Big Models

Aausa Mepkynos

Mertogbl Ontumuzaumn B Mawnkinom OGyqequn. ®KH BLLS

https://fmin.xyz
https://hse25.fmin.xyz
https://github.com/MerkulovDaniil/hse25
https://t.me/fminxyz

— min
B /— min

Tpenab!

Tpenabi

https://fmin.xyz
https://hse25.fmin.xyz
https://github.com/MerkulovDaniil/hse25
https://t.me/fminxyz

Notable AI Models

Training compute (FLOP) 483 Results
1e26

1e20

lel4

le8

le2

B /— min

Gemini 1.0 Ultga)

Neural LMD
F|sher Vector |mage cﬂ:ssmer
TD-Gammon @ ® et 'O
Handwritten Digit Recognltlon System - énvarlant CNN
x[ve2’
@fPandemonium (m°rse)ASE+ACE:) Fg“sz NN»
@ ® g o0
©] - ®
@ P_el:ceptFoﬁ)Mark 1
-7 © ADALINE |
Deep Learning Era

© Theseus

1950 1960 1970 1980 1990 2000 2010 2020

Publication date

Figure 1: dnnamuka Bblymcnennii, Heobxopnmmbix ansi obydeHns mogeneii. Vctounnk

Tpenab!

Z EPOCHAI

Domain

B Language
M Vision

B Multimodal
M Biology

B Games

B Speech

B Image generatic
B Robotics
M Video

M Other

https://epoch.ai/data/notable-ai-models
https://fmin.xyz
https://hse25.fmin.xyz
https://github.com/MerkulovDaniil/hse25
https://t.me/fminxyz

Notable AI Models Z EPOCHAI

Training compute (FLOP) 483 Results
Grok-39
1e26
GPT-40 GPT'“" @
FLAN 137B), GPT<3.5 v_vg‘éa:B
AlphaGo Zerqd GPT-3 175B (davmq) Flammgo @ 3‘. .. -
1le23 .H MAQ%G."V
AI':'haz"’"‘Megatron-BERTs . OAT - *
GNMT.

° GPT-2 (125B) @
SNM-skipp ~ Xceptiono JFT‘]

1e20 ° o®
@ ResNet-200
VGG199 ° ® & = [Y
%ransEs .. BIDAF® - Jl%llisNeimmuSTMP eri (iteEormer AudioLM@
AlexNétog o o --T umbirs®e® ®°
Mitosis® -5 h R Mogrifier RLSTM (WT2
1e17 \n Lo . Hosise, - -% I R-FCN® Plugibusd 9 (%wift.
) RNTNG ENAS®
MCDNN (MNIST!) .' - ® VD-! RHN. '
- LSTM+NeuraICache
_ e _-- 4]
lel4 Jl‘:is'her Vector image classifier
2010 2012 2014 2016 2018 2020 2022 2024 2026

Publication date

Figure 2: [nHamuka Bblymcnenunii, Heobxopnmmbix Ans obyyeHus HelipoceTesbix Mogeneii. VcTounuk

Lfﬁi‘f‘,,i,‘i Tpenab! 0 O

https://epoch.ai/data/notable-ai-models
https://fmin.xyz
https://hse25.fmin.xyz
https://github.com/MerkulovDaniil/hse25
https://t.me/fminxyz

Notable AI Models

Number of trainable parameters

lell DLRM-2020)

RNN for 1B words
MoE-Multid e

]
1e9 gh-level Feature LearngrrransE.

15-119 %o, Ogosam
®e 3 BASICL

Z EPOCHAI

636 Results
i (¢]
Switch®gLam @ PanGu -39 .
Yuan 1 3”“ o8 2 0N
uan ;
(¢ Ga Iag'tﬂa LUUMI &)

?Pa‘ll. g._ OP‘Y'X@BB.. e _--
P RAR L LN
AG@&M’ ‘Infmitﬂ

PLUG®

';‘a

D ®
. ° QoeuodQLO® SNMTe ULM o ﬁeaﬂw l R d Rangu-W&3ther GRr-20
o ClsTMiMg o (GG1986 o . % euT-B .0 ®° o @0
DBLSTMe J.i RT-10
1e7 'R8) LsTM- 300units ¢ Ba?c Norfi fe‘ce"t.m“. RCANOALBERT f edBERT. o0 © 8
& _---"°" 8 Ll conr§ HyenaDNm>
MCDNN (MNIST)— DQN-2015) BIDAFo0 © Bo o
e Ne " QT OPtO © CURL® Robot Parkour
Space Model ® SPIDER2) y R
le5)
Mitosis® TRPO® TCN (P-MNIST) ° Swift®
main Adaptation ® :
le3 g
2010 2012 2014 2016 2018 2020 2022 2024 2026

Publication date

Figure 3: [lunamuka konuyectsa oby4aembix napamMeTpos HelipoceTeBbix Mogeneid. VcTounnk

B /— min

Tpenab!

https://epoch.ai/data/notable-ai-models
https://fmin.xyz
https://hse25.fmin.xyz
https://github.com/MerkulovDaniil/hse25
https://t.me/fminxyz

‘f — min
Tz

GPT-2 training Memory footprint

GPT-2 training Memory footprint

https://fmin.xyz
https://hse25.fmin.xyz
https://github.com/MerkulovDaniil/hse25
https://t.me/fminxyz

GPT-2 training Memory footprint

Example: 1.5B parameter GPT-2 model needs 3GB for weights in 16-bit precision but
can't be trained on a 32GB GPU using Tensorflow or PyTorch. Major memory usage
during training includes optimizer states, gradients, parameters, activations, temporary
buffers, and fragmented memory.

Model States:

— ® Optimizer states (e.g., Adam) require memory for time-averaged momentum and
gradient variance.

3GB | Fragmentation Overhead (Variable)

6GB | Temporary Buffers (fp32)

8GB | Activations (with checkpointing)

Memory Requirements Example:

6GB | Optimizer States (fp32 Variance)

6GB | Optimizer States (fp32 Momentum)

] Residual Memory Consumption:

6GB | Optimizer States (fp32 Parameters)

3GB | Gradients (fp16)

3GB | Parameters (fpl6)

‘f - fn.}‘; GPT-2 training Memory footprint 0 O

https://fmin.xyz
https://hse25.fmin.xyz
https://github.com/MerkulovDaniil/hse25
https://t.me/fminxyz

GPT-2 training Memory footprint

3GB | Fragmentation Overhead (Variable)

6GB | Temporary Buffers (fp32)

8GB | Activations (with checkpointing)

6GB | Optimizer States (fp32 Variance)

6GB | Optimizer States (fp32 Momentum)

6GB | Optimizer States (fp32 Parameters)

3GB | Gradients (fp16)

3GB | Parameters (fpl6)

‘f - fn.}‘; GPT-2 training Memory footprint

Example: 1.5B parameter GPT-2 model needs 3GB for weights in 16-bit precision but
can't be trained on a 32GB GPU using Tensorflow or PyTorch. Major memory usage
during training includes optimizer states, gradients, parameters, activations, temporary
buffers, and fragmented memory.
Model States:
® Optimizer states (e.g., Adam) require memory for time-averaged momentum and
gradient variance.
® Mixed-precision training (fp16/32) necessitates storing parameters and activations
as fp16, but keeps fp32 copies for updates.
Memory Requirements Example:

