
Dual methods: Dual Gradient Ascent,
Augmented Lagrangian Method, ADMM

Даня Меркулов
Методы Оптимизации в Машинном Обучении. ФКН ВШЭ

1

https://fmin.xyz
https://hse25.fmin.xyz
https://github.com/MerkulovDaniil/hse25
https://t.me/fminxyz

Introduction to dual methods

Introduction to dual methods 2

https://fmin.xyz
https://hse25.fmin.xyz
https://github.com/MerkulovDaniil/hse25
https://t.me/fminxyz

Why do we want to solve dual problems?

Primal problem

𝑓0(𝑥) → min
𝑥∈R𝑛

s.t. 𝑓𝑖(𝑥) ≤ 0, 𝑖 = 1, … , 𝑚
ℎ𝑖(𝑥) = 0, 𝑖 = 1, … , 𝑝

Dual problem

𝑔(𝜆, 𝜈) = min
𝑥∈𝒟

𝐿(𝑥, 𝜆, 𝜈) =

min
𝑥∈𝒟

(𝑓0(𝑥) +
𝑚
∑
𝑖=1

𝜆𝑖𝑓𝑖(𝑥) +
𝑝

∑
𝑖=1

𝜈𝑖ℎ𝑖(𝑥)) → max
𝜆∈R𝑚,𝜈∈R𝑝

s.t. 𝜆 ⪰ 0

• Shadow Prices. In economics and resource allocation problems, dual variables can be interpreted as shadow
prices, providing economic insights into resource utilization and constraints.

• Market Equilibrium. Dual problems often represent market equilibrium conditions, making them essential for
economic modeling and analysis.

• Dual Problems Provide Bounds. Dual problems often offer bounds on the optimal value of the primal problem.
This can be useful for assessing the quality of approximate solutions.

• Duality Gap. The difference between the primal and dual solutions (duality gap) provides valuable information
about the solution’s optimality.

Introduction to dual methods 3

https://fmin.xyz
https://hse25.fmin.xyz
https://github.com/MerkulovDaniil/hse25
https://t.me/fminxyz

Why do we want to solve dual problems?

Primal problem

𝑓0(𝑥) → min
𝑥∈R𝑛

s.t. 𝑓𝑖(𝑥) ≤ 0, 𝑖 = 1, … , 𝑚
ℎ𝑖(𝑥) = 0, 𝑖 = 1, … , 𝑝

Dual problem

𝑔(𝜆, 𝜈) = min
𝑥∈𝒟

𝐿(𝑥, 𝜆, 𝜈) =

min
𝑥∈𝒟

(𝑓0(𝑥) +
𝑚
∑
𝑖=1

𝜆𝑖𝑓𝑖(𝑥) +
𝑝

∑
𝑖=1

𝜈𝑖ℎ𝑖(𝑥)) → max
𝜆∈R𝑚,𝜈∈R𝑝

s.t. 𝜆 ⪰ 0

• Shadow Prices. In economics and resource allocation problems, dual variables can be interpreted as shadow
prices, providing economic insights into resource utilization and constraints.

• Market Equilibrium. Dual problems often represent market equilibrium conditions, making them essential for
economic modeling and analysis.

• Dual Problems Provide Bounds. Dual problems often offer bounds on the optimal value of the primal problem.
This can be useful for assessing the quality of approximate solutions.

• Duality Gap. The difference between the primal and dual solutions (duality gap) provides valuable information
about the solution’s optimality.

Introduction to dual methods 3

https://fmin.xyz
https://hse25.fmin.xyz
https://github.com/MerkulovDaniil/hse25
https://t.me/fminxyz

Why do we want to solve dual problems?

Primal problem

𝑓0(𝑥) → min
𝑥∈R𝑛

s.t. 𝑓𝑖(𝑥) ≤ 0, 𝑖 = 1, … , 𝑚
ℎ𝑖(𝑥) = 0, 𝑖 = 1, … , 𝑝

Dual problem

𝑔(𝜆, 𝜈) = min
𝑥∈𝒟

𝐿(𝑥, 𝜆, 𝜈) =

min
𝑥∈𝒟

(𝑓0(𝑥) +
𝑚
∑
𝑖=1

𝜆𝑖𝑓𝑖(𝑥) +
𝑝

∑
𝑖=1

𝜈𝑖ℎ𝑖(𝑥)) → max
𝜆∈R𝑚,𝜈∈R𝑝

s.t. 𝜆 ⪰ 0

• Shadow Prices. In economics and resource allocation problems, dual variables can be interpreted as shadow
prices, providing economic insights into resource utilization and constraints.

• Market Equilibrium. Dual problems often represent market equilibrium conditions, making them essential for
economic modeling and analysis.

• Dual Problems Provide Bounds. Dual problems often offer bounds on the optimal value of the primal problem.
This can be useful for assessing the quality of approximate solutions.

• Duality Gap. The difference between the primal and dual solutions (duality gap) provides valuable information
about the solution’s optimality.

Introduction to dual methods 3

https://fmin.xyz
https://hse25.fmin.xyz
https://github.com/MerkulovDaniil/hse25
https://t.me/fminxyz

Why do we want to solve dual problems?

Primal problem

𝑓0(𝑥) → min
𝑥∈R𝑛

s.t. 𝑓𝑖(𝑥) ≤ 0, 𝑖 = 1, … , 𝑚
ℎ𝑖(𝑥) = 0, 𝑖 = 1, … , 𝑝

Dual problem

𝑔(𝜆, 𝜈) = min
𝑥∈𝒟

𝐿(𝑥, 𝜆, 𝜈) =

min
𝑥∈𝒟

(𝑓0(𝑥) +
𝑚
∑
𝑖=1

𝜆𝑖𝑓𝑖(𝑥) +
𝑝

∑
𝑖=1

𝜈𝑖ℎ𝑖(𝑥)) → max
𝜆∈R𝑚,𝜈∈R𝑝

s.t. 𝜆 ⪰ 0

• Shadow Prices. In economics and resource allocation problems, dual variables can be interpreted as shadow
prices, providing economic insights into resource utilization and constraints.

• Market Equilibrium. Dual problems often represent market equilibrium conditions, making them essential for
economic modeling and analysis.

• Dual Problems Provide Bounds. Dual problems often offer bounds on the optimal value of the primal problem.
This can be useful for assessing the quality of approximate solutions.

• Duality Gap. The difference between the primal and dual solutions (duality gap) provides valuable information
about the solution’s optimality.

Introduction to dual methods 3

https://fmin.xyz
https://hse25.fmin.xyz
https://github.com/MerkulovDaniil/hse25
https://t.me/fminxyz

Conjugate functions

Conjugate functions 4

https://fmin.xyz
https://hse25.fmin.xyz
https://github.com/MerkulovDaniil/hse25
https://t.me/fminxyz

Conjugate functions
Recall that given 𝑓 ∶ R𝑛 → R, the function
defined by

𝑓∗(𝑦) = max
𝑥

[𝑦𝑇 𝑥 − 𝑓(𝑥)]

is called its conjugate.

Conjugate functions 5

https://fmin.xyz
https://hse25.fmin.xyz
https://github.com/MerkulovDaniil/hse25
https://t.me/fminxyz

Geometrical intution

Conjugate functions 6

https://fmin.xyz
https://hse25.fmin.xyz
https://github.com/MerkulovDaniil/hse25
https://t.me/fminxyz

Geometrical intution

Conjugate functions 6

https://fmin.xyz
https://hse25.fmin.xyz
https://github.com/MerkulovDaniil/hse25
https://t.me/fminxyz

Conjugate function properties

Recall that given 𝑓 ∶ R𝑛 → R, the function defined by

𝑓∗(𝑦) = max
𝑥

[𝑦𝑇 𝑥 − 𝑓(𝑥)]

is called its conjugate.
• Conjugates appear frequently in dual programs, since

−𝑓∗(𝑦) = min
𝑥

[𝑓(𝑥) − 𝑦𝑇 𝑥]

• If 𝑓 is closed and convex, then 𝑓∗∗ = 𝑓 . Also,

𝑥 ∈ 𝜕𝑓∗(𝑦) ⇔ 𝑦 ∈ 𝜕𝑓(𝑥) ⇔ 𝑥 ∈ argmin
𝑧

[𝑓(𝑧) − 𝑦𝑇 𝑧]

• If 𝑓 is strictly convex, then
∇𝑓∗(𝑦) = argmin

𝑧
[𝑓(𝑧) − 𝑦𝑇 𝑧]

Conjugate functions 7

https://fmin.xyz
https://hse25.fmin.xyz
https://github.com/MerkulovDaniil/hse25
https://t.me/fminxyz

Conjugate function properties

Recall that given 𝑓 ∶ R𝑛 → R, the function defined by

𝑓∗(𝑦) = max
𝑥

[𝑦𝑇 𝑥 − 𝑓(𝑥)]

is called its conjugate.
• Conjugates appear frequently in dual programs, since

−𝑓∗(𝑦) = min
𝑥

[𝑓(𝑥) − 𝑦𝑇 𝑥]

• If 𝑓 is closed and convex, then 𝑓∗∗ = 𝑓 . Also,

𝑥 ∈ 𝜕𝑓∗(𝑦) ⇔ 𝑦 ∈ 𝜕𝑓(𝑥) ⇔ 𝑥 ∈ argmin
𝑧

[𝑓(𝑧) − 𝑦𝑇 𝑧]

• If 𝑓 is strictly convex, then
∇𝑓∗(𝑦) = argmin

𝑧
[𝑓(𝑧) − 𝑦𝑇 𝑧]

Conjugate functions 7

https://fmin.xyz
https://hse25.fmin.xyz
https://github.com/MerkulovDaniil/hse25
https://t.me/fminxyz

Conjugate function properties

Recall that given 𝑓 ∶ R𝑛 → R, the function defined by

𝑓∗(𝑦) = max
𝑥

[𝑦𝑇 𝑥 − 𝑓(𝑥)]

is called its conjugate.
• Conjugates appear frequently in dual programs, since

−𝑓∗(𝑦) = min
𝑥

[𝑓(𝑥) − 𝑦𝑇 𝑥]

• If 𝑓 is closed and convex, then 𝑓∗∗ = 𝑓 . Also,

𝑥 ∈ 𝜕𝑓∗(𝑦) ⇔ 𝑦 ∈ 𝜕𝑓(𝑥) ⇔ 𝑥 ∈ argmin
𝑧

[𝑓(𝑧) − 𝑦𝑇 𝑧]

• If 𝑓 is strictly convex, then
∇𝑓∗(𝑦) = argmin

𝑧
[𝑓(𝑧) − 𝑦𝑇 𝑧]

Conjugate functions 7

https://fmin.xyz
https://hse25.fmin.xyz
https://github.com/MerkulovDaniil/hse25
https://t.me/fminxyz

Conjugate function properties (proofs)

We will show that 𝑥 ∈ 𝜕𝑓∗(𝑦) ⇔ 𝑦 ∈ 𝜕𝑓(𝑥), assuming that 𝑓 is convex and closed.
• Proof of ⇐: Suppose 𝑦 ∈ 𝜕𝑓(𝑥). Then 𝑥 ∈ 𝑀𝑦, the set of maximizers of 𝑦𝑇 𝑧 − 𝑓(𝑧) over 𝑧. But

𝑓∗(𝑦) = max
𝑧

{𝑦𝑇 𝑧 − 𝑓(𝑧)} and 𝜕𝑓∗(𝑦) = cl(conv(⋃
𝑧∈𝑀𝑦

{𝑧})).

