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Why do we want to solve dual problems?

Primal problem Dual problem
( )fo(w) — min 9\ v) =minL(z, A, v) =
st. fi(x)<0,i=1,....m . m P
S mig (o) + Erdie) + Luhi(o)) > max
st. A >0

® Shadow Prices. In economics and resource allocation problems, dual variables can be interpreted as shadow
prices, providing economic insights into resource utilization and constraints.
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Why do we want to solve dual problems?

Primal problem Dual problem
( )fo(w) — min 9\ v) =minL(z, A, v) =
st. fi(x)<0,i=1,....m . m P
S mig (o) + Erdie) + Luhi(o)) > max
st. A >0

® Shadow Prices. In economics and resource allocation problems, dual variables can be interpreted as shadow
prices, providing economic insights into resource utilization and constraints.

® Market Equilibrium. Dual problems often represent market equilibrium conditions, making them essential for
economic modeling and analysis.
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Why do we want to solve dual problems?

Primal problem Dual problem
( )fo(w) — min 9\ v) =minL(z, A, v) =
st. fi(x)<0,i=1,....m . m P
S mig (o) + Erdie) + Luhi(o)) > max
st. A >0

® Shadow Prices. In economics and resource allocation problems, dual variables can be interpreted as shadow
prices, providing economic insights into resource utilization and constraints.
® Market Equilibrium. Dual problems often represent market equilibrium conditions, making them essential for

economic modeling and analysis.
® Dual Problems Provide Bounds. Dual problems often offer bounds on the optimal value of the primal problem.

This can be useful for assessing the quality of approximate solutions.
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Why do we want to solve dual problems?

Primal problem Dual problem
( )fo(w) — min 9\ v) =minL(z, A, v) =
st. fi(x)<0,i=1,....m . m P
S mig (o) + Erdie) + Luhi(o)) > max
st. A >0

® Shadow Prices. In economics and resource allocation problems, dual variables can be interpreted as shadow
prices, providing economic insights into resource utilization and constraints.

® Market Equilibrium. Dual problems often represent market equilibrium conditions, making them essential for
economic modeling and analysis.

® Dual Problems Provide Bounds. Dual problems often offer bounds on the optimal value of the primal problem.
This can be useful for assessing the quality of approximate solutions.

® Duality Gap. The difference between the primal and dual solutions (duality gap) provides valuable information
about the solution's optimality.
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Conjugate functions
Recall that given f: R™ — R, the function
defined by

FHy) = max [y"a — f(x)]

is called its conjugate.
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Geometrical intution
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Conjugate function properties

Recall that given f: R™ — R, the function defined by
f*y) = max [y"x — f(x)]

is called its conjugate.

® Conjugates appear frequently in dual programs, since

—f*(y) = min [f(x) —y" 2]
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Conjugate function properties

Recall that given f: R™ — R, the function defined by
f*y) = max [y"x — f(x)]

is called its conjugate.

® Conjugates appear frequently in dual programs, since
—F(y) = min [f(z) — 4]
® |f fis closed and convex, then f** = f. Also,

redf(y) yedflz)exe argmzin [f(z) —yT]
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Conjugate function properties

Recall that given f: R™ — R, the function defined by
f*y) = max [y"x — f(x)]

is called its conjugate.

® Conjugates appear frequently in dual programs, since
—f*(y) = min [f(x) —y" 2]
® |f fis closed and convex, then f** = f. Also,
redf(y) yedflz)exe argmzin [f(z) —yT]

® [f f is strictly convex, then
Vi*(y) = arg min [f(z) —yT2]
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Conjugate function properties (proofs)

We will show that = € df*(y) < y € df(z), assuming that f is convex and closed.

® Proof of <: Suppose y € df(x). Then z € M,, the set of maximizers of yTz — f(z) over z. But

Fry) =max{y"z— f(z)} and  Of*(y) = cl(conv( | {z})).

z€M,

Thus z € df*(y).