Residual Memory Consumption:

https://fmin.xyz
https://hse25.fmin.xyz
https://github.com/MerkulovDaniil/hse25
https://t.me/fminxyz

GPT-2 training Memory footprint

3GB | Fragmentation Overhead (Variable)

6GB | Temporary Buffers (fp32)

8GB | Activations (with checkpointing)

6GB | Optimizer States (fp32 Variance)

6GB | Optimizer States (fp32 Momentum)

6GB | Optimizer States (fp32 Parameters)

3GB | Gradients (fp16)

3GB | Parameters (fpl6)

‘f - fn.}‘; GPT-2 training Memory footprint

Example: 1.5B parameter GPT-2 model needs 3GB for weights in 16-bit precision but
can't be trained on a 32GB GPU using Tensorflow or PyTorch. Major memory usage
during training includes optimizer states, gradients, parameters, activations, temporary
buffers, and fragmented memory.
Model States:
® Optimizer states (e.g., Adam) require memory for time-averaged momentum and
gradient variance.
® Mixed-precision training (fp16/32) necessitates storing parameters and activations
as fp16, but keeps fp32 copies for updates.
Memory Requirements Example:
® Training with Adam in mixed precision for a model with ¥ parameters: 2¥ bytes
for fpl6 parameters and gradients, 12W bytes for optimizer states (parameters,
momentum, variance).

Residual Memory Consumption:

https://fmin.xyz
https://hse25.fmin.xyz
https://github.com/MerkulovDaniil/hse25
https://t.me/fminxyz

GPT-2 training Memory footprint

3GB | Fragmentation Overhead (Variable)

6GB | Temporary Buffers (fp32)

8GB | Activations (with checkpointing)

6GB | Optimizer States (fp32 Variance)

6GB | Optimizer States (fp32 Momentum)

6GB | Optimizer States (fp32 Parameters)

3GB | Gradients (fp16)

3GB | Parameters (fpl6)

‘f - fn.}‘; GPT-2 training Memory footprint

Example: 1.5B parameter GPT-2 model needs 3GB for weights in 16-bit precision but
can't be trained on a 32GB GPU using Tensorflow or PyTorch. Major memory usage
during training includes optimizer states, gradients, parameters, activations, temporary
buffers, and fragmented memory.
Model States:
® Optimizer states (e.g., Adam) require memory for time-averaged momentum and
gradient variance.
® Mixed-precision training (fp16/32) necessitates storing parameters and activations
as fp16, but keeps fp32 copies for updates.
Memory Requirements Example:
® Training with Adam in mixed precision for a model with ¥ parameters: 2¥ bytes
for fpl6 parameters and gradients, 12W bytes for optimizer states (parameters,
momentum, variance).
® Total: 16¥ bytes; for GPT-2 with 1.5B parameters, this equals 24GB.
Residual Memory Consumption:

https://fmin.xyz
https://hse25.fmin.xyz
https://github.com/MerkulovDaniil/hse25
https://t.me/fminxyz

GPT-2 training Memory footprint

3GB | Fragmentation Overhead (Variable)

6GB | Temporary Buffers (fp32)

8GB | Activations (with checkpointing)

6GB | Optimizer States (fp32 Variance)

6GB | Optimizer States (fp32 Momentum)

6GB | Optimizer States (fp32 Parameters)

3GB | Gradients (fp16)

3GB | Parameters (fpl6)

‘f - EHA}‘; GPT-2 training Memory footprint

Example: 1.5B parameter GPT-2 model needs 3GB for weights in 16-bit precision but
can't be trained on a 32GB GPU using Tensorflow or PyTorch. Major memory usage
during training includes optimizer states, gradients, parameters, activations, temporary
buffers, and fragmented memory.
Model States:
® Optimizer states (e.g., Adam) require memory for time-averaged momentum and
gradient variance.
® Mixed-precision training (fp16/32) necessitates storing parameters and activations
as fp16, but keeps fp32 copies for updates.
Memory Requirements Example:
® Training with Adam in mixed precision for a model with ¥ parameters: 2¥ bytes
for fpl6 parameters and gradients, 12W bytes for optimizer states (parameters,
momentum, variance).
® Total: 16¥ bytes; for GPT-2 with 1.5B parameters, this equals 24GB.
Residual Memory Consumption:
® Activations: Significant memory usage, e.g., 1.5B parameter GPT-2 model with
sequence length 1K and batch size 32 requires “60GB.

https://fmin.xyz
https://hse25.fmin.xyz
https://github.com/MerkulovDaniil/hse25
https://t.me/fminxyz

GPT-2 training Memory footprint

3GB | Fragmentation Overhead (Variable)

6GB | Temporary Buffers (fp32)

8GB | Activations (with checkpointing)

6GB | Optimizer States (fp32 Variance)

6GB | Optimizer States (fp32 Momentum)

6GB | Optimizer States (fp32 Parameters)

3GB | Gradients (fp16)

3GB | Parameters (fpl6)

‘f - EHA}‘; GPT-2 training Memory footprint

Example: 1.5B parameter GPT-2 model needs 3GB for weights in 16-bit precision but
can't be trained on a 32GB GPU using Tensorflow or PyTorch. Major memory usage
during training includes optimizer states, gradients, parameters, activations, temporary
buffers, and fragmented memory.
Model States:
® Optimizer states (e.g., Adam) require memory for time-averaged momentum and
gradient variance.
® Mixed-precision training (fp16/32) necessitates storing parameters and activations
as fp16, but keeps fp32 copies for updates.
Memory Requirements Example:
® Training with Adam in mixed precision for a model with ¥ parameters: 2¥ bytes
for fpl6 parameters and gradients, 12W bytes for optimizer states (parameters,
momentum, variance).
® Total: 16¥ bytes; for GPT-2 with 1.5B parameters, this equals 24GB.
Residual Memory Consumption:
® Activations: Significant memory usage, e.g., 1.5B parameter GPT-2 model with
sequence length 1K and batch size 32 requires “60GB.
® Activation checkpointing can reduce activation memory by about 50%, with a 33%
recomputation overhead.

https://fmin.xyz
https://hse25.fmin.xyz
https://github.com/MerkulovDaniil/hse25
https://t.me/fminxyz

GPT-2 training Memory footprint

Example: 1.5B parameter GPT-2 model needs 3GB for weights in 16-bit precision but
can't be trained on a 32GB GPU using Tensorflow or PyTorch. Major memory usage
during training includes optimizer states, gradients, parameters, activations, temporary
buffers, and fragmented memory.

Temporary Buffers:

— ® Store intermediate results; e.g., gradient all-reduce operations fuse gradients into a
single buffer.

