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GPT-2 training Memory footprint

Example: 1.5B parameter GPT-2 model needs 3GB for weights in 16-bit precision but
can't be trained on a 32GB GPU using Tensorflow or PyTorch. Major memory usage
during training includes optimizer states, gradients, parameters, activations, temporary
buffers, and fragmented memory.

Model States:

— ® Optimizer states (e.g., Adam) require memory for time-averaged momentum and
gradient variance.

3GB | Fragmentation Overhead (Variable)

6GB | Temporary Buffers (fp32)

8GB | Activations (with checkpointing)

Memory Requirements Example:

6GB | Optimizer States (fp32 Variance)

6GB | Optimizer States (fp32 Momentum)

] Residual Memory Consumption:

6GB | Optimizer States (fp32 Parameters)

3GB | Gradients (fp16)

3GB | Parameters (fpl6)

‘f - fn.}‘; GPT-2 training Memory footprint 0 O
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GPT-2 training Memory footprint

3GB | Fragmentation Overhead (Variable)

6GB | Temporary Buffers (fp32)

8GB | Activations (with checkpointing)

6GB | Optimizer States (fp32 Variance)

6GB | Optimizer States (fp32 Momentum)

6GB | Optimizer States (fp32 Parameters)

3GB | Gradients (fp16)

3GB | Parameters (fpl6)

‘f - fn.}‘; GPT-2 training Memory footprint

Example: 1.5B parameter GPT-2 model needs 3GB for weights in 16-bit precision but
can't be trained on a 32GB GPU using Tensorflow or PyTorch. Major memory usage
during training includes optimizer states, gradients, parameters, activations, temporary
buffers, and fragmented memory.
Model States:
® Optimizer states (e.g., Adam) require memory for time-averaged momentum and
gradient variance.
® Mixed-precision training (fp16/32) necessitates storing parameters and activations
as fp16, but keeps fp32 copies for updates.
Memory Requirements Example:

Residual Memory Consumption:
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3GB | Fragmentation Overhead (Variable)

6GB | Temporary Buffers (fp32)

8GB | Activations (with checkpointing)

6GB | Optimizer States (fp32 Variance)

6GB | Optimizer States (fp32 Momentum)

6GB | Optimizer States (fp32 Parameters)

3GB | Gradients (fp16)

3GB | Parameters (fpl6)

‘f - fn.}‘; GPT-2 training Memory footprint

Example: 1.5B parameter GPT-2 model needs 3GB for weights in 16-bit precision but
can't be trained on a 32GB GPU using Tensorflow or PyTorch. Major memory usage
during training includes optimizer states, gradients, parameters, activations, temporary
buffers, and fragmented memory.
Model States:
® Optimizer states (e.g., Adam) require memory for time-averaged momentum and
gradient variance.
® Mixed-precision training (fp16/32) necessitates storing parameters and activations
as fp16, but keeps fp32 copies for updates.
Memory Requirements Example:
® Training with Adam in mixed precision for a model with ¥ parameters: 2¥ bytes
for fpl6 parameters and gradients, 12W bytes for optimizer states (parameters,
momentum, variance).

Residual Memory Consumption:
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GPT-2 training Memory footprint

3GB | Fragmentation Overhead (Variable)

6GB | Temporary Buffers (fp32)

8GB | Activations (with checkpointing)

6GB | Optimizer States (fp32 Variance)

6GB | Optimizer States (fp32 Momentum)

6GB | Optimizer States (fp32 Parameters)

3GB | Gradients (fp16)

3GB | Parameters (fpl6)

‘f - fn.}‘; GPT-2 training Memory footprint

Example: 1.5B parameter GPT-2 model needs 3GB for weights in 16-bit precision but
can't be trained on a 32GB GPU using Tensorflow or PyTorch. Major memory usage
during training includes optimizer states, gradients, parameters, activations, temporary
buffers, and fragmented memory.
Model States:
® Optimizer states (e.g., Adam) require memory for time-averaged momentum and
gradient variance.
® Mixed-precision training (fp16/32) necessitates storing parameters and activations
as fp16, but keeps fp32 copies for updates.
Memory Requirements Example:
® Training with Adam in mixed precision for a model with ¥ parameters: 2¥ bytes
for fpl6 parameters and gradients, 12W bytes for optimizer states (parameters,
momentum, variance).
® Total: 16¥ bytes; for GPT-2 with 1.5B parameters, this equals 24GB.
Residual Memory Consumption:
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GPT-2 training Memory footprint