Thus 𝑥 ∈ 𝜕𝑓∗(𝑦).

• Proof of ⇒: From what we showed above, if 𝑥 ∈ 𝜕𝑓∗(𝑦), then 𝑦 ∈ 𝜕𝑓∗(𝑥), but 𝑓∗∗ = 𝑓 .
Clearly 𝑦 ∈ 𝜕𝑓(𝑥) ⇔ 𝑥 ∈ argmin𝑧{𝑓(𝑧) − 𝑦𝑇 𝑧}
Lastly, if 𝑓 is strictly convex, then we know that 𝑓(𝑧) − 𝑦𝑇 𝑧 has a unique minimizer over 𝑧, and this must be ∇𝑓∗(𝑦).

Conjugate functions 8

https://fmin.xyz
https://hse25.fmin.xyz
https://github.com/MerkulovDaniil/hse25
https://t.me/fminxyz

Conjugate function properties (proofs)

We will show that 𝑥 ∈ 𝜕𝑓∗(𝑦) ⇔ 𝑦 ∈ 𝜕𝑓(𝑥), assuming that 𝑓 is convex and closed.
• Proof of ⇐: Suppose 𝑦 ∈ 𝜕𝑓(𝑥). Then 𝑥 ∈ 𝑀𝑦, the set of maximizers of 𝑦𝑇 𝑧 − 𝑓(𝑧) over 𝑧. But

𝑓∗(𝑦) = max
𝑧

{𝑦𝑇 𝑧 − 𝑓(𝑧)} and 𝜕𝑓∗(𝑦) = cl(conv(⋃
𝑧∈𝑀𝑦

{𝑧})).

Thus 𝑥 ∈ 𝜕𝑓∗(𝑦).
• Proof of ⇒: From what we showed above, if 𝑥 ∈ 𝜕𝑓∗(𝑦), then 𝑦 ∈ 𝜕𝑓∗(𝑥), but 𝑓∗∗ = 𝑓 .

Clearly 𝑦 ∈ 𝜕𝑓(𝑥) ⇔ 𝑥 ∈ argmin𝑧{𝑓(𝑧) − 𝑦𝑇 𝑧}
Lastly, if 𝑓 is strictly convex, then we know that 𝑓(𝑧) − 𝑦𝑇 𝑧 has a unique minimizer over 𝑧, and this must be ∇𝑓∗(𝑦).

Conjugate functions 8

https://fmin.xyz
https://hse25.fmin.xyz
https://github.com/MerkulovDaniil/hse25
https://t.me/fminxyz

Conjugate function properties (proofs)

We will show that 𝑥 ∈ 𝜕𝑓∗(𝑦) ⇔ 𝑦 ∈ 𝜕𝑓(𝑥), assuming that 𝑓 is convex and closed.
• Proof of ⇐: Suppose 𝑦 ∈ 𝜕𝑓(𝑥). Then 𝑥 ∈ 𝑀𝑦, the set of maximizers of 𝑦𝑇 𝑧 − 𝑓(𝑧) over 𝑧. But

𝑓∗(𝑦) = max
𝑧

{𝑦𝑇 𝑧 − 𝑓(𝑧)} and 𝜕𝑓∗(𝑦) = cl(conv(⋃
𝑧∈𝑀𝑦

{𝑧})).

Thus 𝑥 ∈ 𝜕𝑓∗(𝑦).
• Proof of ⇒: From what we showed above, if 𝑥 ∈ 𝜕𝑓∗(𝑦), then 𝑦 ∈ 𝜕𝑓∗(𝑥), but 𝑓∗∗ = 𝑓 .

Clearly 𝑦 ∈ 𝜕𝑓(𝑥) ⇔ 𝑥 ∈ argmin𝑧{𝑓(𝑧) − 𝑦𝑇 𝑧}
Lastly, if 𝑓 is strictly convex, then we know that 𝑓(𝑧) − 𝑦𝑇 𝑧 has a unique minimizer over 𝑧, and this must be ∇𝑓∗(𝑦).

Conjugate functions 8

https://fmin.xyz
https://hse25.fmin.xyz
https://github.com/MerkulovDaniil/hse25
https://t.me/fminxyz

Conjugate function properties (proofs)

We will show that 𝑥 ∈ 𝜕𝑓∗(𝑦) ⇔ 𝑦 ∈ 𝜕𝑓(𝑥), assuming that 𝑓 is convex and closed.
• Proof of ⇐: Suppose 𝑦 ∈ 𝜕𝑓(𝑥). Then 𝑥 ∈ 𝑀𝑦, the set of maximizers of 𝑦𝑇 𝑧 − 𝑓(𝑧) over 𝑧. But

𝑓∗(𝑦) = max
𝑧

{𝑦𝑇 𝑧 − 𝑓(𝑧)} and 𝜕𝑓∗(𝑦) = cl(conv(⋃
𝑧∈𝑀𝑦

{𝑧})).

Thus 𝑥 ∈ 𝜕𝑓∗(𝑦).
• Proof of ⇒: From what we showed above, if 𝑥 ∈ 𝜕𝑓∗(𝑦), then 𝑦 ∈ 𝜕𝑓∗(𝑥), but 𝑓∗∗ = 𝑓 .

Clearly 𝑦 ∈ 𝜕𝑓(𝑥) ⇔ 𝑥 ∈ argmin𝑧{𝑓(𝑧) − 𝑦𝑇 𝑧}
Lastly, if 𝑓 is strictly convex, then we know that 𝑓(𝑧) − 𝑦𝑇 𝑧 has a unique minimizer over 𝑧, and this must be ∇𝑓∗(𝑦).

Conjugate functions 8

https://fmin.xyz
https://hse25.fmin.xyz
https://github.com/MerkulovDaniil/hse25
https://t.me/fminxyz

Dual ascent

Dual ascent 9

https://fmin.xyz
https://hse25.fmin.xyz
https://github.com/MerkulovDaniil/hse25
https://t.me/fminxyz

Dual (sub)gradient method
Even if we can’t derive dual (conjugate) in closed form, we can still use dual-based gradient or subgradient methods.
Consider the problem:

min
𝑥

𝑓(𝑥) subject to 𝐴𝑥 = 𝑏

Its dual problem is:
max

𝑢
−𝑓∗(−𝐴𝑇 𝑢) − 𝑏𝑇 𝑢

where 𝑓∗ is the conjugate of 𝑓 . Defining 𝑔(𝑢) = −𝑓∗(−𝐴𝑇 𝑢) − 𝑏𝑇 𝑢, note that:
𝜕𝑔(𝑢) = 𝐴𝜕𝑓∗(−𝐴𝑇 𝑢) − 𝑏

Therefore, using what we know about conjugates
𝜕𝑔(𝑢) = 𝐴𝑥 − 𝑏 where 𝑥 ∈ argmin

𝑧
[𝑓(𝑧) + 𝑢𝑇 𝐴𝑧]

Dual ascent method for maximizing dual objective:

𝑥𝑘 ∈ argmin
𝑥

[𝑓(𝑥) + (𝑢𝑘−1)𝑇 𝐴𝑥]
𝑢𝑘 = 𝑢𝑘−1 + 𝛼𝑘(𝐴𝑥𝑘 − 𝑏)

• Step sizes 𝛼𝑘, 𝑘 = 1, 2, 3, …, are chosen in standard
ways.

• Proximal gradients and acceleration can be applied as
they would usually.

Dual ascent 10

https://fmin.xyz
https://hse25.fmin.xyz
https://github.com/MerkulovDaniil/hse25
https://t.me/fminxyz

Dual (sub)gradient method
Even if we can’t derive dual (conjugate) in closed form, we can still use dual-based gradient or subgradient methods.
Consider the problem:

min
𝑥

𝑓(𝑥) subject to 𝐴𝑥 = 𝑏

Its dual problem is:
max

𝑢
−𝑓∗(−𝐴𝑇 𝑢) − 𝑏𝑇 𝑢

where 𝑓∗ is the conjugate of 𝑓 . Defining 𝑔(𝑢) = −𝑓∗(−𝐴𝑇 𝑢) − 𝑏𝑇 𝑢, note that:
𝜕𝑔(𝑢) = 𝐴𝜕𝑓∗(−𝐴𝑇 𝑢) − 𝑏

Therefore, using what we know about conjugates
𝜕𝑔(𝑢) = 𝐴𝑥 − 𝑏 where 𝑥 ∈ argmin

𝑧
[𝑓(𝑧) + 𝑢𝑇 𝐴𝑧]

Dual ascent method for maximizing dual objective:

𝑥𝑘 ∈ argmin
𝑥

[𝑓(𝑥) + (𝑢𝑘−1)𝑇 𝐴𝑥]
𝑢𝑘 = 𝑢𝑘−1 + 𝛼𝑘(𝐴𝑥𝑘 − 𝑏)

• Step sizes 𝛼𝑘, 𝑘 = 1, 2, 3, …, are chosen in standard
ways.

• Proximal gradients and acceleration can be applied as
they would usually.

Dual ascent 10

https://fmin.xyz
https://hse25.fmin.xyz
https://github.com/MerkulovDaniil/hse25
https://t.me/fminxyz

Dual (sub)gradient method
Even if we can’t derive dual (conjugate) in closed form, we can still use dual-based gradient or subgradient methods.
Consider the problem:

min
𝑥

𝑓(𝑥) subject to 𝐴𝑥 = 𝑏

Its dual problem is:
max

𝑢
−𝑓∗(−𝐴𝑇 𝑢) − 𝑏𝑇 𝑢

where 𝑓∗ is the conjugate of 𝑓 . Defining 𝑔(𝑢) = −𝑓∗(−𝐴𝑇 𝑢) − 𝑏𝑇 𝑢, note that:
𝜕𝑔(𝑢) = 𝐴𝜕𝑓∗(−𝐴𝑇 𝑢) − 𝑏

Therefore, using what we know about conjugates
𝜕𝑔(𝑢) = 𝐴𝑥 − 𝑏 where 𝑥 ∈ argmin

𝑧
[𝑓(𝑧) + 𝑢𝑇 𝐴𝑧]

Dual ascent method for maximizing dual objective:

𝑥𝑘 ∈ argmin
𝑥

[𝑓(𝑥) + (𝑢𝑘−1)𝑇 𝐴𝑥]
𝑢𝑘 = 𝑢𝑘−1 + 𝛼𝑘(𝐴𝑥𝑘 − 𝑏)

• Step sizes 𝛼𝑘, 𝑘 = 1, 2, 3, …, are chosen in standard
ways.