3GB | Fragmentation Overhead (Variable)

6GB | Temporary Buffers (fp32)

8GB | Activations (with checkpointing)

Memory Fragmentation:

6GB | Optimizer States (fp32 Variance)

6GB | Optimizer States (fp32 Momentum)

6GB | Optimizer States (fp32 Parameters)

3GB | Gradients (fp16)

3GB | Parameters (fpl6)

‘f - fn.}‘; GPT-2 training Memory footprint 0 O

https://fmin.xyz
https://hse25.fmin.xyz
https://github.com/MerkulovDaniil/hse25
https://t.me/fminxyz

GPT-2 training Memory footprint

3GB | Fragmentation Overhead (Variable)

6GB | Temporary Buffers (fp32)

8GB | Activations (with checkpointing)

6GB | Optimizer States (fp32 Variance)

6GB | Optimizer States (fp32 Momentum)

6GB | Optimizer States (fp32 Parameters)

3GB | Gradients (fp16)

3GB | Parameters (fpl6)

‘f - fn.}‘; GPT-2 training Memory footprint

Example: 1.5B parameter GPT-2 model needs 3GB for weights in 16-bit precision but
can't be trained on a 32GB GPU using Tensorflow or PyTorch. Major memory usage
during training includes optimizer states, gradients, parameters, activations, temporary
buffers, and fragmented memory.
Temporary Buffers:
® Store intermediate results; e.g., gradient all-reduce operations fuse gradients into a
single buffer.
® For large models, temporary buffers can consume substantial memory (e.g., 6GB for
1.5B parameter model with fp32 buffer).
Memory Fragmentation:

https://fmin.xyz
https://hse25.fmin.xyz
https://github.com/MerkulovDaniil/hse25
https://t.me/fminxyz

GPT-2 training Memory footprint

3GB | Fragmentation Overhead (Variable)

6GB | Temporary Buffers (fp32)

8GB | Activations (with checkpointing)

6GB | Optimizer States (fp32 Variance)

6GB | Optimizer States (fp32 Momentum)

6GB | Optimizer States (fp32 Parameters)

3GB | Gradients (fp16)

3GB | Parameters (fpl6)

‘f - fn.}‘; GPT-2 training Memory footprint

Example: 1.5B parameter GPT-2 model needs 3GB for weights in 16-bit precision but
can't be trained on a 32GB GPU using Tensorflow or PyTorch. Major memory usage
during training includes optimizer states, gradients, parameters, activations, temporary
buffers, and fragmented memory.
Temporary Buffers:
® Store intermediate results; e.g., gradient all-reduce operations fuse gradients into a
single buffer.
® For large models, temporary buffers can consume substantial memory (e.g., 6GB for
1.5B parameter model with fp32 buffer).
Memory Fragmentation:
® Memory fragmentation can cause out-of-memory issues despite available memory,
as contiguous blocks are required.

https://fmin.xyz
https://hse25.fmin.xyz
https://github.com/MerkulovDaniil/hse25
https://t.me/fminxyz

GPT-2 training Memory footprint

3GB | Fragmentation Overhead (Variable)

6GB | Temporary Buffers (fp32)

8GB | Activations (with checkpointing)

6GB | Optimizer States (fp32 Variance)

6GB | Optimizer States (fp32 Momentum)

6GB | Optimizer States (fp32 Parameters)

3GB | Gradients (fp16)

3GB | Parameters (fpl6)

‘f - fn.}‘; GPT-2 training Memory footprint

Example: 1.5B parameter GPT-2 model needs 3GB for weights in 16-bit precision but
can't be trained on a 32GB GPU using Tensorflow or PyTorch. Major memory usage
during training includes optimizer states, gradients, parameters, activations, temporary
buffers, and fragmented memory.
Temporary Buffers:
® Store intermediate results; e.g., gradient all-reduce operations fuse gradients into a
single buffer.
® For large models, temporary buffers can consume substantial memory (e.g., 6GB for
1.5B parameter model with fp32 buffer).
Memory Fragmentation:
® Memory fragmentation can cause out-of-memory issues despite available memory,
as contiguous blocks are required.
® |n some cases, over 30% of memory remains unusable due to fragmentation.

https://fmin.xyz
https://hse25.fmin.xyz
https://github.com/MerkulovDaniil/hse25
https://t.me/fminxyz

‘f — min
Tz

Scaling Laws

Scaling Laws

https://fmin.xyz
https://hse25.fmin.xyz
https://github.com/MerkulovDaniil/hse25
https://t.me/fminxyz

Scaling Laws !

L4 3Mnmpvmecxoe Nnpasnno: KPOCC-2HTPONUA YMEHbLLAETCA NO CTENEHHOMY 3aKOHY

L(N,D,C)x N *D#C~
roe N — napametpol, D — Tokenbl, C — FLOPs.

‘f - fnﬂ Scaling Laws

https://arxiv.org/abs/2001.08361
https://fmin.xyz
https://hse25.fmin.xyz
https://github.com/MerkulovDaniil/hse25
https://t.me/fminxyz

Scaling Laws !

L4 3Mnmpvmecxoe Nnpasnno: KPOCC-2HTPONUA YMEHbLLAETCA NO CTENEHHOMY 3aKOHY

L(N,D,C)x N *D#C~

roe N — napametpol, D — Tokenbl, C — FLOPs.
e C te allocation: C Noc DO —
ompute allocation: npu dukcuposantom C' ontumansho N KpynHee MofAesib, MeHbLUe AaHHbIX.

‘f - fnﬂ Scaling Laws @0

https://arxiv.org/abs/2001.08361
https://fmin.xyz
https://hse25.fmin.xyz
https://github.com/MerkulovDaniil/hse25
https://t.me/fminxyz

Scaling Laws !

L4 3Mnmpmqecxoe Nnpasnno: KPOCC-2HTPONUA YMEHbLLAETCA NO CTENEHHOMY 3aKOHY

L(N,D,C)x N *D#C~

roe N — napametpol, D — Tokenbl, C — FLOPs.
® Compute allocation: npu dukcnposanHom C ontumansHio N oc D% ™ — kpynHee Mogens, MeHblUe AaHHbIX.
® Mpepacka3saHue KadecTBa: JnHeHoCTb Ha log—log-rpadbuke coxpansietca snnots go GPT-3-scale.

‘f - EHA}‘; Scaling Laws @0

https://arxiv.org/abs/2001.08361
https://fmin.xyz
https://hse25.fmin.xyz
https://github.com/MerkulovDaniil/hse25
https://t.me/fminxyz

Scaling Laws !

L4 3Mnmpmqecxoe Nnpasnno: KPOCC-2HTPONUA YMEHbLLAETCA NO CTENEHHOMY 3aKOHY

L(N,D,C)x N *D#C~

roe N — napametpol, D — Tokenbl, C — FLOPs.
e C Il ion: C Noc D074 —
ompute allocation: npwn dukcuposaniom C ontumansHo N KpYMHee Mofefb, MeHbLUE AaHHbIX.
Mpepackasanmne kavecTsa: nuHeliHocTh Ha log—log-rpachuke coxpatsietcs Bnnotb go GPT-3-scale.
MpakTuyeckn scaling-3akoHbl nomoratoT nogbupaTs pa3sMepbl KOpMyca U OCTaHABIMBATL obyyeHne fo
nepeobyyeHns.

'Kaplan et al., 2020
‘f - EHA}‘; Scaling Laws @0

https://arxiv.org/abs/2001.08361
https://fmin.xyz
https://hse25.fmin.xyz
https://github.com/MerkulovDaniil/hse25
https://t.me/fminxyz

Chinchilla 2

® DeepMind obyunnn Chinchilla 70 B na 1.4 T tokenos npu Tom >xxe compute, 4to u Gopher 280 B.