3GB | Fragmentation Overhead (Variable)

6GB | Temporary Buffers (fp32)

8GB | Activations (with checkpointing)

6GB | Optimizer States (fp32 Variance)

6GB | Optimizer States (fp32 Momentum)

6GB | Optimizer States (fp32 Parameters)

3GB | Gradients (fp16)

3GB | Parameters (fpl6)
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Example: 1.5B parameter GPT-2 model needs 3GB for weights in 16-bit precision but
can't be trained on a 32GB GPU using Tensorflow or PyTorch. Major memory usage
during training includes optimizer states, gradients, parameters, activations, temporary
buffers, and fragmented memory.
Model States:
® Optimizer states (e.g., Adam) require memory for time-averaged momentum and
gradient variance.
® Mixed-precision training (fp16/32) necessitates storing parameters and activations
as fp16, but keeps fp32 copies for updates.
Memory Requirements Example:
® Training with Adam in mixed precision for a model with ¥ parameters: 2¥ bytes
for fpl6 parameters and gradients, 12W bytes for optimizer states (parameters,
momentum, variance).
® Total: 16¥ bytes; for GPT-2 with 1.5B parameters, this equals 24GB.
Residual Memory Consumption:
® Activations: Significant memory usage, e.g., 1.5B parameter GPT-2 model with
sequence length 1K and batch size 32 requires “60GB.
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GPT-2 training Memory footprint

3GB | Fragmentation Overhead (Variable)

6GB | Temporary Buffers (fp32)

8GB | Activations (with checkpointing)

6GB | Optimizer States (fp32 Variance)

6GB | Optimizer States (fp32 Momentum)

6GB | Optimizer States (fp32 Parameters)

3GB | Gradients (fp16)

3GB | Parameters (fpl6)
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Example: 1.5B parameter GPT-2 model needs 3GB for weights in 16-bit precision but
can't be trained on a 32GB GPU using Tensorflow or PyTorch. Major memory usage
during training includes optimizer states, gradients, parameters, activations, temporary
buffers, and fragmented memory.
Model States:
® Optimizer states (e.g., Adam) require memory for time-averaged momentum and
gradient variance.
® Mixed-precision training (fp16/32) necessitates storing parameters and activations
as fp16, but keeps fp32 copies for updates.
Memory Requirements Example:
® Training with Adam in mixed precision for a model with ¥ parameters: 2¥ bytes
for fpl6 parameters and gradients, 12W bytes for optimizer states (parameters,
momentum, variance).
® Total: 16¥ bytes; for GPT-2 with 1.5B parameters, this equals 24GB.
Residual Memory Consumption:
® Activations: Significant memory usage, e.g., 1.5B parameter GPT-2 model with
sequence length 1K and batch size 32 requires “60GB.
® Activation checkpointing can reduce activation memory by about 50%, with a 33%
recomputation overhead.
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GPT-2 training Memory footprint

Example: 1.5B parameter GPT-2 model needs 3GB for weights in 16-bit precision but
can't be trained on a 32GB GPU using Tensorflow or PyTorch. Major memory usage
during training includes optimizer states, gradients, parameters, activations, temporary
buffers, and fragmented memory.

Temporary Buffers:

— ® Store intermediate results; e.g., gradient all-reduce operations fuse gradients into a
single buffer.

