝑇 𝑝𝑘∣ ≤ 𝑐2 ∣∇𝑓(𝑥𝑘)𝑇 𝑝𝑘∣ (5)

is met because ∇𝑓(𝑥𝑘 + 𝛼𝑝𝑘)𝑇 𝑝𝑘 is negative and
bounded below by 𝑐2∇𝑓(𝑥𝑘)𝑇 𝑝𝑘.

5. Due to the smoothness of 𝑓 , there exists an interval
around 𝛼″ where the Wolfe conditions (and thus the
strong Wolfe conditions) hold. Hence, the proof is
complete.
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Inexact line search. Wolfe Condition. Proof
1. Since 𝜙(𝛼) = 𝑓(𝑥𝑘 + 𝛼𝑝𝑘) is bounded below and

𝑙(𝛼) = 𝑓(𝑥𝑘) + 𝛼𝑐1∇𝑓(𝑥𝑘)𝑇 𝑝𝑘 is unbounded below
(as ∇𝑓(𝑥𝑘)𝑇 𝑝𝑘 < 0), the graph of 𝑙(𝛼) must
intersect the graph of 𝜙(𝛼) at least once. Let 𝛼′ > 0
be the smallest such value satisfying:

𝑓(𝑥𝑘 + 𝛼′𝑝𝑘) ≤ 𝑓(𝑥𝑘) + 𝛼′𝑐1∇𝑓(𝑥𝑘)𝑇 𝑝𝑘. (1)

This ensures the sufficient decrease condition is
satisfied.

2. By the Mean Value Theorem, there exists
𝛼″ ∈ (0, 𝛼′) such that:

𝑓(𝑥𝑘 + 𝛼′𝑝𝑘) − 𝑓(𝑥𝑘) = 𝛼′∇𝑓(𝑥𝑘 + 𝛼″𝑝𝑘)𝑇 𝑝𝑘. (2)

Substituting 𝑓(𝑥𝑘 + 𝛼′𝑝𝑘) from (1) into (2), we have:

𝛼′∇𝑓(𝑥𝑘 + 𝛼″𝑝𝑘)𝑇 𝑝𝑘 ≤ 𝛼′𝑐1∇𝑓(𝑥𝑘)𝑇 𝑝𝑘.

Dividing through by 𝛼′ > 0, this simplifies to:

∇𝑓(𝑥𝑘 + 𝛼″𝑝𝑘)𝑇 𝑝𝑘 ≤ 𝑐1∇𝑓(𝑥𝑘)𝑇 𝑝𝑘. (3)

3. Since 𝑐1 < 𝑐2 and ∇𝑓(𝑥𝑘)𝑇 𝑝𝑘 < 0, the inequality
𝑐1∇𝑓(𝑥𝑘)𝑇 𝑝𝑘 < 𝑐2∇𝑓(𝑥𝑘)𝑇 𝑝𝑘 holds. This implies
there exists 𝛼″ such that:

∇𝑓(𝑥𝑘 + 𝛼″𝑝𝑘)𝑇 𝑝𝑘 ≤ 𝑐2∇𝑓(𝑥𝑘)𝑇 𝑝𝑘. (4)

Inequalities (3) and (4) together ensure the Wolfe
conditions are satisfied.

4. For the strong Wolfe conditions, the curvature
condition:

∣∇𝑓(𝑥𝑘 + 𝛼𝑝𝑘)𝑇 𝑝𝑘∣ ≤ 𝑐2 ∣∇𝑓(𝑥𝑘)𝑇 𝑝𝑘∣ (5)

is met because ∇𝑓(𝑥𝑘 + 𝛼𝑝𝑘)𝑇 𝑝𝑘 is negative and
bounded below by 𝑐2∇𝑓(𝑥𝑘)𝑇 𝑝𝑘.

5. Due to the smoothness of 𝑓 , there exists an interval
around 𝛼″ where the Wolfe conditions (and thus the
strong Wolfe conditions) hold. Hence, the proof is
complete.
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Inexact line search. Wolfe Condition. Proof
1. Since 𝜙(𝛼) = 𝑓(𝑥𝑘 + 𝛼𝑝𝑘) is bounded below and

𝑙(𝛼) = 𝑓(𝑥𝑘) + 𝛼𝑐1∇𝑓(𝑥𝑘)𝑇 𝑝𝑘 is unbounded below
(as ∇𝑓(𝑥𝑘)𝑇 𝑝𝑘 < 0), the graph of 𝑙(𝛼) must
intersect the graph of 𝜙(𝛼) at least once. Let 𝛼′ > 0
be the smallest such value satisfying:

𝑓(𝑥𝑘 + 𝛼′𝑝𝑘) ≤ 𝑓(𝑥𝑘) + 𝛼′𝑐1∇𝑓(𝑥𝑘)𝑇 𝑝𝑘. (1)

This ensures the sufficient decrease condition is
satisfied.