‘f - nin Conjugate functions


https://fmin.xyz
https://hse25.fmin.xyz
https://github.com/MerkulovDaniil/hse25
https://t.me/fminxyz

Conjugate function properties (proofs)

We will show that = € df*(y) < y € df(z), assuming that f is convex and closed.

® Proof of <=: Suppose y € df(x). Then z € M,, the set of maximizers of yTz — f(z) over z. But

Fry) =max{y"z— f(z)} and  Of*(y) = cl(conv( | {z})).

z€M,

Thus z € df*(y).
® Proof of =: From what we showed above, if z € 9f*(y), then y € 0f*(z), but f* = f.
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Conjugate function properties (proofs)

We will show that = € df*(y) < y € df(z), assuming that f is convex and closed.
® Proof of <=: Suppose y € df(x). Then z € M,, the set of maximizers of yTz — f(z) over z. But

Fry) =max{y"z— f(z)} and  Of*(y) = cl(conv( | {z})).

zE]Wy
Thus z € df*(y).
® Proof of =: From what we showed above, if z € 9f*(y), then y € 0f*(z), but f* = f.
Clearly y € 0f(x) < = € argmin, {f(z) — yT2}

Lastly, if f is strictly convex, then we know that f(z) —y”z has a unique minimizer over z, and this must be V f*(y).
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Dual (sub)gradient method

Even if we can’t derive dual (conjugate) in closed form, we can still use dual-based gradient or subgradient methods.

Consider the problem:
min f(xz) subjectto Az =1b
x

‘/ - fny"; Dual ascent 0 0
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Dual (sub)gradient method

Even if we can’t derive dual (conjugate) in closed form, we can still use dual-based gradient or subgradient methods.

Consider the problem:
min f(xz) subjectto Az =1b
x

Its dual problem is:
max —f* (—ATu) — bTu

where f* is the conjugate of f. Defining g(u) = — f*(—ATu) — bTu, note that:
Ag(u) = Adf*(—ATu) — b

— min
‘/ 2,9,z Dual ascent
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Dual (sub)gradient method

Even if we can’t derive dual (conjugate) in closed form, we can still use dual-based gradient or subgradient methods.

Consider the problem:
min f(xz) subjectto Az =1b
x

Its dual problem is:
max —f* (—ATu) — bTu

where f* is the conjugate of f. Defining g(u) = — f*(—ATu) — bTu, note that:
Ag(u) = Adf*(—ATu) — b

Therefore, using what we know about conjugates
dg(u) = Az —b where z € argmin [f(z) + u” Az]
z
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Dual (sub)gradient method

Even if we can’t derive dual (conjugate) in closed form, we can still use dual-based gradient or subgradient methods.

Consider the problem:
min f(xz) subjectto Az =1b
x

Its dual problem is:
max —f*(—=ATu) —bTu
where f* is the conjugate of f. Defining g(u) = — f*(—ATu) — bTu, note that:
Ag(u) = Adf*(—ATu) — b
Therefore, using what we know about conjugates
dg(u) = Az —b where z € arg min [f(z) +uT Az]

Dual ascent method for maximizing dual objective: ® Step sizes oy, k =1,2,3,..., are chosen in standard

ways.

T}, € argmin [f(z) + (up_1)T Az]

uy = uy_y + oy (Azy, —b)
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Dual (sub)gradient method

Even if we can’t derive dual (conjugate) in closed form, we can still use dual-based gradient or subgradient methods.