3GB | Fragmentation Overhead (Variable)

6GB | Temporary Buffers (fp32)

8GB | Activations (with checkpointing)

Memory Fragmentation:

6GB | Optimizer States (fp32 Variance)

6GB | Optimizer States (fp32 Momentum)

6GB | Optimizer States (fp32 Parameters)

3GB | Gradients (fp16)

3GB | Parameters (fpl6)
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3GB | Fragmentation Overhead (Variable)

6GB | Temporary Buffers (fp32)

8GB | Activations (with checkpointing)

6GB | Optimizer States (fp32 Variance)

6GB | Optimizer States (fp32 Momentum)

6GB | Optimizer States (fp32 Parameters)

3GB | Gradients (fp16)

3GB | Parameters (fpl6)

‘f - fn.}‘; GPT-2 training Memory footprint

Example: 1.5B parameter GPT-2 model needs 3GB for weights in 16-bit precision but
can't be trained on a 32GB GPU using Tensorflow or PyTorch. Major memory usage
during training includes optimizer states, gradients, parameters, activations, temporary
buffers, and fragmented memory.
Temporary Buffers:
® Store intermediate results; e.g., gradient all-reduce operations fuse gradients into a
single buffer.
® For large models, temporary buffers can consume substantial memory (e.g., 6GB for
1.5B parameter model with fp32 buffer).
Memory Fragmentation:


https://fmin.xyz
https://hse25.fmin.xyz
https://github.com/MerkulovDaniil/hse25
https://t.me/fminxyz

GPT-2 training Memory footprint

3GB | Fragmentation Overhead (Variable)

6GB | Temporary Buffers (fp32)

8GB | Activations (with checkpointing)

6GB | Optimizer States (fp32 Variance)

6GB | Optimizer States (fp32 Momentum)

6GB | Optimizer States (fp32 Parameters)

3GB | Gradients (fp16)

3GB | Parameters (fpl6)
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Example: 1.5B parameter GPT-2 model needs 3GB for weights in 16-bit precision but
can't be trained on a 32GB GPU using Tensorflow or PyTorch. Major memory usage
during training includes optimizer states, gradients, parameters, activations, temporary
buffers, and fragmented memory.
Temporary Buffers:
® Store intermediate results; e.g., gradient all-reduce operations fuse gradients into a
single buffer.
® For large models, temporary buffers can consume substantial memory (e.g., 6GB for
1.5B parameter model with fp32 buffer).
Memory Fragmentation:
® Memory fragmentation can cause out-of-memory issues despite available memory,
as contiguous blocks are required.
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3GB | Fragmentation Overhead (Variable)

6GB | Temporary Buffers (fp32)

8GB | Activations (with checkpointing)

6GB | Optimizer States (fp32 Variance)

6GB | Optimizer States (fp32 Momentum)

6GB | Optimizer States (fp32 Parameters)

3GB | Gradients (fp16)

3GB | Parameters (fpl6)

‘f - fn.}‘; GPT-2 training Memory footprint

Example: 1.5B parameter GPT-2 model needs 3GB for weights in 16-bit precision but
can't be trained on a 32GB GPU using Tensorflow or PyTorch. Major memory usage
during training includes optimizer states, gradients, parameters, activations, temporary
buffers, and fragmented memory.
Temporary Buffers:
® Store intermediate results; e.g., gradient all-reduce operations fuse gradients into a
single buffer.
® For large models, temporary buffers can consume substantial memory (e.g., 6GB for
1.5B parameter model with fp32 buffer).
Memory Fragmentation:
® Memory fragmentation can cause out-of-memory issues despite available memory,
as contiguous blocks are required.
® |n some cases, over 30% of memory remains unusable due to fragmentation.
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L4 3Mnmpvmecxoe Nnpasnno: KPOCC-2HTPONUA YMEHbLLAETCA NO CTENEHHOMY 3aKOHY

L(N,D,C)x N *D#C~
roe N — napametpol, D — Tokenbl, C — FLOPs.
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Scaling Laws !

L4 3Mnmpmqecxoe Nnpasnno: KPOCC-2HTPONUA YMEHbLLAETCA NO CTENEHHOMY 3aKOHY

L(N,D,C)x N *D#C~

roe N — napametpol, D — Tokenbl, C — FLOPs.
® Compute allocation: npu dukcnposanHom C ontumansHio N oc D% ™ — kpynHee Mogens, MeHblUe AaHHbIX.
® Mpepacka3saHue KadecTBa: JnHeHoCTb Ha log—log-rpadbuke coxpansietca snnots go GPT-3-scale.
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Scaling Laws !