‘f - fnﬂ Scaling Laws

10

https://arxiv.org/abs/2203.15556
https://fmin.xyz
https://hse25.fmin.xyz
https://github.com/MerkulovDaniil/hse25
https://t.me/fminxyz

Chinchilla 2

® DeepMind obyunnn Chinchilla 70 B na 1.4 T tokenos npu Tom >xxe compute, 4to u Gopher 280 B.
® Pesynbrat: +7 pp Ha MMLU wn cywecTtsenHbili npupocT Ha BIG-bench vs GPT-3.

‘f - fnﬂ Scaling Laws

10

https://arxiv.org/abs/2203.15556
https://fmin.xyz
https://hse25.fmin.xyz
https://github.com/MerkulovDaniil/hse25
https://t.me/fminxyz

Chinchilla 2

® DeepMind obyunnn Chinchilla 70 B na 1.4 T tokenos npu Tom >xxe compute, 4to u Gopher 280 B.
® Pesynbrat: +7 pp Ha MMLU wn cywecTtsenHbili npupocT Ha BIG-bench vs GPT-3.
® Compute-optimal scaling: npu orpanudentbix FLOPs cooTHoweHne «TokeHOB-Ha-napameTp»

obecne4ynBaeT Makcu MYyM Ka4ecCTBa.

‘f - EHA}‘; Scaling Laws

10

https://arxiv.org/abs/2203.15556
https://fmin.xyz
https://hse25.fmin.xyz
https://github.com/MerkulovDaniil/hse25
https://t.me/fminxyz

Chinchilla 2

® Pesynbrat: +7 pp Ha MMLU wn cywecTtsenHbili npupocT Ha BIG-bench vs GPT-3.
Compute-optimal scaling: npun orpannyentbix FLOPs cooTHowweHmne «TokeHoB-Ha-napameTtp»

obecneynBaeT MakCUMyM Ka4ecTBa.
® BbiBog: /iyulle «[oMbliue YHYUTb MEHbLUYIO MOAE/bY», YEM KKOPOTKO YUWUTb OFPOMHYIO».

2Hoffmann et al., 2022
‘f - EHA}‘; Scaling Laws

DeepMind obyunnu Chinchilla 70 B na 1.4 T tokenos npu Tom e compute, 4to u Gopher 280 B.

10

https://arxiv.org/abs/2203.15556
https://fmin.xyz
https://hse25.fmin.xyz
https://github.com/MerkulovDaniil/hse25
https://t.me/fminxyz

Chinchilla scaling laws

IsoLoss contours ISoFLOPs slices
100B 5.00
(<]
40B A ,
I /

i 4.00 b TrainéZI;Cil;s
108 . le+19
9 1 -=- 3e+19
a H " , === 6e+19
© : & 3.00 —=- 1e+20
B8 1B = ——- 3e+20
= -=- 6e+20
-—- le+21
—=- 3e+21
—— Efficient frontier = === Gopher

1o00m @ Empirical data E 2.00

IsoFLOPs slice =
108 102 10% Gopher 100M 1B 10B 40B
budget .
Training FLOPs Model size

Figure 4: Parametric modeling of the loss L(N, D) with contour plot (left) and isoFLOP slices (right). Each isoFLOP slice
corresponds to a dashed line in the left plot. The efficient frontier is shown in blue, forming a line in log-log space. The curve
intersects each iso-loss contour at the point of minimum FLOPs. The optimal model size for the Gopher FLOP budget is projected

to be 40B parameters.

B /— min 0 0

e Scaling Laws

https://fmin.xyz
https://hse25.fmin.xyz
https://github.com/MerkulovDaniil/hse25
https://t.me/fminxyz

‘f — min
Tz

Automatic Mixed Precision (AMP)

Automatic Mixed Precision (AMP)

12

https://fmin.xyz
https://hse25.fmin.xyz
https://github.com/MerkulovDaniil/hse25
https://t.me/fminxyz

Activations

Figure 5: Histogram of activation gradient values during the training of Multibox SSD network. Note that the bins on the x-axis

3

Percentage of all activation gradient values

64

32

FP16 Representable range
Become zero in FP16 FP16 denorlms

0 -75-60-45-40 -38-36-34-32-30 -28-26-24-22-20-18-16-14 -12-10-8 6 4 2 0 2 4 6 8 10

logs(magnitude)

1214 16

cover varying ranges and there's a separate bin for zeros. For example, 2% of the values are in the [2734,2732) range, 2% of values
are in the [2_24, 2_23) range, and 67% of values are zero.

3Mixed Precision Training

B /— min

Automatic Mixed Precision (AMP)

13

https://arxiv.org/abs/1710.03740
https://fmin.xyz
https://hse25.fmin.xyz
https://github.com/MerkulovDaniil/hse25
https://t.me/fminxyz

Weights *

25.0% — Weight Qraduent

20.0% Become zero in. FP16

15.0%

10.0% S . B R B

Percentage of total gradients

5.0%

0.0%

=20
Exponent value

Figure 6: Histogram for the exponents of weight gradients for DeepSpeech 2 model (215 M parameters) training on Mandarin
speech recognition. The gradients are sampled every 4,000 iterations during training for all the layers in the model.

*Mixed Precision Training
B,/ = min A Lomatic Mixed Precision (AMP) L)

https://arxiv.org/abs/1710.03740
https://fmin.xyz
https://hse25.fmin.xyz
https://github.com/MerkulovDaniil/hse25
https://t.me/fminxyz

‘f — min
Tz

Large batch training

Large batch training

15

https://fmin.xyz
https://hse25.fmin.xyz
https://github.com/MerkulovDaniil/hse25
https://t.me/fminxyz

Large batch training °
0.3 w x x

© © ©

o N N

~ o ®
T T T

time per iteration (secs)
X
N

0.2 Il Il Il

time per epoch (mins)

256 512 1k 2k
mini-batch size

5Accurate, Large Minibatch SGD: Training ImageNet in 1 Hour

‘f - ;nyl,'; Large batch training

https://arxiv.org/abs/1706.02677
https://fmin.xyz
https://hse25.fmin.xyz
https://github.com/MerkulovDaniil/hse25
https://t.me/fminxyz

Large batch training °

5 40

35

ImageNet top-1 validation err
[\
(6}

20

T

| | |

| |

|

| | |

64 128 256 512

1k 2k 4k
mini-batch size

6Accurate, Large Minibatch SGD: Training ImageNet in 1 Hour

‘f — min
Tz

Large batch training

8k

16k 32k 64k

17

https://arxiv.org/abs/1706.02677
https://fmin.xyz
https://hse25.fmin.xyz
https://github.com/MerkulovDaniil/hse25
https://t.me/fminxyz

Large batch training ’

Effective batch size (kn) « top-1 error (%)
256 0.05 23.92 £ 0.10
256 0.10 23.60 £ 0.12
256 0.20 23.68 & 0.09
8k 0.05 - 32 24.27 £ 0.08
8k 0.10 - 32 23.74 £ 0.09
8k 0.20 - 32 24.05 £ 0.18
8k 0.10 41.67 = 0.10
8k 0.10-v/32 26.22 + 0.03

Comparison of learning rate scaling rules. ResNet-50 trained on ImageNet. A reference learning rate of « = 0.1 works
best for kn = 256 (23.68% error). The linear scaling rule suggests & = 0.1 - 32 when kn = 8k, which again gives best
performance (23.74% error). Other ways of scaling « give worse results.