• Proximal gradients and acceleration can be applied as
they would usually.

Dual ascent 10

https://fmin.xyz
https://hse25.fmin.xyz
https://github.com/MerkulovDaniil/hse25
https://t.me/fminxyz

Dual (sub)gradient method
Even if we can’t derive dual (conjugate) in closed form, we can still use dual-based gradient or subgradient methods.
Consider the problem:

min
𝑥

𝑓(𝑥) subject to 𝐴𝑥 = 𝑏

Its dual problem is:
max

𝑢
−𝑓∗(−𝐴𝑇 𝑢) − 𝑏𝑇 𝑢

where 𝑓∗ is the conjugate of 𝑓 . Defining 𝑔(𝑢) = −𝑓∗(−𝐴𝑇 𝑢) − 𝑏𝑇 𝑢, note that:
𝜕𝑔(𝑢) = 𝐴𝜕𝑓∗(−𝐴𝑇 𝑢) − 𝑏

Therefore, using what we know about conjugates
𝜕𝑔(𝑢) = 𝐴𝑥 − 𝑏 where 𝑥 ∈ argmin

𝑧
[𝑓(𝑧) + 𝑢𝑇 𝐴𝑧]

Dual ascent method for maximizing dual objective:

𝑥𝑘 ∈ argmin
𝑥

[𝑓(𝑥) + (𝑢𝑘−1)𝑇 𝐴𝑥]
𝑢𝑘 = 𝑢𝑘−1 + 𝛼𝑘(𝐴𝑥𝑘 − 𝑏)

• Step sizes 𝛼𝑘, 𝑘 = 1, 2, 3, …, are chosen in standard
ways.

• Proximal gradients and acceleration can be applied as
they would usually.

Dual ascent 10

https://fmin.xyz
https://hse25.fmin.xyz
https://github.com/MerkulovDaniil/hse25
https://t.me/fminxyz

Dual (sub)gradient method
Even if we can’t derive dual (conjugate) in closed form, we can still use dual-based gradient or subgradient methods.
Consider the problem:

min
𝑥

𝑓(𝑥) subject to 𝐴𝑥 = 𝑏

Its dual problem is:
max

𝑢
−𝑓∗(−𝐴𝑇 𝑢) − 𝑏𝑇 𝑢

where 𝑓∗ is the conjugate of 𝑓 . Defining 𝑔(𝑢) = −𝑓∗(−𝐴𝑇 𝑢) − 𝑏𝑇 𝑢, note that:
𝜕𝑔(𝑢) = 𝐴𝜕𝑓∗(−𝐴𝑇 𝑢) − 𝑏

Therefore, using what we know about conjugates
𝜕𝑔(𝑢) = 𝐴𝑥 − 𝑏 where 𝑥 ∈ argmin

𝑧
[𝑓(𝑧) + 𝑢𝑇 𝐴𝑧]

Dual ascent method for maximizing dual objective:

𝑥𝑘 ∈ argmin
𝑥

[𝑓(𝑥) + (𝑢𝑘−1)𝑇 𝐴𝑥]
𝑢𝑘 = 𝑢𝑘−1 + 𝛼𝑘(𝐴𝑥𝑘 − 𝑏)

• Step sizes 𝛼𝑘, 𝑘 = 1, 2, 3, …, are chosen in standard
ways.

• Proximal gradients and acceleration can be applied as
they would usually.

Dual ascent 10

https://fmin.xyz
https://hse25.fmin.xyz
https://github.com/MerkulovDaniil/hse25
https://t.me/fminxyz

Slopes of 𝑓 and 𝑓∗

Figure 1: Geometrical sense on 𝑓∗

Dual ascent 11

https://fmin.xyz
https://hse25.fmin.xyz
https://github.com/MerkulovDaniil/hse25
https://t.me/fminxyz

Slopes of 𝑓 and 𝑓∗

Assume that 𝑓 is a closed and convex function. Then 𝑓 is strongly convex with parameter 𝜇 ⇔ ∇𝑓∗ is Lipschitz with
parameter 1/𝜇.

Proof of “⇒”: Recall, if 𝑔 is strongly convex with minimizer 𝑥, then

𝑔(𝑦) ≥ 𝑔(𝑥) + 𝜇
2 ‖𝑦 − 𝑥‖2, for all 𝑦

Hence, defining 𝑥𝑢 = ∇𝑓∗(𝑢) and 𝑥𝑣 = ∇𝑓∗(𝑣),

𝑓(𝑥𝑣) − 𝑢𝑇 𝑥𝑣 ≥ 𝑓(𝑥𝑢) − 𝑢𝑇 𝑥𝑢 + 𝜇
2 ‖𝑥𝑢 − 𝑥𝑣‖2

𝑓(𝑥𝑢) − 𝑣𝑇 𝑥𝑢 ≥ 𝑓(𝑥𝑣) − 𝑣𝑇 𝑥𝑣 + 𝜇
2 ‖𝑥𝑢 − 𝑥𝑣‖2

Adding these together, using the Cauchy-Schwarz inequality, and rearranging shows that

‖𝑥𝑢 − 𝑥𝑣‖2 ≤ 1
𝜇‖𝑢 − 𝑣‖2

Dual ascent 12

https://fmin.xyz
https://hse25.fmin.xyz
https://github.com/MerkulovDaniil/hse25
https://t.me/fminxyz

Slopes of 𝑓 and 𝑓∗

Assume that 𝑓 is a closed and convex function. Then 𝑓 is strongly convex with parameter 𝜇 ⇔ ∇𝑓∗ is Lipschitz with
parameter 1/𝜇.
Proof of “⇒”: Recall, if 𝑔 is strongly convex with minimizer 𝑥, then

𝑔(𝑦) ≥ 𝑔(𝑥) + 𝜇
2 ‖𝑦 − 𝑥‖2, for all 𝑦

Hence, defining 𝑥𝑢 = ∇𝑓∗(𝑢) and 𝑥𝑣 = ∇𝑓∗(𝑣),

𝑓(𝑥𝑣) − 𝑢𝑇 𝑥𝑣 ≥ 𝑓(𝑥𝑢) − 𝑢𝑇 𝑥𝑢 + 𝜇
2 ‖𝑥𝑢 − 𝑥𝑣‖2

𝑓(𝑥𝑢) − 𝑣𝑇 𝑥𝑢 ≥ 𝑓(𝑥𝑣) − 𝑣𝑇 𝑥𝑣 + 𝜇
2 ‖𝑥𝑢 − 𝑥𝑣‖2

Adding these together, using the Cauchy-Schwarz inequality, and rearranging shows that

‖𝑥𝑢 − 𝑥𝑣‖2 ≤ 1
𝜇‖𝑢 − 𝑣‖2

Dual ascent 12

https://fmin.xyz
https://hse25.fmin.xyz
https://github.com/MerkulovDaniil/hse25
https://t.me/fminxyz

Slopes of 𝑓 and 𝑓∗

Assume that 𝑓 is a closed and convex function. Then 𝑓 is strongly convex with parameter 𝜇 ⇔ ∇𝑓∗ is Lipschitz with
parameter 1/𝜇.
Proof of “⇒”: Recall, if 𝑔 is strongly convex with minimizer 𝑥, then

𝑔(𝑦) ≥ 𝑔(𝑥) + 𝜇
2 ‖𝑦 − 𝑥‖2, for all 𝑦

Hence, defining 𝑥𝑢 = ∇𝑓∗(𝑢) and 𝑥𝑣 = ∇𝑓∗(𝑣),

𝑓(𝑥𝑣) − 𝑢𝑇 𝑥𝑣 ≥ 𝑓(𝑥𝑢) − 𝑢𝑇 𝑥𝑢 + 𝜇
2 ‖𝑥𝑢 − 𝑥𝑣‖2

𝑓(𝑥𝑢) − 𝑣𝑇 𝑥𝑢 ≥ 𝑓(𝑥𝑣) − 𝑣𝑇 𝑥𝑣 + 𝜇
2 ‖𝑥𝑢 − 𝑥𝑣‖2

Adding these together, using the Cauchy-Schwarz inequality, and rearranging shows that

‖𝑥𝑢 − 𝑥𝑣‖2 ≤ 1
𝜇‖𝑢 − 𝑣‖2

Dual ascent 12

https://fmin.xyz
https://hse25.fmin.xyz
https://github.com/MerkulovDaniil/hse25
https://t.me/fminxyz

Slopes of 𝑓 and 𝑓∗

Assume that 𝑓 is a closed and convex function. Then 𝑓 is strongly convex with parameter 𝜇 ⇔ ∇𝑓∗ is Lipschitz with
parameter 1/𝜇.
Proof of “⇒”: Recall, if 𝑔 is strongly convex with minimizer 𝑥, then

𝑔(𝑦) ≥ 𝑔(𝑥) + 𝜇
2 ‖𝑦 − 𝑥‖2, for all 𝑦

Hence, defining 𝑥𝑢 = ∇𝑓∗(𝑢) and 𝑥𝑣 = ∇𝑓∗(𝑣),

𝑓(𝑥𝑣) − 𝑢𝑇 𝑥𝑣 ≥ 𝑓(𝑥𝑢) − 𝑢𝑇 𝑥𝑢 + 𝜇
2 ‖𝑥𝑢 − 𝑥𝑣‖2

𝑓(𝑥𝑢) − 𝑣𝑇 𝑥𝑢 ≥ 𝑓(𝑥𝑣) − 𝑣𝑇 𝑥𝑣 + 𝜇
2 ‖𝑥𝑢 − 𝑥𝑣‖2

Adding these together, using the Cauchy-Schwarz inequality, and rearranging shows that

‖𝑥𝑢 − 𝑥𝑣‖2 ≤ 1
𝜇‖𝑢 − 𝑣‖2

Dual ascent 12

https://fmin.xyz
https://hse25.fmin.xyz
https://github.com/MerkulovDaniil/hse25
https://t.me/fminxyz

Slopes of 𝑓 and 𝑓∗

Proof of “⇐”: for simplicity, call 𝑔 = 𝑓∗ and 𝐿 = 1
𝜇 . As ∇𝑔 is Lipschitz with constant 𝐿, so is

𝑔𝑥(𝑧) = 𝑔(𝑧) − ∇𝑔(𝑥)𝑇 𝑧, hence

𝑔𝑥(𝑧) ≤ 𝑔𝑥(𝑦) + ∇𝑔𝑥(𝑦)𝑇 (𝑧 − 𝑦) + 𝐿
2 ‖𝑧 − 𝑦‖2

2

Minimizing each side over 𝑧, and rearranging, gives
1

2𝐿‖∇𝑔(𝑥) − ∇𝑔(𝑦)‖2 ≤ 𝑔(𝑦) − 𝑔(𝑥) + ∇𝑔(𝑥)𝑇 (𝑥 − 𝑦)

Exchanging roles of 𝑥, 𝑦, and adding together, gives
1
𝐿‖∇𝑔(𝑥) − ∇𝑔(𝑦)‖2 ≤ (∇𝑔(𝑥) − ∇𝑔(𝑦))𝑇 (𝑥 − 𝑦)

Let 𝑢 = ∇𝑓(𝑥), 𝑣 = ∇𝑔(𝑦); then 𝑥 ∈ 𝜕𝑔∗(𝑢), 𝑦 ∈ 𝜕𝑔∗(𝑣), and the above reads (𝑥 − 𝑦)𝑇 (𝑢 − 𝑣) ≥ ‖𝑢−𝑣‖2

𝐿 , implying
the result.