L4 3Mnmpmqecxoe Nnpasnno: KPOCC-2HTPONUA YMEHbLLAETCA NO CTENEHHOMY 3aKOHY

L(N,D,C)x N *D#C~

roe N — napametpol, D — Tokenbl, C — FLOPs.
e C Il ion: C Noc D074 —
ompute allocation: npwn dukcuposaniom C ontumansHo N KpYMHee Mofefb, MeHbLUE AaHHbIX.
Mpepackasanmne kavecTsa: nuHeliHocTh Ha log—log-rpachuke coxpatsietcs Bnnotb go GPT-3-scale.
MpakTuyeckn scaling-3akoHbl nomoratoT nogbupaTs pa3sMepbl KOpMyca U OCTaHABIMBATL obyyeHne fo
nepeobyyeHns.

'Kaplan et al., 2020
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Chinchilla 2

® DeepMind obyunnn Chinchilla 70 B na 1.4 T tokenos npu Tom >xxe compute, 4to u Gopher 280 B.
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Chinchilla 2

® DeepMind obyunnn Chinchilla 70 B na 1.4 T tokenos npu Tom >xxe compute, 4to u Gopher 280 B.
® Pesynbrat: +7 pp Ha MMLU wn cywecTtsenHbili npupocT Ha BIG-bench vs GPT-3.
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Chinchilla 2

® DeepMind obyunnn Chinchilla 70 B na 1.4 T tokenos npu Tom >xxe compute, 4to u Gopher 280 B.
® Pesynbrat: +7 pp Ha MMLU wn cywecTtsenHbili npupocT Ha BIG-bench vs GPT-3.
® Compute-optimal scaling: npu orpanudentbix FLOPs cooTHoweHne «TokeHOB-Ha-napameTp»

obecne4ynBaeT Makcu MYyM Ka4ecCTBa.
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Chinchilla 2

® Pesynbrat: +7 pp Ha MMLU wn cywecTtsenHbili npupocT Ha BIG-bench vs GPT-3.
Compute-optimal scaling: npun orpannyentbix FLOPs cooTHowweHmne «TokeHoB-Ha-napameTtp»

obecneynBaeT MakCUMyM Ka4ecTBa.
® BbiBog: /iyulle «[oMbliue YHYUTb MEHbLUYIO MOAE/bY», YEM KKOPOTKO YUWUTb OFPOMHYIO».

2Hoffmann et al., 2022
‘f - EHA}‘; Scaling Laws
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Chinchilla scaling laws
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Figure 4: Parametric modeling of the loss L(N, D) with contour plot (left) and isoFLOP slices (right). Each isoFLOP slice
corresponds to a dashed line in the left plot. The efficient frontier is shown in blue, forming a line in log-log space. The curve
intersects each iso-loss contour at the point of minimum FLOPs. The optimal model size for the Gopher FLOP budget is projected

to be 40B parameters.
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Activations

Figure 5: Histogram of activation gradient values during the training of Multibox SSD network. Note that the bins on the x-axis

3

Percentage of all activation gradient values

64

32

FP16 Representable range
Become zero in FP16 FP16 denorlms

0 -75-60-45-40 -38-36-34-32-30 -28-26-24-22-20-18-16-14 -12-10-8 6 4 2 0 2 4 6 8 10
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cover varying ranges and there's a separate bin for zeros. For example, 2% of the values are in the [2734,2732) range, 2% of values
are in the [2_24, 2_23) range, and 67% of values are zero.

3Mixed Precision Training
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Automatic Mixed Precision (AMP)
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Figure 6: Histogram for the exponents of weight gradients for DeepSpeech 2 model (215 M parameters) training on Mandarin
speech recognition. The gradients are sampled every 4,000 iterations during training for all the layers in the model.

*Mixed Precision Training
B,/ = min A Lomatic Mixed Precision (AMP) L )
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5Accurate, Large Minibatch SGD: Training ImageNet in 1 Hour
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Large batch training ’

Effective batch size (kn) « top-1 error (%)
256 0.05 23.92 £ 0.10
256 0.10 23.60 £ 0.12
256 0.20 23.68 & 0.09
8k 0.05 - 32 24.27 £ 0.08
8k 0.10 - 32 23.74 £ 0.09
8k 0.20 - 32 24.05 £ 0.18
8k 0.10 41.67 = 0.10
8k 0.10-v/32  26.22 + 0.03

Comparison of learning rate scaling rules. ResNet-50 trained on ImageNet. A reference learning rate of « = 0.1 works
best for kn = 256 (23.68% error). The linear scaling rule suggests & = 0.1 - 32 when kn = 8k, which again gives best
performance (23.74% error). Other ways of scaling « give worse results.