"Accurate, Large Minibatch SGD: Training ImageNet in 1 Hour
‘f - EHA}‘; Large batch training

18

https://arxiv.org/abs/1706.02677
https://fmin.xyz
https://hse25.fmin.xyz
https://github.com/MerkulovDaniil/hse25
https://t.me/fminxyz

Linear and square root scaling rules

When training with large batches, the learning rate must be adjusted to maintain convergence speed and stability.
The linear scaling rule® suggests multiplying the learning rate by the same factor as the increase in batch size:

Batch Size,,,,

(6% ST e
Batch Size,.,

new — (base *

The square root scaling rule® proposes scaling the learning rate with the square root of the batch size increase:

Batch Size,,,,
Batch Sizey,,

new — pase *

Authors claimed, that it suits for adaptive optimizers like Adam, RMSProp and etc. while linear scaling rule serves
well for SGD.

8Accurate, Large Minibatch SGD: Training ImageNet in 1 Hour
9Learning Rates as a Function of Batch Size: A Random Matrix Theory Approach to Neural Network Training

‘f - fnﬂ Large batch training 0O

19

https://arxiv.org/abs/1706.02677
https://arxiv.org/abs/2006.09092
https://fmin.xyz
https://hse25.fmin.xyz
https://github.com/MerkulovDaniil/hse25
https://t.me/fminxyz

Batch size scaling

17 Steps to Reach 0.3 Validation Error

T T T T T 1 T T T

Sl oo
212223242526272829210211212213
Batch Size

‘/ - Wy‘rﬁ Large batch training

20

https://fmin.xyz
https://hse25.fmin.xyz
https://github.com/MerkulovDaniil/hse25
https://t.me/fminxyz

Batch size scaling

17 Steps to Reach 0.3 Validation Error 26
T T T I T T T I T T T
: : : : 25 || A—A Optimal Effective Learning Rate 3____:\._._3./_.{
4 || — Linear Heuristic . e
271 AR

- - Square Root Heuristic

Learning Rate / (1 - Momentum)
N
e

27 .
Lo Lo ‘ 26 N S IR SRR SO
24 [S R N RO N RN B R 27 T R T N T SR R SR R
21 22 23 24 25 26 27 28 29210211212213 21 22 23 24 25 26 27 28 29210211212213
Batch Size Batch Size

‘f - Wy‘rﬁ Large batch training 0O

https://fmin.xyz
https://hse25.fmin.xyz
https://github.com/MerkulovDaniil/hse25
https://t.me/fminxyz

Gradual warmup 1°
Gradual warmup helps to avoid instability when starting with large learning rates by slowly increasing the learning rate
from a small value to the target value over a few epochs. This is defined as:

where ¢ is the current iteration and T}, is the warmup duration in iterations. In the original paper, authors used first 5
epochs for gradual warmup.

100 ‘ ‘ : ‘ ‘ ‘ ; ; ‘ : : ‘
| ‘ kn=256, 7= 0.1, 23.60%%0.12

, 23.60%%0.12

kn=256, 23.60%x0.12 0.1
3.2, 23.74%+0.09

7= 0.1,
kn= 8k, m= 3.2, 24.84%%0.37

7
90 n

kn= 8k,

kn= 8k, 7= 3.2, 25.88%%0.56

| ‘ kn=256,

80

70 -

60

50

training error %

40+

30

20
0 20 40 60 80 0 20 40 60 80 0 20 40 60 80

epochs epochs epochs

Figure 7: no warmup Figure 8: constant warmup Figure 9: gradual warmup

10A<_:curate, Large Minibatch SGD: Training ImageNet in 1 Hour
‘f - Wy‘rﬁ Large batch training P00 O 21

https://arxiv.org/abs/1706.02677
https://fmin.xyz
https://hse25.fmin.xyz
https://github.com/MerkulovDaniil/hse25
https://t.me/fminxyz

Cooldown

1.00

Learning rate
> o o o
o [\] (%2 ~
(e} ot (e ot
1 1 1 1

11 12

- 10%
e (Cosine
1 - Sqrt

=== [inear Cooldown \\

| | | | I
200 400 600 800 1000

Steps

360M

25

Perplexity
[\
[a)
1

[a—
ot
|

= 360M Cosine LR

= 360M Constant LR

= 360M SWA Cosine LR
360M SWA Constant LR,

1Scaling Laws and Compute-Optimal Training Beyond Fixed Training Durations
12Scaling Vision Transformers

‘f — min
Tz

Large batch training

T T
20000 40000
Steps

22

https://arxiv.org/pdf/2405.18392
https://arxiv.org/abs/2106.04560v2
https://fmin.xyz
https://hse25.fmin.xyz
https://github.com/MerkulovDaniil/hse25
https://t.me/fminxyz

Gradient accumulation

Gradient accumulation allows the effective batch size to be increased without requiring larger memory by
accumulating gradients over several mini-batches:

Without gradient accumulation

for i, (inputs, targets) in enumerate(data):
outputs = model(inputs)
loss = criterion(outputs, targets)
loss.backward ()

optimizer.step()
optimizer.zero_grad()

‘/ - Wy‘rﬁ Large batch training

23

https://fmin.xyz
https://hse25.fmin.xyz
https://github.com/MerkulovDaniil/hse25
https://t.me/fminxyz

Gradient accumulation

Gradient accumulation allows the effective batch size to be increased without requiring larger memory by
accumulating gradients over several mini-batches:

Without gradient accumulation With gradient accumulation

for i, (inputs, targets) in enumerate(data): for i, (inputs, targets) in enumerate(data):
outputs = model(inputs) outputs = model (inputs)
loss = criterion(outputs, targets) loss = criterion(outputs, targets)
loss.backward() loss.backward ()

if (i+1) % accumulation_steps ==

optimizer.step() optimizer.step()
optimizer.zero_grad() optimizer.zero_grad()

‘f - ?qyu} Large batch training P00 O 23

https://fmin.xyz
https://hse25.fmin.xyz
https://github.com/MerkulovDaniil/hse25
https://t.me/fminxyz

‘f — min
Tz

MultiGPU training

MultiGPU training

24

https://fmin.xyz
https://hse25.fmin.xyz
https://github.com/MerkulovDaniil/hse25
https://t.me/fminxyz

Data Parallel training
1. Parameter server sends the full copy of the model to each device

B /= min \GPU training

25

https://fmin.xyz
https://hse25.fmin.xyz
https://github.com/MerkulovDaniil/hse25
https://t.me/fminxyz

Data Parallel training
1. Parameter server sends the full copy of the model to each device
2. Each device makes forward and backward passes

B /= min \GPU training

25

https://fmin.xyz
https://hse25.fmin.xyz
https://github.com/MerkulovDaniil/hse25
https://t.me/fminxyz

Data Parallel training

1. Parameter server sends the full copy of the model to each device
2. Each device makes forward and backward passes

3. Parameter server gathers gradients

B /= min \GPU training

25

https://fmin.xyz
https://hse25.fmin.xyz
https://github.com/MerkulovDaniil/hse25
https://t.me/fminxyz

Data Parallel training

1. Parameter server sends the full copy of the model to each device
2. Each device makes forward and backward passes

3. Parameter server gathers gradients

4. Parameter server updates the model

B /= min \GPU training

https://fmin.xyz
https://hse25.fmin.xyz
https://github.com/MerkulovDaniil/hse25
https://t.me/fminxyz