Dual ascent 13

https://fmin.xyz
https://hse25.fmin.xyz
https://github.com/MerkulovDaniil/hse25
https://t.me/fminxyz

Slopes of 𝑓 and 𝑓∗

Proof of “⇐”: for simplicity, call 𝑔 = 𝑓∗ and 𝐿 = 1
𝜇 . As ∇𝑔 is Lipschitz with constant 𝐿, so is

𝑔𝑥(𝑧) = 𝑔(𝑧) − ∇𝑔(𝑥)𝑇 𝑧, hence

𝑔𝑥(𝑧) ≤ 𝑔𝑥(𝑦) + ∇𝑔𝑥(𝑦)𝑇 (𝑧 − 𝑦) + 𝐿
2 ‖𝑧 − 𝑦‖2

2

Minimizing each side over 𝑧, and rearranging, gives
1

2𝐿‖∇𝑔(𝑥) − ∇𝑔(𝑦)‖2 ≤ 𝑔(𝑦) − 𝑔(𝑥) + ∇𝑔(𝑥)𝑇 (𝑥 − 𝑦)

Exchanging roles of 𝑥, 𝑦, and adding together, gives
1
𝐿‖∇𝑔(𝑥) − ∇𝑔(𝑦)‖2 ≤ (∇𝑔(𝑥) − ∇𝑔(𝑦))𝑇 (𝑥 − 𝑦)

Let 𝑢 = ∇𝑓(𝑥), 𝑣 = ∇𝑔(𝑦); then 𝑥 ∈ 𝜕𝑔∗(𝑢), 𝑦 ∈ 𝜕𝑔∗(𝑣), and the above reads (𝑥 − 𝑦)𝑇 (𝑢 − 𝑣) ≥ ‖𝑢−𝑣‖2

𝐿 , implying
the result.

Dual ascent 13

https://fmin.xyz
https://hse25.fmin.xyz
https://github.com/MerkulovDaniil/hse25
https://t.me/fminxyz

Slopes of 𝑓 and 𝑓∗

Proof of “⇐”: for simplicity, call 𝑔 = 𝑓∗ and 𝐿 = 1
𝜇 . As ∇𝑔 is Lipschitz with constant 𝐿, so is

𝑔𝑥(𝑧) = 𝑔(𝑧) − ∇𝑔(𝑥)𝑇 𝑧, hence

𝑔𝑥(𝑧) ≤ 𝑔𝑥(𝑦) + ∇𝑔𝑥(𝑦)𝑇 (𝑧 − 𝑦) + 𝐿
2 ‖𝑧 − 𝑦‖2

2

Minimizing each side over 𝑧, and rearranging, gives
1

2𝐿‖∇𝑔(𝑥) − ∇𝑔(𝑦)‖2 ≤ 𝑔(𝑦) − 𝑔(𝑥) + ∇𝑔(𝑥)𝑇 (𝑥 − 𝑦)

Exchanging roles of 𝑥, 𝑦, and adding together, gives
1
𝐿‖∇𝑔(𝑥) − ∇𝑔(𝑦)‖2 ≤ (∇𝑔(𝑥) − ∇𝑔(𝑦))𝑇 (𝑥 − 𝑦)

Let 𝑢 = ∇𝑓(𝑥), 𝑣 = ∇𝑔(𝑦); then 𝑥 ∈ 𝜕𝑔∗(𝑢), 𝑦 ∈ 𝜕𝑔∗(𝑣), and the above reads (𝑥 − 𝑦)𝑇 (𝑢 − 𝑣) ≥ ‖𝑢−𝑣‖2

𝐿 , implying
the result.

Dual ascent 13

https://fmin.xyz
https://hse25.fmin.xyz
https://github.com/MerkulovDaniil/hse25
https://t.me/fminxyz

Slopes of 𝑓 and 𝑓∗

Proof of “⇐”: for simplicity, call 𝑔 = 𝑓∗ and 𝐿 = 1
𝜇 . As ∇𝑔 is Lipschitz with constant 𝐿, so is

𝑔𝑥(𝑧) = 𝑔(𝑧) − ∇𝑔(𝑥)𝑇 𝑧, hence

𝑔𝑥(𝑧) ≤ 𝑔𝑥(𝑦) + ∇𝑔𝑥(𝑦)𝑇 (𝑧 − 𝑦) + 𝐿
2 ‖𝑧 − 𝑦‖2

2

Minimizing each side over 𝑧, and rearranging, gives
1

2𝐿‖∇𝑔(𝑥) − ∇𝑔(𝑦)‖2 ≤ 𝑔(𝑦) − 𝑔(𝑥) + ∇𝑔(𝑥)𝑇 (𝑥 − 𝑦)

Exchanging roles of 𝑥, 𝑦, and adding together, gives
1
𝐿‖∇𝑔(𝑥) − ∇𝑔(𝑦)‖2 ≤ (∇𝑔(𝑥) − ∇𝑔(𝑦))𝑇 (𝑥 − 𝑦)

Let 𝑢 = ∇𝑓(𝑥), 𝑣 = ∇𝑔(𝑦); then 𝑥 ∈ 𝜕𝑔∗(𝑢), 𝑦 ∈ 𝜕𝑔∗(𝑣), and the above reads (𝑥 − 𝑦)𝑇 (𝑢 − 𝑣) ≥ ‖𝑢−𝑣‖2

𝐿 , implying
the result.

Dual ascent 13

https://fmin.xyz
https://hse25.fmin.xyz
https://github.com/MerkulovDaniil/hse25
https://t.me/fminxyz

Convergence guarantees

The following results hold from combining the last fact with what we already know about gradient descent: (This is
ignoring the role of 𝐴, and thus reflects the case when the singular values of 𝐴 are all close to 1. To be more precise,
the step sizes here should be: 𝜇

𝜎max(𝐴)2 (first case) and 2
𝜎max(𝐴)2

𝜇 + 𝜎min(𝐴)2
𝐿

(second case).)

• If 𝑓 is strongly convex with parameter 𝜇, then dual gradient ascent with constant step sizes 𝛼𝑘 = 𝜇 converges at
sublinear rate 𝑂(1

𝜖).

• If 𝑓 is strongly convex with parameter 𝜇 and ∇𝑓 is Lipschitz with parameter 𝐿, then dual gradient ascent with
step sizes 𝛼𝑘 = 2

1
𝜇 + 1

𝐿
converges at linear rate 𝑂(log(1

𝜖)).
• Note that this describes convergence in the dual. Convergence in the primal requires more assumptions

Dual ascent 14

https://fmin.xyz
https://hse25.fmin.xyz
https://github.com/MerkulovDaniil/hse25
https://t.me/fminxyz

Convergence guarantees

The following results hold from combining the last fact with what we already know about gradient descent: (This is
ignoring the role of 𝐴, and thus reflects the case when the singular values of 𝐴 are all close to 1. To be more precise,
the step sizes here should be: 𝜇

𝜎max(𝐴)2 (first case) and 2
𝜎max(𝐴)2

𝜇 + 𝜎min(𝐴)2
𝐿

(second case).)

• If 𝑓 is strongly convex with parameter 𝜇, then dual gradient ascent with constant step sizes 𝛼𝑘 = 𝜇 converges at
sublinear rate 𝑂(1

𝜖).
• If 𝑓 is strongly convex with parameter 𝜇 and ∇𝑓 is Lipschitz with parameter 𝐿, then dual gradient ascent with
step sizes 𝛼𝑘 = 2

1
𝜇 + 1

𝐿
converges at linear rate 𝑂(log(1

𝜖)).

• Note that this describes convergence in the dual. Convergence in the primal requires more assumptions

Dual ascent 14

https://fmin.xyz
https://hse25.fmin.xyz
https://github.com/MerkulovDaniil/hse25
https://t.me/fminxyz

Convergence guarantees

The following results hold from combining the last fact with what we already know about gradient descent: (This is
ignoring the role of 𝐴, and thus reflects the case when the singular values of 𝐴 are all close to 1. To be more precise,
the step sizes here should be: 𝜇

𝜎max(𝐴)2 (first case) and 2
𝜎max(𝐴)2

𝜇 + 𝜎min(𝐴)2
𝐿

(second case).)

• If 𝑓 is strongly convex with parameter 𝜇, then dual gradient ascent with constant step sizes 𝛼𝑘 = 𝜇 converges at
sublinear rate 𝑂(1

𝜖).
• If 𝑓 is strongly convex with parameter 𝜇 and ∇𝑓 is Lipschitz with parameter 𝐿, then dual gradient ascent with
step sizes 𝛼𝑘 = 2

1
𝜇 + 1

𝐿
converges at linear rate 𝑂(log(1

𝜖)).
• Note that this describes convergence in the dual. Convergence in the primal requires more assumptions

Dual ascent 14

https://fmin.xyz
https://hse25.fmin.xyz
https://github.com/MerkulovDaniil/hse25
https://t.me/fminxyz

Example: equality constrained quadratic minimization.

𝑓(𝑥) = 1
2𝑥𝑇 𝐴𝑥 − 𝑏𝑇 𝑥 → min

𝑥∈R𝑛
subject to 𝐶𝑥 = 𝑑, 𝐴 ∈ S𝑛

+, 𝐶 ∈ R𝑚×𝑛, 𝑚 < 𝑛.

0 100 200
Iteration

10 14

10 10

10 6

10 2

|f(
x)

f* |

0 100 200
Iteration

10 13

10 9

10 5

10 1

x k
x

*

0 100 200
Iteration

10 13

10 9

10 5

10 1

|g
(

)
g

* |

0 100 200
Iteration

10 6

10 4

10 2

100

|
* |

Quadratic constrained optimization. n=10, m=5, =1, L=10.