"Accurate, Large Minibatch SGD: Training ImageNet in 1 Hour
‘f - EHA}‘; Large batch training
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Linear and square root scaling rules

When training with large batches, the learning rate must be adjusted to maintain convergence speed and stability.
The linear scaling rule® suggests multiplying the learning rate by the same factor as the increase in batch size:

Batch Size,,,,

(6% ST e
Batch Size,.,

new — (base *

The square root scaling rule® proposes scaling the learning rate with the square root of the batch size increase:

Batch Size,,,,
Batch Sizey,,

new — pase *

Authors claimed, that it suits for adaptive optimizers like Adam, RMSProp and etc. while linear scaling rule serves
well for SGD.

8Accurate, Large Minibatch SGD: Training ImageNet in 1 Hour
9Learning Rates as a Function of Batch Size: A Random Matrix Theory Approach to Neural Network Training

‘f - fnﬂ Large batch training 0O
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Batch size scaling

17 Steps to Reach 0.3 Validation Error
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Gradual warmup 1°
Gradual warmup helps to avoid instability when starting with large learning rates by slowly increasing the learning rate
from a small value to the target value over a few epochs. This is defined as:

where ¢ is the current iteration and T}, is the warmup duration in iterations. In the original paper, authors used first 5
epochs for gradual warmup.

100 ‘ ‘ : ‘ ‘ ‘ ; ; ‘ : : ‘
| ‘ kn=256, 7= 0.1, 23.60%%0.12

, 23.60%%0.12

kn=256, 23.60%x0.12 0.1
3.2, 23.74%+0.09

7= 0.1,
kn= 8k, m= 3.2, 24.84%%0.37

7
90 n

kn= 8k,

kn= 8k, 7= 3.2, 25.88%%0.56

| ‘ kn=256,

80

70 -

60

50

training error %

40+

30

20
0 20 40 60 80 0 20 40 60 80 0 20 40 60 80

epochs epochs epochs

Figure 7: no warmup Figure 8: constant warmup Figure 9: gradual warmup

10A<_:curate, Large Minibatch SGD: Training ImageNet in 1 Hour
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1Scaling Laws and Compute-Optimal Training Beyond Fixed Training Durations
12Scaling Vision Transformers
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Gradient accumulation

Gradient accumulation allows the effective batch size to be increased without requiring larger memory by
accumulating gradients over several mini-batches:

Without gradient accumulation

for i, (inputs, targets) in enumerate(data):
outputs = model(inputs)
loss = criterion(outputs, targets)
loss.backward ()

optimizer.step()
optimizer.zero_grad()

‘/ - Wy‘rﬁ Large batch training
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Gradient accumulation

Gradient accumulation allows the effective batch size to be increased without requiring larger memory by
accumulating gradients over several mini-batches:

Without gradient accumulation With gradient accumulation

for i, (inputs, targets) in enumerate(data): for i, (inputs, targets) in enumerate(data):
outputs = model(inputs) outputs = model (inputs)
loss = criterion(outputs, targets) loss = criterion(outputs, targets)
loss.backward() loss.backward ()

if (i+1) % accumulation_steps ==

optimizer.step() optimizer.step()
optimizer.zero_grad() optimizer.zero_grad()

‘f - ?qyu} Large batch training P00 O 23
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Data Parallel training
1. Parameter server sends the full copy of the model to each device

B /= min \GPU training

25


https://fmin.xyz
https://hse25.fmin.xyz
https://github.com/MerkulovDaniil/hse25
https://t.me/fminxyz

Data Parallel training
1. Parameter server sends the full copy of the model to each device
2. Each device makes forward and backward passes
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Data Parallel training
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Data Parallel training

1. Parameter server sends the full copy of the model to each device
2. Each device makes forward and backward passes

3. Parameter server gathers gradients

4. Parameter server updates the model

Per device batch size: b. Overall batchsize: Db. Data parallelism involves splitting the data across multiple GPUs,
each with a copy of the model. Gradients are averaged and weights updated synchronously:

GPU1
X, 0, VoL (0k, X1)
Forward pass L(0, X1)

Backward pass VoL(0x, X1)

Parameter server . Parameter server
GPUi

X, O

Model 6 Model 61

L Forward pass L(0, X;) "y
Optimizer state sy ) Optimizer state $y1
Data X1, X5,...,Xp Backward pass voL(ek’Xl) Data X1, X5,...,Xp

GPUD

Xp.0, |Forward pass L(6, Xp) VoL(6y, X,
Dok Backward pass VoL(6k, Xp) ok O, Xo)

B /= min \GPU training 00
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Distributed Data Parallel training

Distributed Data Parallel (DDP) 3 extends data parallelism across multiple nodes. Each node computes gradients
locally, then synchronizes with others. Below one can find differences from the PyTorch site. This is used by default in
®@Accelerate library.

DataParallel DistributedDataParallel
More overhead; model is replicated and destroyed at each Model is replicated only once
forward pass
Only supports single-node parallelism Supports scaling to multiple machines
Slower; uses multithreading on a single process and runs Faster (no GIL contention) because it uses
into Global Interpreter Lock (GIL) contention multiprocessing

13Getting Started with Distributed Data Parallel
‘f% fu.}‘; MultiGPU training P00 O 26
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Naive model parallelism

Model parallelism divides the model across multiple GPUs. Each GPU handles a subset of the model layers, reducing
memory load per GPU. Allows to work with the models, that won't fit in the single GPU Poor resource utilization.

Model

LayerA LayerB LayerC LayerD

GPU 1 F1 Update 82  F2 Update 8a
GPU 2 F1 Update 8s F2 Update 85
GPU 3 F1 Update 8c F2 Update 8¢
GPU 4 F1 Update 8o F2 Update 8o

| | 1 ITime

1 1 1 | g

St Full
art model forward Batch 1 Batch 2

Figure 11: Model parallelism
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Pipeline model parallelism (GPipe) **

GPipe splits the model into stages, each processed sequentially. Micro-batches are passed through the pipeline,
allowing for overlapping computation and communication:
Model

LayerA LayerB LayerC Layer j

GPU 1 F1,1 F1,2 F1,3 F1,4 F1,5 F1,6 Update B
GPU 2 F1,1 F1,2 F1,3 F1,4 F1,5 F1,6 Update 6
GPU 3 F1,1 F12 F1,3 F1,4 F1,5 F1,6 Update 8
@ GPU 4 F1,1 F1,2 F1,3 F1,4 F1,5 F1,6 Update &
1 1 Iirze
1 T ™
Full
Stant model forward Batch 1

14GPipe: Efficient Training of Giant Neural Networks using Pipeline Parallelism
B /= min \GPU training 00 =


https://arxiv.org/abs/1811.06965
https://fmin.xyz
https://hse25.fmin.xyz
https://github.com/MerkulovDaniil/hse25
https://t.me/fminxyz

Pipeline model parallelism (PipeDream) *°

PipeDream uses asynchronous pipeline parallelism, balancing forward and backward passes across the pipeline stages
to maximize utilization and reduce idle time:

Model
Layer A LayerB LayerC Layer T

GPU 1 F1,1 F12 F1,3 F1,4
GPU 2 F1,1 F1,2 F1,3

GPU 3 F1,1 F1,.2

Update 8a

Update 88

Update 6c
GPU 4 F1,1 Update 6p
1 I i’iTe
1 T ™
Full
Start model forward Batch 1

15PipeDream: Generalized Pipeline Parallelism for DNN Training
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ZeRO '°

Memory lPK=12
=7.5B
gPuy gpy; 8PUN4 Consumed | _o4
Baseline Q+2+K)«¥ | 120GB
K*xW¥
1.4GB
Pos 2W + 29 + N, 31.4G
2+ K)x¥
Pos+g 2¥ + T 16.6GB
2+ 2+ K)x¥ 1.9GB
I:’os+g+p N, ’
Parameters Gradients Optimizer States
16ZeRO: Memory Optimizations Toward Training Trillion Parameter Models
® 0
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FSDP (Fully Sharded Data Parallel) *’

® |llapauHr napaMeTpoB, rPaANEHTOB 1 COCTOSIHWIA ONTUMM3aTOpa No npoueccam — 3koHomusi X7 X namsTn
oTHocuTensHo DDP.
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FSDP (Fully Sharded Data Parallel) *’

® |llapauHr napaMeTpoB, rPaANEHTOB 1 COCTOSIHWIA ONTUMM3aTOpa No npoueccam — 3koHomusi X7 X namsTn
oTHocuTensHo DDP.