Data Parallel training

1. Parameter server sends the full copy of the model to each device
2. Each device makes forward and backward passes

3. Parameter server gathers gradients

4. Parameter server updates the model

B /= min \GPU training

https://fmin.xyz
https://hse25.fmin.xyz
https://github.com/MerkulovDaniil/hse25
https://t.me/fminxyz

Data Parallel training

1. Parameter server sends the full copy of the model to each device
2. Each device makes forward and backward passes

3. Parameter server gathers gradients

4. Parameter server updates the model

Per device batch size: b. Overall batchsize: Db. Data parallelism involves splitting the data across multiple GPUs,
each with a copy of the model. Gradients are averaged and weights updated synchronously:

GPU1
X, 0, VoL (0k, X1)
Forward pass L(0, X1)

Backward pass VoL(0x, X1)

Parameter server . Parameter server
GPUi

X, O

Model 6 Model 61

L Forward pass L(0, X;) "y
Optimizer state sy) Optimizer state $y1
Data X1, X5,...,Xp Backward pass voL(ek’Xl) Data X1, X5,...,Xp

GPUD

Xp.0, |Forward pass L(6, Xp) VoL(6y, X,
Dok Backward pass VoL(6k, Xp) ok O, Xo)

B /= min \GPU training 00

25

https://fmin.xyz
https://hse25.fmin.xyz
https://github.com/MerkulovDaniil/hse25
https://t.me/fminxyz

Distributed Data Parallel training

Distributed Data Parallel (DDP) 3 extends data parallelism across multiple nodes. Each node computes gradients
locally, then synchronizes with others. Below one can find differences from the PyTorch site. This is used by default in
®@Accelerate library.

DataParallel DistributedDataParallel
More overhead; model is replicated and destroyed at each Model is replicated only once
forward pass
Only supports single-node parallelism Supports scaling to multiple machines
Slower; uses multithreading on a single process and runs Faster (no GIL contention) because it uses
into Global Interpreter Lock (GIL) contention multiprocessing

13Getting Started with Distributed Data Parallel
‘f% fu.}‘; MultiGPU training P00 O 26

https://pytorch.org/tutorials/beginner/ddp_series_theory.html
https://huggingface.co/docs/transformers/accelerate
https://pytorch.org/tutorials/intermediate/ddp_tutorial.html
https://fmin.xyz
https://hse25.fmin.xyz
https://github.com/MerkulovDaniil/hse25
https://t.me/fminxyz

Naive model parallelism

Model parallelism divides the model across multiple GPUs. Each GPU handles a subset of the model layers, reducing
memory load per GPU. Allows to work with the models, that won't fit in the single GPU Poor resource utilization.

Model

LayerA LayerB LayerC LayerD

GPU 1 F1 Update 82 F2 Update 8a
GPU 2 F1 Update 8s F2 Update 85
GPU 3 F1 Update 8c F2 Update 8¢
GPU 4 F1 Update 8o F2 Update 8o

| | 1 ITime

1 1 1 | g

St Full
art model forward Batch 1 Batch 2

Figure 11: Model parallelism

B/~ M \GPU training @00 2

https://fmin.xyz
https://hse25.fmin.xyz
https://github.com/MerkulovDaniil/hse25
https://t.me/fminxyz

Pipeline model parallelism (GPipe) **

GPipe splits the model into stages, each processed sequentially. Micro-batches are passed through the pipeline,
allowing for overlapping computation and communication:
Model

LayerA LayerB LayerC Layer j

GPU 1 F1,1 F1,2 F1,3 F1,4 F1,5 F1,6 Update B
GPU 2 F1,1 F1,2 F1,3 F1,4 F1,5 F1,6 Update 6
GPU 3 F1,1 F12 F1,3 F1,4 F1,5 F1,6 Update 8
@ GPU 4 F1,1 F1,2 F1,3 F1,4 F1,5 F1,6 Update &
1 1 Iirze
1 T ™
Full
Stant model forward Batch 1

14GPipe: Efficient Training of Giant Neural Networks using Pipeline Parallelism
B /= min \GPU training 00 =

https://arxiv.org/abs/1811.06965
https://fmin.xyz
https://hse25.fmin.xyz
https://github.com/MerkulovDaniil/hse25
https://t.me/fminxyz

Pipeline model parallelism (PipeDream) *°

PipeDream uses asynchronous pipeline parallelism, balancing forward and backward passes across the pipeline stages
to maximize utilization and reduce idle time:

Model
Layer A LayerB LayerC Layer T

GPU 1 F1,1 F12 F1,3 F1,4
GPU 2 F1,1 F1,2 F1,3

GPU 3 F1,1 F1,.2

Update 8a

Update 88

Update 6c
GPU 4 F1,1 Update 6p
1 I i’iTe
1 T ™
Full
Start model forward Batch 1

15PipeDream: Generalized Pipeline Parallelism for DNN Training
B /= min \GPU training

https://arxiv.org/abs/1806.03377
https://fmin.xyz
https://hse25.fmin.xyz
https://github.com/MerkulovDaniil/hse25
https://t.me/fminxyz

ZeRO '°

Memory lPK=12
=7.5B
gPuy gpy; 8PUN4 Consumed | _o4
Baseline Q+2+K)«¥ | 120GB
K*xW¥
1.4GB
Pos 2W + 29 + N, 31.4G
2+ K)x¥
Pos+g 2¥ + T 16.6GB
2+ 2+ K)x¥ 1.9GB
I:’os+g+p N, ’
Parameters Gradients Optimizer States
16ZeRO: Memory Optimizations Toward Training Trillion Parameter Models
® 0

B /= min \GPU training

30

https://arxiv.org/abs/1910.02054
https://fmin.xyz
https://hse25.fmin.xyz
https://github.com/MerkulovDaniil/hse25
https://t.me/fminxyz

FSDP (Fully Sharded Data Parallel) *’

® |llapauHr napaMeTpoB, rPaANEHTOB 1 COCTOSIHWIA ONTUMM3aTOpa No npoueccam — 3koHomusi X7 X namsTn
oTHocuTensHo DDP.

B /= min \GPU training 00

31

https://pytorch.org/docs/stable/fsdp.html
https://fmin.xyz
https://hse25.fmin.xyz
https://github.com/MerkulovDaniil/hse25
https://t.me/fminxyz

FSDP (Fully Sharded Data Parallel) *’

® |llapauHr napaMeTpoB, rPaANEHTOB 1 COCTOSIHWIA ONTUMM3aTOpa No npoueccam — 3koHomusi X7 X namsTn
oTHocuTensHo DDP.

® ObMeHbl BLINOHAIOTCA TONLKO Ha rpaHnyax sync; oCtasibHOe BpeMA Moaesib BUANT NOHbI TEH30p.

B /= min \GPU training 00

31

https://pytorch.org/docs/stable/fsdp.html
https://fmin.xyz
https://hse25.fmin.xyz
https://github.com/MerkulovDaniil/hse25
https://t.me/fminxyz

FSDP (Fully Sharded Data Parallel) *’

® |llapauHr napaMeTpoB, rPaANEHTOB 1 COCTOSIHWIA ONTUMM3aTOpa No npoueccam — 3koHomusi X7 X namsTn
oTHocuTensHo DDP.

® ObMeHbl BLINOHAIOTCA TONLKO Ha rpaHnyax sync; oCtasibHOe BpeMA Moaesib BUANT NOHbI TEH30p.