Dual Gradient Ascent 1.20e-01 Projected Gradient Descent 2.00e-01

We need to find a minimum of a quadratic function in some linear subspace, defined by the solution of linear equation
𝐶𝑥 = 𝑑. This is a conditional optimization problem, we start from strongly convex setting.

Dual ascent 15

https://fmin.xyz
https://hse25.fmin.xyz
https://github.com/MerkulovDaniil/hse25
https://t.me/fminxyz

Example: equality constrained quadratic minimization.

𝑓(𝑥) = 1
2𝑥𝑇 𝐴𝑥 − 𝑏𝑇 𝑥 → min

𝑥∈R𝑛
subject to 𝐶𝑥 = 𝑑, 𝐴 ∈ S𝑛

+, 𝐶 ∈ R𝑚×𝑛, 𝑚 < 𝑛.

0 10000 20000
Iteration

10 13

10 9

10 5

10 1

103

|f(
x)

f* |

0 10000 20000
Iteration

10 13

10 9

10 5

10 1

103

x k
x

*

0 10000 20000
Iteration

10 3

10 1

101

103

|g
(

)
g

* |

0 10000 20000
Iteration

10 1

100

|
* |

Quadratic constrained optimization. n=10, m=5, =0.001, L=10.

Dual Gradient Ascent 2.00e-04 Projected Gradient Descent 2.00e-01

Situation is getting worse as soon as we loose strong convexity, the dual convergence will still be linear, but the rate is
very low.

Dual ascent 16

https://fmin.xyz
https://hse25.fmin.xyz
https://github.com/MerkulovDaniil/hse25
https://t.me/fminxyz

Dual decomposition
Consider

min
𝑥

𝐵
∑
𝑖=1

𝑓𝑖(𝑥𝑖) subject to 𝐴𝑥 = 𝑏

Here 𝑥 = (𝑥1, … , 𝑥𝐵) ∈ R𝑛 divides into 𝐵 blocks of variables, with each 𝑥𝑖 ∈ R𝑛𝑖 . We can also partition 𝐴
accordingly:

𝐴 = [𝐴1 … 𝐴𝐵], where 𝐴𝑖 ∈ R𝑚×𝑛𝑖

Simple but powerful observation, in calculation of subgradient, is that the minimization decomposes into 𝐵 separate
problems:

𝑥new ∈ argmin
𝑥

(
𝐵

∑
𝑖=1

𝑓𝑖(𝑥𝑖) + 𝑢𝑇 𝐴𝑥)

⇒ 𝑥new
𝑖 ∈ argmin

𝑥𝑖
(𝑓𝑖(𝑥𝑖) + 𝑢𝑇 𝐴𝑖𝑥𝑖) , 𝑖 = 1, … , 𝐵

𝑥𝑘
𝑖 ∈ argmin

𝑥𝑖
(𝑓𝑖(𝑥𝑖) + (𝑢𝑘−1)𝑇 𝐴𝑖𝑥𝑖) , 𝑖 = 1, … , 𝐵

𝑢𝑘 = 𝑢𝑘−1 + 𝛼𝑘 (
𝐵

∑
𝑖=1

𝐴𝑖𝑥𝑘
𝑖 − 𝑏)

Can think of these steps as:

• Broadcast: Send 𝑢 to each of the 𝐵 processors,
each optimizes in parallel to find 𝑥𝑖.• Gather: Collect 𝐴𝑖𝑥𝑖 from each processor,
update the global dual variable 𝑢.

Dual ascent 17

https://fmin.xyz
https://hse25.fmin.xyz
https://github.com/MerkulovDaniil/hse25
https://t.me/fminxyz

Dual decomposition
Consider

min
𝑥

𝐵
∑
𝑖=1

𝑓𝑖(𝑥𝑖) subject to 𝐴𝑥 = 𝑏

Here 𝑥 = (𝑥1, … , 𝑥𝐵) ∈ R𝑛 divides into 𝐵 blocks of variables, with each 𝑥𝑖 ∈ R𝑛𝑖 . We can also partition 𝐴
accordingly:

𝐴 = [𝐴1 … 𝐴𝐵], where 𝐴𝑖 ∈ R𝑚×𝑛𝑖

Simple but powerful observation, in calculation of subgradient, is that the minimization decomposes into 𝐵 separate
problems:

𝑥new ∈ argmin
𝑥

(
𝐵

∑
𝑖=1

𝑓𝑖(𝑥𝑖) + 𝑢𝑇 𝐴𝑥)

⇒ 𝑥new
𝑖 ∈ argmin

𝑥𝑖
(𝑓𝑖(𝑥𝑖) + 𝑢𝑇 𝐴𝑖𝑥𝑖) , 𝑖 = 1, … , 𝐵

𝑥𝑘
𝑖 ∈ argmin

𝑥𝑖
(𝑓𝑖(𝑥𝑖) + (𝑢𝑘−1)𝑇 𝐴𝑖𝑥𝑖) , 𝑖 = 1, … , 𝐵

𝑢𝑘 = 𝑢𝑘−1 + 𝛼𝑘 (
𝐵

∑
𝑖=1

𝐴𝑖𝑥𝑘
𝑖 − 𝑏)

Can think of these steps as:

• Broadcast: Send 𝑢 to each of the 𝐵 processors,
each optimizes in parallel to find 𝑥𝑖.• Gather: Collect 𝐴𝑖𝑥𝑖 from each processor,
update the global dual variable 𝑢.

Dual ascent 17

https://fmin.xyz
https://hse25.fmin.xyz
https://github.com/MerkulovDaniil/hse25
https://t.me/fminxyz

Dual decomposition
Consider

min
𝑥

𝐵
∑
𝑖=1

𝑓𝑖(𝑥𝑖) subject to 𝐴𝑥 = 𝑏

Here 𝑥 = (𝑥1, … , 𝑥𝐵) ∈ R𝑛 divides into 𝐵 blocks of variables, with each 𝑥𝑖 ∈ R𝑛𝑖 . We can also partition 𝐴
accordingly:

𝐴 = [𝐴1 … 𝐴𝐵], where 𝐴𝑖 ∈ R𝑚×𝑛𝑖

Simple but powerful observation, in calculation of subgradient, is that the minimization decomposes into 𝐵 separate
problems:

𝑥new ∈ argmin
𝑥

(
𝐵

∑
𝑖=1

𝑓𝑖(𝑥𝑖) + 𝑢𝑇 𝐴𝑥)

⇒ 𝑥new
𝑖 ∈ argmin

𝑥𝑖
(𝑓𝑖(𝑥𝑖) + 𝑢𝑇 𝐴𝑖𝑥𝑖) , 𝑖 = 1, … , 𝐵

𝑥𝑘
𝑖 ∈ argmin

𝑥𝑖
(𝑓𝑖(𝑥𝑖) + (𝑢𝑘−1)𝑇 𝐴𝑖𝑥𝑖) , 𝑖 = 1, … , 𝐵

𝑢𝑘 = 𝑢𝑘−1 + 𝛼𝑘 (
𝐵

∑
𝑖=1

𝐴𝑖𝑥𝑘
𝑖 − 𝑏)

Can think of these steps as:

• Broadcast: Send 𝑢 to each of the 𝐵 processors,
each optimizes in parallel to find 𝑥𝑖.• Gather: Collect 𝐴𝑖𝑥𝑖 from each processor,
update the global dual variable 𝑢.

Dual ascent 17

https://fmin.xyz
https://hse25.fmin.xyz
https://github.com/MerkulovDaniil/hse25
https://t.me/fminxyz

Dual decomposition
Consider

min
𝑥

𝐵
∑
𝑖=1

𝑓𝑖(𝑥𝑖) subject to 𝐴𝑥 = 𝑏

Here 𝑥 = (𝑥1, … , 𝑥𝐵) ∈ R𝑛 divides into 𝐵 blocks of variables, with each 𝑥𝑖 ∈ R𝑛𝑖 . We can also partition 𝐴
accordingly:

𝐴 = [𝐴1 … 𝐴𝐵], where 𝐴𝑖 ∈ R𝑚×𝑛𝑖

Simple but powerful observation, in calculation of subgradient, is that the minimization decomposes into 𝐵 separate
problems:

𝑥new ∈ argmin
𝑥

(
𝐵

∑
𝑖=1

𝑓𝑖(𝑥𝑖) + 𝑢𝑇 𝐴𝑥)

⇒ 𝑥new
𝑖 ∈ argmin

𝑥𝑖
(𝑓𝑖(𝑥𝑖) + 𝑢𝑇 𝐴𝑖𝑥𝑖) , 𝑖 = 1, … , 𝐵

𝑥𝑘
𝑖 ∈ argmin

𝑥𝑖
(𝑓𝑖(𝑥𝑖) + (𝑢𝑘−1)𝑇 𝐴𝑖𝑥𝑖) , 𝑖 = 1, … , 𝐵

𝑢𝑘 = 𝑢𝑘−1 + 𝛼𝑘 (
𝐵

∑
𝑖=1

𝐴𝑖𝑥𝑘
𝑖 − 𝑏)

Can think of these steps as:
• Broadcast: Send 𝑢 to each of the 𝐵 processors,
each optimizes in parallel to find 𝑥𝑖.

• Gather: Collect 𝐴𝑖𝑥𝑖 from each processor,
update the global dual variable 𝑢.

Dual ascent 17

https://fmin.xyz
https://hse25.fmin.xyz
https://github.com/MerkulovDaniil/hse25
https://t.me/fminxyz

Dual decomposition
Consider

min
𝑥

𝐵
∑
𝑖=1

𝑓𝑖(𝑥𝑖) subject to 𝐴𝑥 = 𝑏

Here 𝑥 = (𝑥1, … , 𝑥𝐵) ∈ R𝑛 divides into 𝐵 blocks of variables, with each 𝑥𝑖 ∈ R𝑛𝑖 . We can also partition 𝐴
accordingly:

𝐴 = [𝐴1 … 𝐴𝐵], where 𝐴𝑖 ∈ R𝑚×𝑛𝑖

Simple but powerful observation, in calculation of subgradient, is that the minimization decomposes into 𝐵 separate
problems:

𝑥new ∈ argmin
𝑥

(
𝐵

∑
𝑖=1

𝑓𝑖(𝑥𝑖) + 𝑢𝑇 𝐴𝑥)

⇒ 𝑥new
𝑖 ∈ argmin

𝑥𝑖
(𝑓𝑖(𝑥𝑖) + 𝑢𝑇 𝐴𝑖𝑥𝑖) , 𝑖 = 1, … , 𝐵

𝑥𝑘
𝑖 ∈ argmin

𝑥𝑖
(𝑓𝑖(𝑥𝑖) + (𝑢𝑘−1)𝑇 𝐴𝑖𝑥𝑖) , 𝑖 = 1, … , 𝐵

𝑢𝑘 = 𝑢𝑘−1 + 𝛼𝑘 (
𝐵

∑
𝑖=1

𝐴𝑖𝑥𝑘
𝑖 − 𝑏)

Can think of these steps as:
• Broadcast: Send 𝑢 to each of the 𝐵 processors,
each optimizes in parallel to find 𝑥𝑖.• Gather: Collect 𝐴𝑖𝑥𝑖 from each processor,
update the global dual variable 𝑢.