Consider the problem:
min f(xz) subjectto Az =1b
x

Its dual problem is:

max —f* (—ATu) — bTu
where f* is the conjugate of f. Defining g(u) = — f*(—ATu) — bTu, note that:

Ag(u) = Adf*(—ATu) — b
Therefore, using what we know about conjugates

dg(u) = Az —b where z € argmin [f(z) + u” Az]
z

Dual ascent method for maximizing dual objective: ® Step sizes oy, k =1,2,3,..., are chosen in standard
ways.
i ® Proximal gradients and acceleration can be applied as
), € arg n}‘vin [f(x) —+ (uk_l)TA;d they would usually.

uy = uy_y + oy (Azy, —b)
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Slopes of f and f*
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Slopes of f and f*

Assume that f is a closed and convex function. Then f is strongly convex with parameter y < V f* is Lipschitz with
parameter 1/

lf%ﬁ}‘i Dual ascent P00 O 12
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Slopes of f and f*

Assume that f is a closed and convex function. Then f is strongly convex with parameter y < V f* is Lipschitz with
parameter 1/

Proof of “=": Recall, if g is strongly convex with minimizer x, then

9(y) > g(x) + Gy — . forally
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Slopes of f and f*

Assume that f is a closed and convex function. Then f is strongly convex with parameter y < V f* is Lipschitz with
parameter 1/
Proof of “=": Recall, if g is strongly convex with minimizer x, then
u
9(y) 2 g() + Sy —al*, forally
Hence, defining z,, = Vf*(u) and z, = V f*(v),
1
f(q"'u) - uT'Tv Z f(Tu> - uTxu + §||1:u - I’UHQ

f('ru> - UTwu > f(xv) - UTxv + g”xu - va2

— min
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Slopes of f and f*

Assume that f is a closed and convex function. Then f is strongly convex with parameter y < V f* is Lipschitz with
parameter 1/
Proof of “=": Recall, if g is strongly convex with minimizer x, then
1
9(y) 2 g() + Sy —al*, forally
Hence, defining z,, = Vf*(u) and z, = V f*(v),
I
f(q"'u) - uT'Tv Z f(Tu) - uTxu + 5”7"71, - I’UHQ
I
f('ru) - UTxu > f(xv) - UTJ;U + ngu - va2
Adding these together, using the Cauchy-Schwarz inequality, and rearranging shows that

1
qu - ‘rvH2 < p“u - 'U||2
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Slopes of f and f*

1

Proof of “<": for simplicity, call g = f* and L = . As Vg is Lipschitz with constant L, so is

9,(2) = g(2) — Vg(z)T 2, hence

— min
‘f 2,9,z Dual ascent

m

0.(2) < 0,0) + Va,(0)T (= —9) + Tl — ol
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Slopes of f and f*

Proof of “<": for simplicity, call g = f* and L = i As Vg is Lipschitz with constant L, so is

9,(2) = g(2) — Vg(z)T 2, hence
92(2) < 9.(y) + Vg, ()T (z —y) + §||Z —y|2

Minimizing each side over z, and rearranging, gives

%”Vg(l’) — V)| < gly) — g(x) + Vg(z)"(z —y)

— min
‘f 2,9,z Dual ascent
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Slopes of f and f*

Proof of “<": for simplicity, call g = f* and L = i As Vg is Lipschitz with constant L, so is

6.(2) = g(2) — Vg(a)2, hence
T L 2
9:(2) < 9, (y) + Vo (y)" (z —y) + 12—yl
Minimizing each side over z, and rearranging, gives
1
57 IVa(@) = VaW)I* < 9(y) — 9(x) + V()" (z —y)
Exchanging roles of x, y, and adding together, gives

%I\Vg(w) —Vg)|? < (Vg(x) — Vg(y)" (z —y)

— min
‘f 2,9,z Dual ascent
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Slopes of f and f*

Proof of “<": for simplicity, call g = f* and L = 1. As Vg is Lipschitz with constant L, so is

m
92(2) = g(2) = Vg(2)" 2, hence
T L 2
9:(2) < 9, (y) + Vo (y)" (z —y) + 12—yl
Minimizing each side over z, and rearranging, gives
1
57 IVa(@) = VaW)I* < 9(y) — 9(x) + V()" (z —y)
Exchanging roles of x, y, and adding together, gives

%I\Vg(w) —Vg)|? < (Vg(x) — Vg(y)" (z —y)