® ObMeHbl BLINOHAIOTCA TONLKO Ha rpaHnyax sync; oCtasibHOe BpeMA Moaesib BUANT NOHbI TEH30p.

® Mopnepxka CPU-offload, mixed-precision, aktusaymonHoro checkpointinga.
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FSDP (Fully Sharded Data Parallel) *’

LLlapguHr napameTpoB, rpagneHToB 1 COCTOSIHWIA ONTUMM3aTopa no npoueccam — 3koHomusi X7 X namsitn
oTHocuTensHo DDP.

Ob6MeHbI BLINOMHAIOTCS TOABLKO Ha FPaHMULAX SYNC; OCTafbHOE BPEMS MOAENb BUAUT MNOMHbIN TEH30p.
MNopaepxka CPU-offload, mixed-precision, aktusaymonHoro checkpointinga.

MuHuManbHbIA NpumMep:

import torch

from torch.distributed.fsdp import FullyShardedDataParallel as FSDP
torch.cuda.set_device(device_id)

sharded_module = FSDP (my_module)

optim = torch.optim.SGD(sharded_module.parameters(), lr=0.0001)

x = sharded_module(x, y=3, z=torch.Tensor([1]))

loss = x.sum()

loss.backward ()

optim.step()

17PyTorch docs
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LoRA reduces the number of parameters by approximating
weight matrices with low-rank factorization:

Wi = W + AW

where AW = ABT, with A and B being low-rank
matrices. This reduces computational and memory
overhead while maintaining model performance.
® A is initialized as usual, while B is initialized with
zeroes in order to start from identity mapping
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LoRA reduces the number of parameters by approximating
weight matrices with low-rank factorization:

Wi = W + AW

where AW = ABT, with A and B being low-rank
3 matrices. This reduces computational and memory
Pretralned overhead while maintaining model performance.
WEIghtS ® Ais |n|.t|a||zed as usual, Whl|e. B |s_ |n|t|a||z§d with
zeroes in order to start from identity mapping
® 1 is typically selected between 2 and 64

W = [Rd)(d ® Usually applied to attention modules

X | |

18 oRA: Low-Rank Adaptation of Large Language Models
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LoRA reduces the number of parameters by approximating
weight matrices with low-rank factorization:

Wi = W + AW

where AW = ABT, with A and B being low-rank

3 matrices. This reduces computational and memory
Pretralned overhead while maintaining model performance.
WEIghtS ® Ais ini.tialized as usual, whilc? B is_ initializgd with

zeroes in order to start from identity mapping

® 1 is typically selected between 2 and 64
W = [Rd)(d ® Usually applied to attention modules
h=W,,~=Wz+ AWz =Wz + ABTz
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Feedforward Architecture

Forward pass
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Figure 12: Computation graph for obtaining gradients for a simple feed-forward neural network with n layers. The activations marked
with an f. The gradient of the loss with respect to the activations and parameters marked with b.
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Feedforward Architecture

Forward pass

ORS00
OS0=0=0=0

Backward pass

Figure 12: Computation graph for obtaining gradients for a simple feed-forward neural network with n layers. The activations marked
with an f. The gradient of the loss with respect to the activations and parameters marked with b.

! Important

The results obtained for the f nodes are needed to compute the b nodes.
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Figure 13: Computation graph for obtaining gradients for a simple feed-forward neural network with n layers. The purple color
indicates nodes that are stored in memory.
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Figure 13: Computation graph for obtaining gradients for a simple feed-forward neural network with n layers. The purple color

indicates nodes that are stored in memory.