® Mopnepxka CPU-offload, mixed-precision, aktusaymonHoro checkpointinga.

B /= min \GPU training 00

31

https://pytorch.org/docs/stable/fsdp.html
https://fmin.xyz
https://hse25.fmin.xyz
https://github.com/MerkulovDaniil/hse25
https://t.me/fminxyz

FSDP (Fully Sharded Data Parallel) *’

LLlapguHr napameTpoB, rpagneHToB 1 COCTOSIHWIA ONTUMM3aTopa no npoueccam — 3koHomusi X7 X namsitn
oTHocuTensHo DDP.

Ob6MeHbI BLINOMHAIOTCS TOABLKO Ha FPaHMULAX SYNC; OCTafbHOE BPEMS MOAENb BUAUT MNOMHbIN TEH30p.
MNopaepxka CPU-offload, mixed-precision, aktusaymonHoro checkpointinga.

MuHuManbHbIA NpumMep:

import torch

from torch.distributed.fsdp import FullyShardedDataParallel as FSDP
torch.cuda.set_device(device_id)

sharded_module = FSDP (my_module)

optim = torch.optim.SGD(sharded_module.parameters(), lr=0.0001)

x = sharded_module(x, y=3, z=torch.Tensor([1]))

loss = x.sum()

loss.backward ()

optim.step()

17PyTorch docs

B /= min \GPU training 0

31

https://pytorch.org/docs/stable/fsdp.html
https://fmin.xyz
https://hse25.fmin.xyz
https://github.com/MerkulovDaniil/hse25
https://t.me/fminxyz

LoRA 18

Pretrained
Weights

/= Rdxd

X |

B/~ M \GPU training

LoRA reduces the number of parameters by approximating
weight matrices with low-rank factorization:

Wi = W + AW

where AW = ABT, with A and B being low-rank
matrices. This reduces computational and memory
overhead while maintaining model performance.
® A is initialized as usual, while B is initialized with
zeroes in order to start from identity mapping

32

https://arxiv.org/abs/2106.09685
https://fmin.xyz
https://hse25.fmin.xyz
https://github.com/MerkulovDaniil/hse25
https://t.me/fminxyz

LoRA 18

Pretrained
Weights

/= Rdxd

X |

B/~ M \GPU training

LoRA reduces the number of parameters by approximating
weight matrices with low-rank factorization:

Wi = W + AW

where AW = ABT, with A and B being low-rank
matrices. This reduces computational and memory
overhead while maintaining model performance.
® A is initialized as usual, while B is initialized with
zeroes in order to start from identity mapping
® 1 is typically selected between 2 and 64

32

https://arxiv.org/abs/2106.09685
https://fmin.xyz
https://hse25.fmin.xyz
https://github.com/MerkulovDaniil/hse25
https://t.me/fminxyz

LoRA 18

Pretrained
Weights

/=]Rdxd

X |

B/~ M \GPU training

LoRA reduces the number of parameters by approximating

weight matrices with low-rank factorization:
Woew =W + AW

where AW = ABT, with A and B being low-rank
matrices. This reduces computational and memory
overhead while maintaining model performance.
® A is initialized as usual, while B is initialized with
zeroes in order to start from identity mapping
® 1 is typically selected between 2 and 64
® Usually applied to attention modules

32

https://arxiv.org/abs/2106.09685
https://fmin.xyz
https://hse25.fmin.xyz
https://github.com/MerkulovDaniil/hse25
https://t.me/fminxyz

LoRA reduces the number of parameters by approximating
weight matrices with low-rank factorization:

Wi = W + AW

where AW = ABT, with A and B being low-rank
3 matrices. This reduces computational and memory
Pretralned overhead while maintaining model performance.
WEIghtS ® Ais |n|.t|a||zed as usual, Whl|e. B |s_ |n|t|a||z§d with
zeroes in order to start from identity mapping
® 1 is typically selected between 2 and 64

W = [Rd)(d ® Usually applied to attention modules

X | |

18 oRA: Low-Rank Adaptation of Large Language Models

B/~ M \GPU training %00

32

https://arxiv.org/abs/2106.09685
https://fmin.xyz
https://hse25.fmin.xyz
https://github.com/MerkulovDaniil/hse25
https://t.me/fminxyz

LoRA reduces the number of parameters by approximating
weight matrices with low-rank factorization:

Wi = W + AW

where AW = ABT, with A and B being low-rank

3 matrices. This reduces computational and memory
Pretralned overhead while maintaining model performance.
WEIghtS ® Ais ini.tialized as usual, whilc? B is_ initializgd with

zeroes in order to start from identity mapping

® 1 is typically selected between 2 and 64
W = [Rd)(d ® Usually applied to attention modules
h=W,,~=Wz+ AWz =Wz + ABTz

new

X | |

B /= min \GPU training

18 oRA: Low-Rank Adaptation of Large Language Models

32

https://arxiv.org/abs/2106.09685
https://fmin.xyz
https://hse25.fmin.xyz
https://github.com/MerkulovDaniil/hse25
https://t.me/fminxyz

Feedforward Architecture

Forward pass

ORS00
OS0=0=0=0

Backward pass

Figure 12: Computation graph for obtaining gradients for a simple feed-forward neural network with n layers. The activations marked
with an f. The gradient of the loss with respect to the activations and parameters marked with b.

B /= min \GPU training 00 33

https://fmin.xyz
https://hse25.fmin.xyz
https://github.com/MerkulovDaniil/hse25
https://t.me/fminxyz

Feedforward Architecture

Forward pass

ORS00
OS0=0=0=0

Backward pass

Figure 12: Computation graph for obtaining gradients for a simple feed-forward neural network with n layers. The activations marked
with an f. The gradient of the loss with respect to the activations and parameters marked with b.

! Important

The results obtained for the f nodes are needed to compute the b nodes.

B /= min \GPU training 00 33

https://fmin.xyz
https://hse25.fmin.xyz
https://github.com/MerkulovDaniil/hse25
https://t.me/fminxyz

Vanilla backpropagation

£ £ £ £

[X — — ‘ f —)

G f \f — f// \f

@

b b b L
N <&

Figure 13: Computation graph for obtaining gradients for a simple feed-forward neural network with n layers. The purple color
indicates nodes that are stored in memory.

B/~ M \GPU training 00

https://fmin.xyz
https://hse25.fmin.xyz
https://github.com/MerkulovDaniil/hse25
https://t.me/fminxyz

Vanilla backpropagation

P PN P PN e

AN AN D N A
[X —> f —> f — f — f)

A AN >

N

\
b b b / L
/
N O

Figure 13: Computation graph for obtaining gradients for a simple feed-forward neural network with n layers. The purple color

indicates nodes that are stored in memory.

® All activations f are kept in memory after the forward pass.

B /= min \GPU training 0

34

https://fmin.xyz
https://hse25.fmin.xyz
https://github.com/MerkulovDaniil/hse25
https://t.me/fminxyz

Vanilla backpropagation

P PN P PN e

AN AN D N A
[X —> f —> f — f — f)

A AN >

N

\
b b b / L
/
N O

Figure 13: Computation graph for obtaining gradients for a simple feed-forward neural network with n layers. The purple color

indicates nodes that are stored in memory.

® All activations f are kept in memory after the forward pass.