Dual ascent 17

https://fmin.xyz
https://hse25.fmin.xyz
https://github.com/MerkulovDaniil/hse25
https://t.me/fminxyz

Inequality constraints

Consider the optimization problem:

min
𝑥

𝐵
∑
𝑖=1

𝑓𝑖(𝑥𝑖) subject to
𝐵

∑
𝑖=1

𝐴𝑖𝑥𝑖 ≤ 𝑏

Using dual decomposition, specifically the projected subgradient method, the iterative steps can be expressed as:

• The primal update step:
𝑥𝑘

𝑖 ∈ argmin
𝑥𝑖

[𝑓𝑖(𝑥𝑖) + (𝑢𝑘−1)𝑇 𝐴𝑖𝑥𝑖] , 𝑖 = 1, … , 𝐵

• The dual update step:

𝑢𝑘 = (𝑢𝑘−1 + 𝛼𝑘 (
𝐵

∑
𝑖=1

𝐴𝑖𝑥𝑘
𝑖 − 𝑏))

+

where (𝑢)+ denotes the positive part of 𝑢, i.e., (𝑢+)𝑖 = max{0, 𝑢𝑖}, for 𝑖 = 1, … , 𝑚.

Dual ascent 18

https://fmin.xyz
https://hse25.fmin.xyz
https://github.com/MerkulovDaniil/hse25
https://t.me/fminxyz

Inequality constraints

Consider the optimization problem:

min
𝑥

𝐵
∑
𝑖=1

𝑓𝑖(𝑥𝑖) subject to
𝐵

∑
𝑖=1

𝐴𝑖𝑥𝑖 ≤ 𝑏

Using dual decomposition, specifically the projected subgradient method, the iterative steps can be expressed as:
• The primal update step:

𝑥𝑘
𝑖 ∈ argmin

𝑥𝑖
[𝑓𝑖(𝑥𝑖) + (𝑢𝑘−1)𝑇 𝐴𝑖𝑥𝑖] , 𝑖 = 1, … , 𝐵

• The dual update step:

𝑢𝑘 = (𝑢𝑘−1 + 𝛼𝑘 (
𝐵

∑
𝑖=1

𝐴𝑖𝑥𝑘
𝑖 − 𝑏))

+

where (𝑢)+ denotes the positive part of 𝑢, i.e., (𝑢+)𝑖 = max{0, 𝑢𝑖}, for 𝑖 = 1, … , 𝑚.

Dual ascent 18

https://fmin.xyz
https://hse25.fmin.xyz
https://github.com/MerkulovDaniil/hse25
https://t.me/fminxyz

Inequality constraints

Consider the optimization problem:

min
𝑥

𝐵
∑
𝑖=1

𝑓𝑖(𝑥𝑖) subject to
𝐵

∑
𝑖=1

𝐴𝑖𝑥𝑖 ≤ 𝑏

Using dual decomposition, specifically the projected subgradient method, the iterative steps can be expressed as:
• The primal update step:

𝑥𝑘
𝑖 ∈ argmin

𝑥𝑖
[𝑓𝑖(𝑥𝑖) + (𝑢𝑘−1)𝑇 𝐴𝑖𝑥𝑖] , 𝑖 = 1, … , 𝐵

• The dual update step:

𝑢𝑘 = (𝑢𝑘−1 + 𝛼𝑘 (
𝐵

∑
𝑖=1

𝐴𝑖𝑥𝑘
𝑖 − 𝑏))

+

where (𝑢)+ denotes the positive part of 𝑢, i.e., (𝑢+)𝑖 = max{0, 𝑢𝑖}, for 𝑖 = 1, … , 𝑚.

Dual ascent 18

https://fmin.xyz
https://hse25.fmin.xyz
https://github.com/MerkulovDaniil/hse25
https://t.me/fminxyz

Price Coordination Interpretation (Vandenberghe)

• System Overview: Consider a system with 𝐵 units, where each unit independently chooses its decision variable
𝑥𝑖, which determines how to allocate its goods.

• Resource Constraints: These are limits on shared resources, represented by the rows of 𝐴. Each component of
the dual variable 𝑢𝑗 represents the price of resource 𝑗.

• Dual Update Rule:
𝑢new

𝑗 = (𝑢𝑗 − 𝑡𝑠𝑗)+, 𝑗 = 1, … , 𝑚

where 𝑠 = 𝑏 − ∑𝐵
𝑖=1 𝐴𝑖𝑥𝑖 represents the slacks.

• Price Adjustments:

• Increase price 𝑢𝑗 if resource 𝑗 is over-utilized (𝑠𝑗 < 0).
• Decrease price 𝑢𝑗 if resource 𝑗 is under-utilized (𝑠𝑗 > 0).
• Never let prices get negative; hence the use of the positive part notation (⋅)+.

Dual ascent 19

https://fmin.xyz
https://hse25.fmin.xyz
https://github.com/MerkulovDaniil/hse25
https://t.me/fminxyz

Price Coordination Interpretation (Vandenberghe)

• System Overview: Consider a system with 𝐵 units, where each unit independently chooses its decision variable
𝑥𝑖, which determines how to allocate its goods.

• Resource Constraints: These are limits on shared resources, represented by the rows of 𝐴. Each component of
the dual variable 𝑢𝑗 represents the price of resource 𝑗.

• Dual Update Rule:
𝑢new

𝑗 = (𝑢𝑗 − 𝑡𝑠𝑗)+, 𝑗 = 1, … , 𝑚

where 𝑠 = 𝑏 − ∑𝐵
𝑖=1 𝐴𝑖𝑥𝑖 represents the slacks.

• Price Adjustments:

• Increase price 𝑢𝑗 if resource 𝑗 is over-utilized (𝑠𝑗 < 0).
• Decrease price 𝑢𝑗 if resource 𝑗 is under-utilized (𝑠𝑗 > 0).
• Never let prices get negative; hence the use of the positive part notation (⋅)+.

Dual ascent 19

https://fmin.xyz
https://hse25.fmin.xyz
https://github.com/MerkulovDaniil/hse25
https://t.me/fminxyz

Price Coordination Interpretation (Vandenberghe)

• System Overview: Consider a system with 𝐵 units, where each unit independently chooses its decision variable
𝑥𝑖, which determines how to allocate its goods.

• Resource Constraints: These are limits on shared resources, represented by the rows of 𝐴. Each component of
the dual variable 𝑢𝑗 represents the price of resource 𝑗.

• Dual Update Rule:
𝑢new

𝑗 = (𝑢𝑗 − 𝑡𝑠𝑗)+, 𝑗 = 1, … , 𝑚

where 𝑠 = 𝑏 − ∑𝐵
𝑖=1 𝐴𝑖𝑥𝑖 represents the slacks.

• Price Adjustments:

• Increase price 𝑢𝑗 if resource 𝑗 is over-utilized (𝑠𝑗 < 0).
• Decrease price 𝑢𝑗 if resource 𝑗 is under-utilized (𝑠𝑗 > 0).
• Never let prices get negative; hence the use of the positive part notation (⋅)+.

Dual ascent 19

https://fmin.xyz
https://hse25.fmin.xyz
https://github.com/MerkulovDaniil/hse25
https://t.me/fminxyz

Price Coordination Interpretation (Vandenberghe)

• System Overview: Consider a system with 𝐵 units, where each unit independently chooses its decision variable
𝑥𝑖, which determines how to allocate its goods.

• Resource Constraints: These are limits on shared resources, represented by the rows of 𝐴. Each component of
the dual variable 𝑢𝑗 represents the price of resource 𝑗.

• Dual Update Rule:
𝑢new

𝑗 = (𝑢𝑗 − 𝑡𝑠𝑗)+, 𝑗 = 1, … , 𝑚

where 𝑠 = 𝑏 − ∑𝐵
𝑖=1 𝐴𝑖𝑥𝑖 represents the slacks.

• Price Adjustments:

• Increase price 𝑢𝑗 if resource 𝑗 is over-utilized (𝑠𝑗 < 0).
• Decrease price 𝑢𝑗 if resource 𝑗 is under-utilized (𝑠𝑗 > 0).
• Never let prices get negative; hence the use of the positive part notation (⋅)+.

Dual ascent 19

https://fmin.xyz
https://hse25.fmin.xyz
https://github.com/MerkulovDaniil/hse25
https://t.me/fminxyz

Price Coordination Interpretation (Vandenberghe)

• System Overview: Consider a system with 𝐵 units, where each unit independently chooses its decision variable
𝑥𝑖, which determines how to allocate its goods.

• Resource Constraints: These are limits on shared resources, represented by the rows of 𝐴. Each component of
the dual variable 𝑢𝑗 represents the price of resource 𝑗.

• Dual Update Rule:
𝑢new

𝑗 = (𝑢𝑗 − 𝑡𝑠𝑗)+, 𝑗 = 1, … , 𝑚

where 𝑠 = 𝑏 − ∑𝐵
𝑖=1 𝐴𝑖𝑥𝑖 represents the slacks.

• Price Adjustments:
• Increase price 𝑢𝑗 if resource 𝑗 is over-utilized (𝑠𝑗 < 0).

• Decrease price 𝑢𝑗 if resource 𝑗 is under-utilized (𝑠𝑗 > 0).
• Never let prices get negative; hence the use of the positive part notation (⋅)+.

Dual ascent 19

https://fmin.xyz
https://hse25.fmin.xyz
https://github.com/MerkulovDaniil/hse25
https://t.me/fminxyz

Price Coordination Interpretation (Vandenberghe)

• System Overview: Consider a system with 𝐵 units, where each unit independently chooses its decision variable
𝑥𝑖, which determines how to allocate its goods.

• Resource Constraints: These are limits on shared resources, represented by the rows of 𝐴. Each component of
the dual variable 𝑢𝑗 represents the price of resource 𝑗.

• Dual Update Rule:
𝑢new

𝑗 = (𝑢𝑗 − 𝑡𝑠𝑗)+, 𝑗 = 1, … , 𝑚

where 𝑠 = 𝑏 − ∑𝐵
𝑖=1 𝐴𝑖𝑥𝑖 represents the slacks.

• Price Adjustments:
• Increase price 𝑢𝑗 if resource 𝑗 is over-utilized (𝑠𝑗 < 0).
• Decrease price 𝑢𝑗 if resource 𝑗 is under-utilized (𝑠𝑗 > 0).

• Never let prices get negative; hence the use of the positive part notation (⋅)+.