Let u = Vf(z), v = Vg(y); then z € dg*(u), y € dg*(v), and the above reads (z — y)” (u —v) >

the result.
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T, implying
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Convergence guarantees

The following results hold from combining the last fact with what we already know about gradient descent: (This is
ignoring the role of A, and thus reflects the case when the singular values of A are all close to 1. To be more precise,

the step sizes here should be: m (first case) and 2 = (second case).)
L

omax(A)2 | Tmin
m +

® |f fis strongly convex with parameter (i, then dual gradient ascent with constant step sizes o, = p converges at
sublinear rate O(2).

‘f% fn.}‘; Dual ascent P00 O 14
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Convergence guarantees

The following results hold from combining the last fact with what we already know about gradient descent: (This is
ignoring the role of A, and thus reflects the case when the singular values of A are all close to 1. To be more precise,

. . w : 2
the step sizes here should be: e (first case) and T Ay o7 (second case).)
I

® |f fis strongly convex with parameter (i, then dual gradient ascent with constant step sizes o, = p converges at

sublinear rate O(2).
® |If f is strongly convex with parameter 1 and V f is Lipschitz with parameter L, then dual gradient ascent with

i% converges at linear rate O(log(1)).

step sizes o, = T
m

— min
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Convergence guarantees

The following results hold from combining the last fact with what we already know about gradient descent: (This is
ignoring the role of A, and thus reflects the case when the singular values of A are all close to 1. To be more precise,

. . w : 2
the step sizes here should be: e (first case) and T Ay o7 (second case).)
I

® |f fis strongly convex with parameter (i, then dual gradient ascent with constant step sizes o, = p converges at

sublinear rate O(2).
® |If f is strongly convex with parameter 1 and V f is Lipschitz with parameter L, then dual gradient ascent with

step sizes a;, = ﬁ converges at linear rate O(log(1)).
L

ut L
® Note that this describes convergence in the dual. Convergence in the primal requires more assumptions

— min
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Example: equality constrained quadratic minimization.

1
flx)= ixTAx — Ty — m}}@n subject to Cx =d, AeSt,CeR™" m<n.
xeR™

Quadratic constrained optimization. n=10, m=5, u=1, L=10.

100 -
10-2 4 1071 4 10-1 4
— — _ — 1072 4
1064 = 1074 "o 10751 b
] h ] T gt
g 10-10 4 K 1072 4 = 1079 ~ 107* 1
= = =) =
107341 107 4 1071 107° 1
0 100 200 0 100 200 0 100 200 0 100 200
Iteration Iteration Iteration Iteration
—— Dual Gradient Ascent a 1.20e-01 Projected Gradient Descent a 2.00e-01

We need to find a minimum of a quadratic function in some linear subspace, defined by the solution of linear equation
Cz = d. This is a conditional optimization problem, we start from strongly convex setting.

lf%ﬁ}‘i Dual ascent P00 O 15
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Example: equality constrained quadratic minimization.

1
flx)= ixTAx — Tz — min subject to Cx =d, AeSt,CeR™" m<n.

TER™

Quadratic constrained optimization. n=10, m=5, p=0.001, L=10.

10° 10° 10° 10%4
1071 _ 1074 l\ =
% 10 10794 i -I<_
Z 107 £ 1079 ] % 1071 < 1073

1072 4 10713 1073
6 10600 20600 6 10600 20600 6 10600 20600 6 10600 20600
Iteration Iteration Iteration Iteration
—— Dual Gradient Ascent a 2.00e-04 Projected Gradient Descent a 2.00e-01

Situation is getting worse as soon as we loose strong convexity, the dual convergence will still be linear, but the rate is
very low.
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Dual decomposition

Consider

— min
‘/ 2,9,z Dual ascent

B
minz fi(z;) subjectto Ax=b

i=1

17
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Dual decomposition

Consider

Here z = (24, ..

accordingly:

— min
‘/ 2,9,z Dual ascent

B
rr;m; fi(z;) subjectto Ax=b

.,Zg) € R™ divides into B blocks of variables, with each z;; € R™:. We can also partition A

A=A, ... Ag], where A, € R™*"™:

17
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Dual decomposition

Consider

B
minz fi(z;) subjectto Ax=b

Here x = (,...,25) € R™ divides into B blocks of variables, with each z; € R™:. We can also partition A
accordingly:
A=A, ... Ag], where A, € R™*"™:

Simple but powerful observation, in calculation of subgradient, is that the minimization decomposes into B separate

problems:
" € arg mln (Z filz) + uTAac>
= ;™ € argmin (fi(z;) + vl Azy), i=1,..,B
x; Eargmln(fz(ml)—i—( FOTAx,), i;l,...7B
B
ub = bl 4 (ZA o — )
=1

l/%?“}‘i Dual ascent 0 0
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Dual decomposition

Consider

B
minz fi(z;) subjectto Ax=b

Here x = (,...,25) € R™ divides into B blocks of variables, with each z; € R™:. We can also partition A
accordingly:
A=A, ... Ag], where A, € R™*"™:

Simple but powerful observation, in calculation of subgradient, is that the minimization decomposes into B separate

problems:
" € arg mln (Z filz) + uTAac>
= ;™ € argmin (fi(z;) + vl Azy), i=1,..,B
zk Eargmln (filz;) + (WFHT Az,) z; 1,...B Can think of these steps as:
® Broadcast: Send u to each of the B processors,
W a (iA ot ) each optimizes in parallel to find ;.
i1

‘f% fn.}‘; Dual ascent P00 O 17
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Dual decomposition

Consider

B
minz fi(z;) subjectto Ax=b

Here x = (,...,25) € R™ divides into B blocks of variables, with each z; € R™:. We can also partition A
accordingly:
A=A, ... Ag], where A, € R™*"™:

Simple but powerful observation, in calculation of subgradient, is that the minimization decomposes into B separate

problems:
" € arg mln (Z filz) + uTAac>
= 2™ € argmin (f;(z;) + vl Az;), i=1,...,B
Z;
zh e argmln (filz) + (W HTAz;), i=1,..,B Can think of these steps as:
® Broadcast: Send u to each of the B processors,

B each optimizes in parallel to find z;.
ub =ukt 4y (ZA zf — ) ® Gather: Collect A,z; from each processor,

i=1 update the global dual variable u.
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Inequality constraints
Consider the optimization problem:

B B
minz fi(z;) subject to Z Az, <b
T

=1

— min
‘/ 2,9,z Dual ascent
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Inequality constraints

Consider the optimization problem:

B B
minz fi(z;) subject to Z Az, <b
T

i=1

Using dual decomposition, specifically the projected subgradient method, the iterative steps can be expressed as:

® The primal update step:
¥ € argmin [fz(xz) + (uk*I)T Aiazi] , i=1,..,B

‘Tz
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Inequality constraints

Consider the optimization problem:

B B
minz fi(z;) subject to ZAimi <b
o= i=1
Using dual decomposition, specifically the projected subgradient method, the iterative steps can be expressed as:
® The primal update step:
T
¥ € argmin [fz(xz) + (uF1) Aiazi] , i=1,..,B

‘Tz

B
uF = (ukl + ay, (Z Azl — b) )
=1 N

where (u), denotes the positive part of u, i.e., (u,); = max{0,u;}, fori=1,...,m.

® The dual update step:
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Price Coordination Interpretation (Vandenberghe)

® System Overview: Consider a system with B units, where each unit independently chooses its decision variable
x;, which determines how to allocate its goods.

‘/ - Wy‘rﬁ Dual ascent 0 0
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Price Coordination Interpretation (Vandenberghe)

® System Overview: Consider a system with B units, where each unit independently chooses its decision variable
x;, which determines how to allocate its goods.