2. By the Mean Value Theorem, there exists
𝛼″ ∈ (0, 𝛼′) such that:

𝑓(𝑥𝑘 + 𝛼′𝑝𝑘) − 𝑓(𝑥𝑘) = 𝛼′∇𝑓(𝑥𝑘 + 𝛼″𝑝𝑘)𝑇 𝑝𝑘. (2)

Substituting 𝑓(𝑥𝑘 + 𝛼′𝑝𝑘) from (1) into (2), we have:

𝛼′∇𝑓(𝑥𝑘 + 𝛼″𝑝𝑘)𝑇 𝑝𝑘 ≤ 𝛼′𝑐1∇𝑓(𝑥𝑘)𝑇 𝑝𝑘.

Dividing through by 𝛼′ > 0, this simplifies to:

∇𝑓(𝑥𝑘 + 𝛼″𝑝𝑘)𝑇 𝑝𝑘 ≤ 𝑐1∇𝑓(𝑥𝑘)𝑇 𝑝𝑘. (3)

3. Since 𝑐1 < 𝑐2 and ∇𝑓(𝑥𝑘)𝑇 𝑝𝑘 < 0, the inequality
𝑐1∇𝑓(𝑥𝑘)𝑇 𝑝𝑘 < 𝑐2∇𝑓(𝑥𝑘)𝑇 𝑝𝑘 holds. This implies
there exists 𝛼″ such that:

∇𝑓(𝑥𝑘 + 𝛼″𝑝𝑘)𝑇 𝑝𝑘 ≤ 𝑐2∇𝑓(𝑥𝑘)𝑇 𝑝𝑘. (4)

Inequalities (3) and (4) together ensure the Wolfe
conditions are satisfied.

4. For the strong Wolfe conditions, the curvature
condition:

∣∇𝑓(𝑥𝑘 + 𝛼𝑝𝑘)𝑇 𝑝𝑘∣ ≤ 𝑐2 ∣∇𝑓(𝑥𝑘)𝑇 𝑝𝑘∣ (5)

is met because ∇𝑓(𝑥𝑘 + 𝛼𝑝𝑘)𝑇 𝑝𝑘 is negative and
bounded below by 𝑐2∇𝑓(𝑥𝑘)𝑇 𝑝𝑘.

5. Due to the smoothness of 𝑓 , there exists an interval
around 𝛼″ where the Wolfe conditions (and thus the
strong Wolfe conditions) hold. Hence, the proof is
complete.
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Backtracking Line Search
Backtracking line search is a technique to find a step size that satisfies the Armijo condition, Goldstein conditions, or
other criteria of inexact line search. It begins with a relatively large step size and iteratively scales it down until a
condition is met.

Algorithm:

1. Choose an initial step size, 𝛼0, and parameters 𝛽 ∈ (0, 1) and 𝑐1 ∈ (0, 1).
2. Check if the chosen step size satisfies the chosen condition (e.g., Armijo condition).
3. If the condition is satisfied, stop; else, set 𝛼 ∶= 𝛽𝛼 and repeat step 2.

The step size 𝛼 is updated as

𝛼𝑘+1 ∶= 𝛽𝛼𝑘

in each iteration until the chosen condition is satisfied.

Example

In machine learning model training, the backtracking line search can be used to adjust the learning rate. If the
loss doesn’t decrease sufficiently, the learning rate is reduced multiplicatively until the Armijo condition is met.
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loss doesn’t decrease sufficiently, the learning rate is reduced multiplicatively until the Armijo condition is met.
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Numerical illustration
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Figure 20: Comparison of different line search algorithms
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Gradient Descent with Line Search
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Summary
Определения
1. Унимодальная функция.
2. Метод дихотомии.
3. Метод золотого сечения.
4. Метод параболической интерполяции.
5. Условие достаточного убывания для неточного

линейного поиска.
6. Условия Гольдштейна для неточного линейного

поиска.
7. Условие ограничения на кривизну для неточного

линейного поиска.
8. Градиент функции 𝑓(𝑥) ∶ R𝑛 → R.
9. Гессиан функции 𝑓(𝑥) ∶ R𝑛 → R.
10. Якобиан функции 𝑓(𝑥) ∶ R𝑛 → R𝑚.
11. Формула для аппроксимации Тейлора первого

порядка 𝑓𝐼
𝑥0

(𝑥) функции 𝑓(𝑥) ∶ R𝑛 → R в точке 𝑥0.
12. Формула для аппроксимации Тейлора второго

порядка 𝑓𝐼𝐼
𝑥0

(𝑥) функции 𝑓(𝑥) ∶ R𝑛 → R в точке
𝑥0.

13. Связь дифференциала функции 𝑑𝑓 и градиента
∇𝑓 для функции 𝑓(𝑥) ∶ R𝑛 → R.

14. Связь второго дифференциала функции 𝑑2𝑓 и
гессиана ∇2𝑓 для функции 𝑓(𝑥) ∶ R𝑛 → R.

Теоремы
1. Метод дихотомии и золотого сечения для

унимодальных функций. Скорость сходимости.
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