Dual ascent 19

https://fmin.xyz
https://hse25.fmin.xyz
https://github.com/MerkulovDaniil/hse25
https://t.me/fminxyz

Price Coordination Interpretation (Vandenberghe)

• System Overview: Consider a system with 𝐵 units, where each unit independently chooses its decision variable
𝑥𝑖, which determines how to allocate its goods.

• Resource Constraints: These are limits on shared resources, represented by the rows of 𝐴. Each component of
the dual variable 𝑢𝑗 represents the price of resource 𝑗.

• Dual Update Rule:
𝑢new

𝑗 = (𝑢𝑗 − 𝑡𝑠𝑗)+, 𝑗 = 1, … , 𝑚

where 𝑠 = 𝑏 − ∑𝐵
𝑖=1 𝐴𝑖𝑥𝑖 represents the slacks.

• Price Adjustments:
• Increase price 𝑢𝑗 if resource 𝑗 is over-utilized (𝑠𝑗 < 0).
• Decrease price 𝑢𝑗 if resource 𝑗 is under-utilized (𝑠𝑗 > 0).
• Never let prices get negative; hence the use of the positive part notation (⋅)+.

Dual ascent 19

https://fmin.xyz
https://hse25.fmin.xyz
https://github.com/MerkulovDaniil/hse25
https://t.me/fminxyz

Augmented Lagrangian method

Augmented Lagrangian method 20

https://fmin.xyz
https://hse25.fmin.xyz
https://github.com/MerkulovDaniil/hse25
https://t.me/fminxyz

Augmented Lagrangian method aka method of multipliers

Dual ascent disadvantage: convergence requires strong conditions. Augmented Lagrangian method transforms the
primal problem:

min
𝑥

𝑓(𝑥) + 𝜌
2 ‖𝐴𝑥 − 𝑏‖2

s.t. 𝐴𝑥 = 𝑏

where 𝜌 > 0 is a parameter. This formulation is clearly equivalent to the original problem. The problem is strongly
convex if matrix 𝐴 has full column rank.
Dual gradient ascent: The iterative updates are given by:

𝑥𝑘 = argmin
𝑥

[𝑓(𝑥) + (𝑢𝑘−1)𝑇 𝐴𝑥 + 𝜌
2 ‖𝐴𝑥 − 𝑏‖2]

𝑢𝑘 = 𝑢𝑘−1 + 𝜌(𝐴𝑥𝑘 − 𝑏)

Augmented Lagrangian method 21

https://fmin.xyz
https://hse25.fmin.xyz
https://github.com/MerkulovDaniil/hse25
https://t.me/fminxyz

Augmented Lagrangian method aka method of multipliers

Dual ascent disadvantage: convergence requires strong conditions. Augmented Lagrangian method transforms the
primal problem:

min
𝑥

𝑓(𝑥) + 𝜌
2 ‖𝐴𝑥 − 𝑏‖2

s.t. 𝐴𝑥 = 𝑏

where 𝜌 > 0 is a parameter. This formulation is clearly equivalent to the original problem. The problem is strongly
convex if matrix 𝐴 has full column rank.

Dual gradient ascent: The iterative updates are given by:

𝑥𝑘 = argmin
𝑥

[𝑓(𝑥) + (𝑢𝑘−1)𝑇 𝐴𝑥 + 𝜌
2 ‖𝐴𝑥 − 𝑏‖2]

𝑢𝑘 = 𝑢𝑘−1 + 𝜌(𝐴𝑥𝑘 − 𝑏)

Augmented Lagrangian method 21

https://fmin.xyz
https://hse25.fmin.xyz
https://github.com/MerkulovDaniil/hse25
https://t.me/fminxyz

Augmented Lagrangian method aka method of multipliers

Dual ascent disadvantage: convergence requires strong conditions. Augmented Lagrangian method transforms the
primal problem:

min
𝑥

𝑓(𝑥) + 𝜌
2 ‖𝐴𝑥 − 𝑏‖2

s.t. 𝐴𝑥 = 𝑏

where 𝜌 > 0 is a parameter. This formulation is clearly equivalent to the original problem. The problem is strongly
convex if matrix 𝐴 has full column rank.
Dual gradient ascent: The iterative updates are given by:

𝑥𝑘 = argmin
𝑥

[𝑓(𝑥) + (𝑢𝑘−1)𝑇 𝐴𝑥 + 𝜌
2 ‖𝐴𝑥 − 𝑏‖2]

𝑢𝑘 = 𝑢𝑘−1 + 𝜌(𝐴𝑥𝑘 − 𝑏)

Augmented Lagrangian method 21

https://fmin.xyz
https://hse25.fmin.xyz
https://github.com/MerkulovDaniil/hse25
https://t.me/fminxyz

Augmented Lagrangian method aka method of multipliers

Notice step size choice 𝛼𝑘 = 𝜌 in dual algorithm. Why?
Since 𝑥𝑘 minimizes the function:

𝑓(𝑥) + (𝑢𝑘−1)𝑇 𝐴𝑥 + 𝜌
2 ‖𝐴𝑥 − 𝑏‖2

over 𝑥, we have the stationarity condition:

0 ∈ 𝜕𝑓(𝑥𝑘) + 𝐴𝑇 (𝑢𝑘−1 + 𝜌(𝐴𝑥𝑘 − 𝑏))

which simplifies to:
𝜕𝑓(𝑥𝑘) + 𝐴𝑇 𝑢𝑘

This represents the stationarity condition for the original primal problem; under mild conditions, 𝐴𝑥𝑘 − 𝑏 → 0 as
𝑘 → ∞, so the KKT conditions are satisfied in the limit and 𝑥𝑘, 𝑢𝑘 converge to the solutions.

• Advantage: The augmented Lagrangian gives better convergence.
• Disadvantage: We lose decomposability! (Separability is ruined)

Augmented Lagrangian method 22

https://fmin.xyz
https://hse25.fmin.xyz
https://github.com/MerkulovDaniil/hse25
https://t.me/fminxyz

Augmented Lagrangian method aka method of multipliers

Notice step size choice 𝛼𝑘 = 𝜌 in dual algorithm. Why?
Since 𝑥𝑘 minimizes the function:

𝑓(𝑥) + (𝑢𝑘−1)𝑇 𝐴𝑥 + 𝜌
2 ‖𝐴𝑥 − 𝑏‖2

over 𝑥, we have the stationarity condition:

0 ∈ 𝜕𝑓(𝑥𝑘) + 𝐴𝑇 (𝑢𝑘−1 + 𝜌(𝐴𝑥𝑘 − 𝑏))

which simplifies to:
𝜕𝑓(𝑥𝑘) + 𝐴𝑇 𝑢𝑘

This represents the stationarity condition for the original primal problem; under mild conditions, 𝐴𝑥𝑘 − 𝑏 → 0 as
𝑘 → ∞, so the KKT conditions are satisfied in the limit and 𝑥𝑘, 𝑢𝑘 converge to the solutions.

• Advantage: The augmented Lagrangian gives better convergence.

• Disadvantage: We lose decomposability! (Separability is ruined)

Augmented Lagrangian method 22

https://fmin.xyz
https://hse25.fmin.xyz
https://github.com/MerkulovDaniil/hse25
https://t.me/fminxyz

Augmented Lagrangian method aka method of multipliers

Notice step size choice 𝛼𝑘 = 𝜌 in dual algorithm. Why?
Since 𝑥𝑘 minimizes the function:

𝑓(𝑥) + (𝑢𝑘−1)𝑇 𝐴𝑥 + 𝜌
2 ‖𝐴𝑥 − 𝑏‖2

over 𝑥, we have the stationarity condition:

0 ∈ 𝜕𝑓(𝑥𝑘) + 𝐴𝑇 (𝑢𝑘−1 + 𝜌(𝐴𝑥𝑘 − 𝑏))

which simplifies to:
𝜕𝑓(𝑥𝑘) + 𝐴𝑇 𝑢𝑘

This represents the stationarity condition for the original primal problem; under mild conditions, 𝐴𝑥𝑘 − 𝑏 → 0 as
𝑘 → ∞, so the KKT conditions are satisfied in the limit and 𝑥𝑘, 𝑢𝑘 converge to the solutions.

• Advantage: The augmented Lagrangian gives better convergence.
• Disadvantage: We lose decomposability! (Separability is ruined)

Augmented Lagrangian method 22

https://fmin.xyz
https://hse25.fmin.xyz
https://github.com/MerkulovDaniil/hse25
https://t.me/fminxyz

Example: equality constrained quadratic minimization.

𝑓(𝑥) = 1
2𝑥𝑇 𝐴𝑥 − 𝑏𝑇 𝑥 → min

𝑥∈R𝑛
subject to 𝐶𝑥 = 𝑑, 𝐴 ∈ S𝑛

+, 𝐶 ∈ R𝑚×𝑛, 𝑚 < 𝑛.

0 100 200
Iteration

10 14

10 10

10 6

10 2

|f(
x)

f* |

0 100 200
Iteration

10 13

10 9

10 5

10 1

x k
x

*

0 100 200
Iteration

10 14

10 10

10 6

10 2

|g
(

)
g

* |

0 100 200
Iteration

10 12

10 9

10 6

10 3

100

|
* |

Quadratic constrained optimization. n=10, m=5, =1, L=10.

Dual Gradient Ascent 1.20e-01 Augmented Lagrangian 100.00 Projected Gradient Descent 2.00e-01

One can see, clear numerical superiority of the Augmented Lagrangian method both in convex and strongly convex
case.

Augmented Lagrangian method 23

https://fmin.xyz
https://hse25.fmin.xyz
https://github.com/MerkulovDaniil/hse25
https://t.me/fminxyz

Example: equality constrained quadratic minimization.

𝑓(𝑥) = 1
2𝑥𝑇 𝐴𝑥 − 𝑏𝑇 𝑥 → min

𝑥∈R𝑛
subject to 𝐶𝑥 = 𝑑, 𝐴 ∈ S𝑛

+, 𝐶 ∈ R𝑚×𝑛, 𝑚 < 𝑛.

0 100 200
Iteration

10 13

10 9

10 5

10 1

103

|f(
x)

f* |

0 100 200
Iteration

10 13

10 9

10 5

10 1

103

x k
x

*

0 100 200
Iteration

10 14

10 10

10 6

10 2

102

|g
(

)
g

* |

0 100 200
Iteration

10 13

10 10

10 7

10 4

10 1

|
* |

Quadratic constrained optimization. n=10, m=5, =0.001, L=10.

Dual Gradient Ascent 2.00e-04 Augmented Lagrangian 10.00 Projected Gradient Descent 2.00e-01

One can see, clear numerical superiority of the Augmented Lagrangian method both in convex and strongly convex
case.