® Resource Constraints: These are limits on shared resources, represented by the rows of A. Each component of
the dual variable u; represents the price of resource j.

K/AF‘J‘L Dual ascent 0 0
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Price Coordination Interpretation (Vandenberghe)

® System Overview: Consider a system with B units, where each unit independently chooses its decision variable
x;, which determines how to allocate its goods.

® Resource Constraints: These are limits on shared resources, represented by the rows of A. Each component of
the dual variable u; represents the price of resource j.

® Dual Update Rule:

i = (u; —ts;)y, j=1,...,m

B
where s =b— >~ Az, represents the slacks.

‘/%m‘; Dual ascent @0 O 19
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Price Coordination Interpretation (Vandenberghe)

® System Overview: Consider a system with B units, where each unit independently chooses its decision variable
x;, which determines how to allocate its goods.

® Resource Constraints: These are limits on shared resources, represented by the rows of A. Each component of
the dual variable u; represents the price of resource j.

® Dual Update Rule:

new __

u] (uj—ts;), j=1,...,m
B
where s =b— >~ Az, represents the slacks.

® Price Adjustments:
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Price Coordination Interpretation (Vandenberghe)

® System Overview: Consider a system with B units, where each unit independently chooses its decision variable
x;, which determines how to allocate its goods.

® Resource Constraints: These are limits on shared resources, represented by the rows of A. Each component of
the dual variable u; represents the price of resource j.

® Dual Update Rule:

new __

u] (uj—ts;), j=1,...,m
B
where s =b— >~ Az, represents the slacks.

® Price Adjustments:

® Increase price u; if resource j is over-utilized (s; < 0).
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Price Coordination Interpretation (Vandenberghe)

® System Overview: Consider a system with B units, where each unit independently chooses its decision variable
x;, which determines how to allocate its goods.

® Resource Constraints: These are limits on shared resources, represented by the rows of A. Each component of
the dual variable u; represents the price of resource j.

® Dual Update Rule:

new __

u] (uj—ts;), j=1,...,m
B
where s =b— >~ Az, represents the slacks.

® Price Adjustments:

® Increase price u; if resource j is over-utilized (s; < 0).
® Decrease price u; if resource j is under-utilized (s; > 0).
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Price Coordination Interpretation (Vandenberghe)

® System Overview: Consider a system with B units, where each unit independently chooses its decision variable
x;, which determines how to allocate its goods.

® Resource Constraints: These are limits on shared resources, represented by the rows of A. Each component of
the dual variable u; represents the price of resource j.

® Dual Update Rule:

new __

u] (uj—ts;), j=1,...,m
B
where s =b— >~ Az, represents the slacks.

® Price Adjustments:

® Increase price u; if resource j is over-utilized (s; < 0).
® Decrease price u; if resource j is under-utilized (s; > 0).
® Never let prices get negative; hence the use of the positive part notation ().
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Augmented Lagrangian method

Augmented Lagrangian method
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Augmented Lagrangian method aka method of multipliers

Dual ascent disadvantage: convergence requires strong conditions. Augmented Lagrangian method transforms the
primal problem:

min f(z) + 2 Az — b|?
z 2
st. Ax =10

‘f - Wy‘rﬁ Augmented Lagrangian method P00 O
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Augmented Lagrangian method aka method of multipliers

Dual ascent disadvantage: convergence requires strong conditions. Augmented Lagrangian method transforms the
primal problem:

. B a2
min f(z) + 5[ Az — |
st. Ax =10

where p > 0 is a parameter. This formulation is clearly equivalent to the original problem. The problem is strongly
convex if matrix A has full column rank.

‘f - fn‘}'; Augmented Lagrangian method P00 O 21
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Augmented Lagrangian method aka method of multipliers

Dual ascent disadvantage: convergence requires strong conditions. Augmented Lagrangian method transforms the
primal problem:

. B a2
min f(z) + 5[ Az — |
st. Ax =10

where p > 0 is a parameter. This formulation is clearly equivalent to the original problem. The problem is strongly
convex if matrix A has full column rank.