® All activations f are kept in memory after the forward pass.
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Figure 13: Computation graph for obtaining gradients for a simple feed-forward neural network with n layers. The purple color

indicates nodes that are stored in memory.

® All activations f are kept in memory after the forward pass.
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Vanilla backpropagation
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Figure 13: Computation graph for obtaining gradients for a simple feed-forward neural network with n layers. The purple color
indicates nodes that are stored in memory.

® All activations f are kept in memory after the forward pass.

® Optimal in terms of computation: it only computes each node once.
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Vanilla backpropagation

200

Figure 13: Computation graph for obtaining gradients for a simple feed-forward neural network with n layers. The purple color
indicates nodes that are stored in memory.

® All activations f are kept in memory after the forward pass.

® Optimal in terms of computation: it only computes each node once.

® High memory usage. The memory usage grows linearly with the number of layers in the neural network.
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Memory poor backpropagation

Figure 14: Computation graph for obtaining gradients for a simple feed-forward neural network with n layers. The purple color
indicates nodes that are stored in memory.
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Figure 14: Computation graph for obtaining gradients for a simple feed-forward neural network with n layers. The purple color
indicates nodes that are stored in memory.

® Each activation f is recalculated as needed.
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Figure 14: Computation graph for obtaining gradients for a simple feed-forward neural network with n layers. The purple color
indicates nodes that are stored in memory.

® Each activation f is recalculated as needed.
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Memory poor backpropagation

Figure 14: Computation graph for obtaining gradients for a simple feed-forward neural network with n layers. The purple color
indicates nodes that are stored in memory.

® Each activation f is recalculated as needed.

® Optimal in terms of memory: there is no need to store all activations in memory.
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Memory poor backpropagation

Figure 14: Computation graph for obtaining gradients for a simple feed-forward neural network with n layers. The purple color
indicates nodes that are stored in memory.

® Each activation f is recalculated as needed.

® Optimal in terms of memory: there is no need to store all activations in memory.

e Computationally inefficient. The number of node evaluations scales with n?, whereas it vanilla backprop
scaled as n: each of the n nodes is recomputed on the order of n times.

B /= min \GPU training 0
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Checkpointed backpropagation
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Figure 15: Computation graph for obtaining gradients for a simple feed-forward neural network with n layers. The purple color
indicates nodes that are stored in memory.
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Figure 15: Computation graph for obtaining gradients for a simple feed-forward neural network with n layers. The purple color
indicates nodes that are stored in memory.

® Trade-off between the vanilla and memory poor approaches. The strategy is to mark a subset of the neural net
activations as checkpoint nodes, that will be stored in memory.
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® Trade-off between the vanilla and memory poor approaches. The strategy is to mark a subset of the neural net
activations as checkpoint nodes, that will be stored in memory.
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Figure 15: Computation graph for obtaining gradients for a simple feed-forward neural network with n layers. The purple color
indicates nodes that are stored in memory.

® Trade-off between the vanilla and memory poor approaches. The strategy is to mark a subset of the neural net
activations as checkpoint nodes, that will be stored in memory.

® Faster recalculation of activations f. We only need to recompute the nodes between a b node and the last
checkpoint preceding it when computing that b node during backprop.
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® Trade-off between the vanilla and memory poor approaches. The strategy is to mark a subset of the neural net
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® Faster recalculation of activations f. We only need to recompute the nodes between a b node and the last
checkpoint preceding it when computing that b node during backprop.
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Figure 15: Computation graph for obtaining gradients for a simple feed-forward neural network with n layers. The purple color
indicates nodes that are stored in memory.

® Trade-off between the vanilla and memory poor approaches. The strategy is to mark a subset of the neural net
activations as checkpoint nodes, that will be stored in memory.

® Faster recalculation of activations f. We only need to recompute the nodes between a b node and the last
checkpoint preceding it when computing that b node during backprop.

® Memory consumption depends on the number of checkpoints. More effective then vanilla approach.

B /= min \GPU training
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Gradient checkpointing visualization

The animated visualization of the above approaches €)

An example of using a gradient checkpointing €9

B/~ M \GPU training
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Split the weight matrix into 2 well clustered factors *
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Figure 16: Scheme of post-training quantization approach.
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