Augmented Lagrangian method 24

https://fmin.xyz
https://hse25.fmin.xyz
https://github.com/MerkulovDaniil/hse25
https://t.me/fminxyz

Introduction to ADMM

Introduction to ADMM 25

https://fmin.xyz
https://hse25.fmin.xyz
https://github.com/MerkulovDaniil/hse25
https://t.me/fminxyz

Alternating Direction Method of Multipliers (ADMM)

Alternating direction method of multipliers or ADMM aims for the best of both worlds. Consider the following
optimization problem:
Minimize the function:

min
𝑥,𝑧

𝑓(𝑥) + 𝑔(𝑧)

s.t. 𝐴𝑥 + 𝐵𝑧 = 𝑐

We augment the objective to include a penalty term for constraint violation:

min
𝑥,𝑧

𝑓(𝑥) + 𝑔(𝑧) + 𝜌
2 ‖𝐴𝑥 + 𝐵𝑧 − 𝑐‖2

s.t. 𝐴𝑥 + 𝐵𝑧 = 𝑐

where 𝜌 > 0 is a parameter. The augmented Lagrangian for this problem is defined as:

𝐿𝜌(𝑥, 𝑧, 𝑢) = 𝑓(𝑥) + 𝑔(𝑧) + 𝑢𝑇 (𝐴𝑥 + 𝐵𝑧 − 𝑐) + 𝜌
2 ‖𝐴𝑥 + 𝐵𝑧 − 𝑐‖2

Introduction to ADMM 26

https://fmin.xyz
https://hse25.fmin.xyz
https://github.com/MerkulovDaniil/hse25
https://t.me/fminxyz

Alternating Direction Method of Multipliers (ADMM)

Alternating direction method of multipliers or ADMM aims for the best of both worlds. Consider the following
optimization problem:
Minimize the function:

min
𝑥,𝑧

𝑓(𝑥) + 𝑔(𝑧)

s.t. 𝐴𝑥 + 𝐵𝑧 = 𝑐

We augment the objective to include a penalty term for constraint violation:

min
𝑥,𝑧

𝑓(𝑥) + 𝑔(𝑧) + 𝜌
2 ‖𝐴𝑥 + 𝐵𝑧 − 𝑐‖2

s.t. 𝐴𝑥 + 𝐵𝑧 = 𝑐

where 𝜌 > 0 is a parameter. The augmented Lagrangian for this problem is defined as:

𝐿𝜌(𝑥, 𝑧, 𝑢) = 𝑓(𝑥) + 𝑔(𝑧) + 𝑢𝑇 (𝐴𝑥 + 𝐵𝑧 − 𝑐) + 𝜌
2 ‖𝐴𝑥 + 𝐵𝑧 − 𝑐‖2

Introduction to ADMM 26

https://fmin.xyz
https://hse25.fmin.xyz
https://github.com/MerkulovDaniil/hse25
https://t.me/fminxyz

Alternating Direction Method of Multipliers (ADMM)

Alternating direction method of multipliers or ADMM aims for the best of both worlds. Consider the following
optimization problem:
Minimize the function:

min
𝑥,𝑧

𝑓(𝑥) + 𝑔(𝑧)

s.t. 𝐴𝑥 + 𝐵𝑧 = 𝑐

We augment the objective to include a penalty term for constraint violation:

min
𝑥,𝑧

𝑓(𝑥) + 𝑔(𝑧) + 𝜌
2 ‖𝐴𝑥 + 𝐵𝑧 − 𝑐‖2

s.t. 𝐴𝑥 + 𝐵𝑧 = 𝑐

where 𝜌 > 0 is a parameter. The augmented Lagrangian for this problem is defined as:

𝐿𝜌(𝑥, 𝑧, 𝑢) = 𝑓(𝑥) + 𝑔(𝑧) + 𝑢𝑇 (𝐴𝑥 + 𝐵𝑧 − 𝑐) + 𝜌
2 ‖𝐴𝑥 + 𝐵𝑧 − 𝑐‖2

Introduction to ADMM 26

https://fmin.xyz
https://hse25.fmin.xyz
https://github.com/MerkulovDaniil/hse25
https://t.me/fminxyz

Alternating Direction Method of Multipliers (ADMM)

ADMM repeats the following steps, for 𝑘 = 1, 2, 3, …:
1. Update 𝑥:

𝑥𝑘 = argmin
𝑥

𝐿𝜌(𝑥, 𝑧𝑘−1, 𝑢𝑘−1)

2. Update 𝑧:
𝑧𝑘 = argmin

𝑧
𝐿𝜌(𝑥𝑘, 𝑧, 𝑢𝑘−1)

3. Update 𝑢:
𝑢𝑘 = 𝑢𝑘−1 + 𝜌(𝐴𝑥𝑘 + 𝐵𝑧𝑘 − 𝑐)

Note: The usual method of multipliers would replace the first two steps by a joint minimization:

(𝑥(𝑘), 𝑧(𝑘)) = argmin
𝑥,𝑧

𝐿𝜌(𝑥, 𝑧, 𝑢(𝑘−1))

Introduction to ADMM 27

https://fmin.xyz
https://hse25.fmin.xyz
https://github.com/MerkulovDaniil/hse25
https://t.me/fminxyz

Alternating Direction Method of Multipliers (ADMM)

ADMM repeats the following steps, for 𝑘 = 1, 2, 3, …:
1. Update 𝑥:

𝑥𝑘 = argmin
𝑥

𝐿𝜌(𝑥, 𝑧𝑘−1, 𝑢𝑘−1)

2. Update 𝑧:
𝑧𝑘 = argmin

𝑧
𝐿𝜌(𝑥𝑘, 𝑧, 𝑢𝑘−1)

3. Update 𝑢:
𝑢𝑘 = 𝑢𝑘−1 + 𝜌(𝐴𝑥𝑘 + 𝐵𝑧𝑘 − 𝑐)

Note: The usual method of multipliers would replace the first two steps by a joint minimization:

(𝑥(𝑘), 𝑧(𝑘)) = argmin
𝑥,𝑧

𝐿𝜌(𝑥, 𝑧, 𝑢(𝑘−1))

Introduction to ADMM 27

https://fmin.xyz
https://hse25.fmin.xyz
https://github.com/MerkulovDaniil/hse25
https://t.me/fminxyz

Alternating Direction Method of Multipliers (ADMM)

ADMM repeats the following steps, for 𝑘 = 1, 2, 3, …:
1. Update 𝑥:

𝑥𝑘 = argmin
𝑥

𝐿𝜌(𝑥, 𝑧𝑘−1, 𝑢𝑘−1)

2. Update 𝑧:
𝑧𝑘 = argmin

𝑧
𝐿𝜌(𝑥𝑘, 𝑧, 𝑢𝑘−1)

3. Update 𝑢:
𝑢𝑘 = 𝑢𝑘−1 + 𝜌(𝐴𝑥𝑘 + 𝐵𝑧𝑘 − 𝑐)

Note: The usual method of multipliers would replace the first two steps by a joint minimization:

(𝑥(𝑘), 𝑧(𝑘)) = argmin
𝑥,𝑧

𝐿𝜌(𝑥, 𝑧, 𝑢(𝑘−1))

Introduction to ADMM 27

https://fmin.xyz
https://hse25.fmin.xyz
https://github.com/MerkulovDaniil/hse25
https://t.me/fminxyz

Alternating Direction Method of Multipliers (ADMM)

ADMM repeats the following steps, for 𝑘 = 1, 2, 3, …:
1. Update 𝑥:

𝑥𝑘 = argmin
𝑥

𝐿𝜌(𝑥, 𝑧𝑘−1, 𝑢𝑘−1)

2. Update 𝑧:
𝑧𝑘 = argmin

𝑧
𝐿𝜌(𝑥𝑘, 𝑧, 𝑢𝑘−1)

3. Update 𝑢:
𝑢𝑘 = 𝑢𝑘−1 + 𝜌(𝐴𝑥𝑘 + 𝐵𝑧𝑘 − 𝑐)

Note: The usual method of multipliers would replace the first two steps by a joint minimization:

(𝑥(𝑘), 𝑧(𝑘)) = argmin
𝑥,𝑧

𝐿𝜌(𝑥, 𝑧, 𝑢(𝑘−1))

Introduction to ADMM 27

https://fmin.xyz
https://hse25.fmin.xyz
https://github.com/MerkulovDaniil/hse25
https://t.me/fminxyz

Alternating Direction Method of Multipliers (ADMM)

ADMM repeats the following steps, for 𝑘 = 1, 2, 3, …:
1. Update 𝑥:

𝑥𝑘 = argmin
𝑥

𝐿𝜌(𝑥, 𝑧𝑘−1, 𝑢𝑘−1)

2. Update 𝑧:
𝑧𝑘 = argmin

𝑧
𝐿𝜌(𝑥𝑘, 𝑧, 𝑢𝑘−1)

3. Update 𝑢:
𝑢𝑘 = 𝑢𝑘−1 + 𝜌(𝐴𝑥𝑘 + 𝐵𝑧𝑘 − 𝑐)

Note: The usual method of multipliers would replace the first two steps by a joint minimization:

(𝑥(𝑘), 𝑧(𝑘)) = argmin
𝑥,𝑧

𝐿𝜌(𝑥, 𝑧, 𝑢(𝑘−1))

Introduction to ADMM 27

https://fmin.xyz
https://hse25.fmin.xyz
https://github.com/MerkulovDaniil/hse25
https://t.me/fminxyz

Example: Alternating Projections
Consider finding a point in the intersection of convex sets
𝑈, 𝑉 ⊆ R𝑛:

min
𝑥

𝐼𝑈(𝑥) + 𝐼𝑉 (𝑥)

To transform this problem into ADMM form, we express it
as:

min
𝑥,𝑧

𝐼𝑈(𝑥) + 𝐼𝑉 (𝑧) subject to 𝑥 − 𝑧 = 0

Each ADMM cycle involves two projections:

𝑥𝑘 = argmin
𝑥

𝑃𝑈 (𝑧𝑘−1 − 𝑤𝑘−1)
𝑧𝑘 = argmin

𝑧
𝑃𝑉 (𝑥𝑘 + 𝑤𝑘−1)

𝑤𝑘 = 𝑤𝑘−1 + 𝑥𝑘 − 𝑧𝑘

Introduction to ADMM 28

https://fmin.xyz
https://hse25.fmin.xyz
https://github.com/MerkulovDaniil/hse25
https://t.me/fminxyz

Sources

• Ryan Tibshirani. Convex Optimization 10-725

Introduction to ADMM 29

https://www.stat.cmu.edu/~ryantibs/convexopt-F18/lectures/dual-ascent.pdf
https://fmin.xyz
https://hse25.fmin.xyz
https://github.com/MerkulovDaniil/hse25
https://t.me/fminxyz

	Introduction to dual methods
	Conjugate functions
	Dual ascent
	Augmented Lagrangian method
	Introduction to ADMM