Dual gradient ascent: The iterative updates are given by:
7y = axgmin | f(z) + (u )" Az + G Az —bJ?

Uy, = Uy_y + p(Azy, —b)

‘f - fn‘}'; Augmented Lagrangian method P00 O 21
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Augmented Lagrangian method aka method of multipliers

Notice step size choice oy, = p in dual algorithm. Why?

Since x;, minimizes the function:
F(@) + (uy 1) Aw + £ Az — b]?

over z, we have the stationarity condition:

0 € df(xy) + AT (uy_y + p(Azy — b))

which simplifies to:

Of (z),) + ATy,

‘/ - §ny1r; Augmented Lagrangian method
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Augmented Lagrangian method aka method of multipliers

Notice step size choice oy, = p in dual algorithm. Why?
Since x;, minimizes the function:

F(@) + (uy 1) Aw + £ Az — b]?
over z, we have the stationarity condition:

0 € df(xy) + AT (uy_y + p(Azy — b))

which simplifies to:

Of (z),) + ATy,

This represents the stationarity condition for the original primal problem; under mild conditions, Az; —b — 0 as
k — 00, so the KKT conditions are satisfied in the limit and x;, u; converge to the solutions.

® Advantage: The augmented Lagrangian gives better convergence.
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Augmented Lagrangian method aka method of multipliers

Notice step size choice oy, = p in dual algorithm. Why?
Since x;, minimizes the function:

F(@) + (uy 1) Aw + £ Az — b]?
over z, we have the stationarity condition:

0 € df(xy) + AT (uy_y + p(Azy — b))

which simplifies to:

Of(xy) + Aluy,
This represents the stationarity condition for the original primal problem; under mild conditions, Az; —b — 0 as
k — 00, so the KKT conditions are satisfied in the limit and x;, u; converge to the solutions.

® Advantage: The augmented Lagrangian gives better convergence.
® Disadvantage: We lose decomposability! (Separability is ruined)
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Example: equality constrained quadratic minimization.

1
flx)= imTAx — Ty — m%{n subject to Cz =d, Aest,CeR™™ m<n.
xeR™

Quadratic constrained optimization. n=10, m=5, p=1, L=10.

100 {
102 4 1071 10-2
_ 10-3 4
— ~ = 1075 * _ —
6 | * 6 ¥
~.I_ 10 >|< |°’ 10 < 107
= . = |
S 107204 £ 1071 g 100 = 109
10-14 4 10713 4 10714 10712 4
0 100 200 0 100 200 0 100 200 0 100 200
Iteration Iteration Iteration Iteration
—— Dual Gradient Ascent a 1.20e-01 —— Augmented Lagrangian p 100.00 —— Projected Gradient Descent a 2.00e-01

One can see, clear numerical superiority of the Augmented Lagrangian method both in convex and strongly convex
case.

‘f - ;nyu} Augmented Lagrangian method 00
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Example: equality constrained quadratic minimization.

1
flx)= imTAx — Ty — m%{n subject to Cz =d, Aest,CeR™™ m<n.
xeR™

Quadratic constrained optimization. n=10, m=5, p=0.001, L=10.

3 3]

10 10 102 4 O\ 10-1 4

_ 107! _ 10-1 4 _ 1024 10-4
o B h = S .

,L 107> >|< 1075 4 i 107 ’T 1077 4

£ 107° X 107 S 1010 = 10-10

10713 10-13 10714 4 10-13 4

0 100 200 0 100 200 0 100 200 0 100 200
Iteration Iteration Iteration Iteration
—— Dual Gradient Ascent a 2.00e-04 —— Augmented Lagrangian p 10.00 —— Projected Gradient Descent a 2.00e-01

One can see, clear numerical superiority of the Augmented Lagrangian method both in convex and strongly convex
case.
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Tz

Introduction to ADMM

Introduction to ADMM
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Alternating Direction Method of Multipliers (ADMM)

Alternating direction method of multipliers or ADMM aims for the best of both worlds. Consider the following
optimization problem:

Minimize the function:
min f(z) + g(2)

st. Ax+ Bz=c¢

‘f - §ny1r; Introduction to ADMM D0 0
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Alternating Direction Method of Multipliers (ADMM)

Alternating direction method of multipliers or ADMM aims for the best of both worlds. Consider the following
optimization problem:

Minimize the function:
min f(z) + g(2)

st. Av+Bz=c
We augment the objective to include a penalty term for constraint violation:
min f(z) + g(z) + gHAI + Bz — c|?
x,z

st. Ar+ Bz=¢

‘f - ﬁ}‘l Introduction to ADMM
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Alternating Direction Method of Multipliers (ADMM)

Alternating direction method of multipliers or ADMM aims for the best of both worlds. Consider the following
optimization problem:

Minimize the function:
min f(z) + g(2)

st. Ax+ Bz=c¢
We augment the objective to include a penalty term for constraint violation:
min flx) +g(z) + gHAa: + Bz —c|?
st. Ar+Bz=c
where p > 0 is a parameter. The augmented Lagrangian for this problem is defined as:

Ly(@,zu) = f(x) + g(=) +u (Az + Bz — c) + £ Az + Bz — c]?

‘f - 51'1;!; Introduction to ADMM D0 0
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Alternating Direction Method of Multipliers (ADMM)

ADMM repeats the following steps, for £k =1,2,3, ...

1. Update z:
oy = argmin L, (2, zj,_y, ug_y)

‘f - Wy‘l} Introduction to ADMM
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Alternating Direction Method of Multipliers (ADMM)

ADMM repeats the following steps, for £k =1,2,3, ...

1. Update z:
oy = argmin L, (2, zj,_y, ug_y)

2. Update z:
zp = argmin L, (zy, 2, uj,_1)
z

‘f - Wy‘rﬁ Introduction to ADMM
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Alternating Direction Method of Multipliers (ADMM)

ADMM repeats the following steps, for £k =1,2,3, ...

1. Update z:
oy = argmin L, (2, zj,_y, ug_y)
2. Update z:
zp = argmin L, (zy, 2, uj,_1)
z
3. Update u:

uy, = uy,_y + p(Azy, + Bz, — ¢)
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Alternating Direction Method of Multipliers (ADMM)

ADMM repeats the following steps, for £k =1,2,3, ...

1. Update z:
oy = argmin L, (2, zj,_y, ug_y)
2. Update z:
zp = argmin L, (zy, 2, uj,_1)
z
3. Update u:

uy, = uy,_y + p(Azy, + Bz, — ¢)
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Alternating Direction Method of Multipliers (ADMM)

ADMM repeats the following steps, for £k =1,2,3, ...

1. Update z:
oy = argmin L, (2, zj,_y, ug_y)
2. Update z:
zp = argmin L, (zy, 2, uj,_1)
z
3. Update u:

uy, = uy,_y + p(Azy, + Bz, — ¢)

Note: The usual method of multipliers would replace the first two steps by a joint minimization:

(x(k)a Z(k>) = arg min Lp(x7 2, u(kfl))

T,z

‘f - §ny1r; Introduction to ADMM
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Example: Alternating Projections

‘f — min
Tz

Introduction to ADMM

Consider finding a point in the intersection of convex sets
U,V CR™
min Iy (z) + Iy ()
x

To transform this problem into ADMM form, we express it
as:

min I;;(x) + I, (2) subjectto x—z=0

z,2

Each ADMM cycle involves two projections:
= argmin Py (2 — wy_y)
zp = argmin Py (2 + wy,_y)

Wy, = Wy_q1 + T — 2,
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Sources

® Ryan Tibshirani. Convex Optimization 10-725

‘f - Wy‘rﬁ Introduction to ADMM
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