B /= min \GPU training 0

34

https://fmin.xyz
https://hse25.fmin.xyz
https://github.com/MerkulovDaniil/hse25
https://t.me/fminxyz

Vanilla backpropagation

200

Figure 13: Computation graph for obtaining gradients for a simple feed-forward neural network with n layers. The purple color
indicates nodes that are stored in memory.

® All activations f are kept in memory after the forward pass.

® Optimal in terms of computation: it only computes each node once.

B /= min \GPU training @00 3

https://fmin.xyz
https://hse25.fmin.xyz
https://github.com/MerkulovDaniil/hse25
https://t.me/fminxyz

Vanilla backpropagation

200

Figure 13: Computation graph for obtaining gradients for a simple feed-forward neural network with n layers. The purple color
indicates nodes that are stored in memory.

® All activations f are kept in memory after the forward pass.

® Optimal in terms of computation: it only computes each node once.

B /= min \GPU training @00 3

https://fmin.xyz
https://hse25.fmin.xyz
https://github.com/MerkulovDaniil/hse25
https://t.me/fminxyz

Vanilla backpropagation

200

Figure 13: Computation graph for obtaining gradients for a simple feed-forward neural network with n layers. The purple color
indicates nodes that are stored in memory.

® All activations f are kept in memory after the forward pass.

® Optimal in terms of computation: it only computes each node once.

® High memory usage. The memory usage grows linearly with the number of layers in the neural network.

B /= min \GPU training @00 3

https://fmin.xyz
https://hse25.fmin.xyz
https://github.com/MerkulovDaniil/hse25
https://t.me/fminxyz

Memory poor backpropagation

Figure 14: Computation graph for obtaining gradients for a simple feed-forward neural network with n layers. The purple color
indicates nodes that are stored in memory.

B/~ M \GPU training 0

35

https://fmin.xyz
https://hse25.fmin.xyz
https://github.com/MerkulovDaniil/hse25
https://t.me/fminxyz

Memory poor backpropagation
GO0
\ v \l/

O2020s "o

Figure 14: Computation graph for obtaining gradients for a simple feed-forward neural network with n layers. The purple color
indicates nodes that are stored in memory.

® Each activation f is recalculated as needed.

B /= min \GPU training 0

35

https://fmin.xyz
https://hse25.fmin.xyz
https://github.com/MerkulovDaniil/hse25
https://t.me/fminxyz

Memory poor backpropagation
GO0
\ v \l/

O2020s "o

Figure 14: Computation graph for obtaining gradients for a simple feed-forward neural network with n layers. The purple color
indicates nodes that are stored in memory.

® Each activation f is recalculated as needed.

B /= min \GPU training 0

35

https://fmin.xyz
https://hse25.fmin.xyz
https://github.com/MerkulovDaniil/hse25
https://t.me/fminxyz

Memory poor backpropagation

Figure 14: Computation graph for obtaining gradients for a simple feed-forward neural network with n layers. The purple color
indicates nodes that are stored in memory.

® Each activation f is recalculated as needed.

® Optimal in terms of memory: there is no need to store all activations in memory.

B /= min \GPU training 0

35

https://fmin.xyz
https://hse25.fmin.xyz
https://github.com/MerkulovDaniil/hse25
https://t.me/fminxyz

Memory poor backpropagation

Figure 14: Computation graph for obtaining gradients for a simple feed-forward neural network with n layers. The purple color
indicates nodes that are stored in memory.

® Each activation f is recalculated as needed.

® Optimal in terms of memory: there is no need to store all activations in memory.

B /= min \GPU training 0

35

https://fmin.xyz
https://hse25.fmin.xyz
https://github.com/MerkulovDaniil/hse25
https://t.me/fminxyz

Memory poor backpropagation

Figure 14: Computation graph for obtaining gradients for a simple feed-forward neural network with n layers. The purple color
indicates nodes that are stored in memory.

® Each activation f is recalculated as needed.

® Optimal in terms of memory: there is no need to store all activations in memory.

e Computationally inefficient. The number of node evaluations scales with n?, whereas it vanilla backprop
scaled as n: each of the n nodes is recomputed on the order of n times.

B /= min \GPU training 0

35

https://fmin.xyz
https://hse25.fmin.xyz
https://github.com/MerkulovDaniil/hse25
https://t.me/fminxyz

Checkpointed backpropagation

e
AN

checkpoint

o
K 0

Figure 15: Computation graph for obtaining gradients for a simple feed-forward neural network with n layers. The purple color
indicates nodes that are stored in memory.

B/~ M \GPU training @00 3

https://fmin.xyz
https://hse25.fmin.xyz
https://github.com/MerkulovDaniil/hse25
https://t.me/fminxyz

Checkpointed backpropagation

checkpoint

."“ % //\

N

Figure 15: Computation graph for obtaining gradients for a simple feed-forward neural network with n layers. The purple color
indicates nodes that are stored in memory.

® Trade-off between the vanilla and memory poor approaches. The strategy is to mark a subset of the neural net
activations as checkpoint nodes, that will be stored in memory.

B /= min \GPU training @00 3

https://fmin.xyz
https://hse25.fmin.xyz
https://github.com/MerkulovDaniil/hse25
https://t.me/fminxyz

Checkpointed backpropagation

checkpoint

."“ % //\

N

Figure 15: Computation graph for obtaining gradients for a simple feed-forward neural network with n layers. The purple color
indicates nodes that are stored in memory.

® Trade-off between the vanilla and memory poor approaches. The strategy is to mark a subset of the neural net
activations as checkpoint nodes, that will be stored in memory.

B /= min \GPU training @00 3

https://fmin.xyz
https://hse25.fmin.xyz
https://github.com/MerkulovDaniil/hse25
https://t.me/fminxyz

Checkpointed backpropagation

checkpoint

D

On .

Figure 15: Computation graph for obtaining gradients for a simple feed-forward neural network with n layers. The purple color
indicates nodes that are stored in memory.

® Trade-off between the vanilla and memory poor approaches. The strategy is to mark a subset of the neural net
activations as checkpoint nodes, that will be stored in memory.

® Faster recalculation of activations f. We only need to recompute the nodes between a b node and the last
checkpoint preceding it when computing that b node during backprop.

B /= min \GPU training @00 3

https://fmin.xyz
https://hse25.fmin.xyz
https://github.com/MerkulovDaniil/hse25
https://t.me/fminxyz

Checkpointed backpropagation

checkpoint

D

On .

Figure 15: Computation graph for obtaining gradients for a simple feed-forward neural network with n layers. The purple color
indicates nodes that are stored in memory.

® Trade-off between the vanilla and memory poor approaches. The strategy is to mark a subset of the neural net
activations as checkpoint nodes, that will be stored in memory.

® Faster recalculation of activations f. We only need to recompute the nodes between a b node and the last
checkpoint preceding it when computing that b node during backprop.

B /= min \GPU training @00 3

https://fmin.xyz
https://hse25.fmin.xyz
https://github.com/MerkulovDaniil/hse25
https://t.me/fminxyz

Checkpointed backpropagation

checkpoint

o

Figure 15: Computation graph for obtaining gradients for a simple feed-forward neural network with n layers. The purple color
indicates nodes that are stored in memory.

® Trade-off between the vanilla and memory poor approaches. The strategy is to mark a subset of the neural net
activations as checkpoint nodes, that will be stored in memory.

® Faster recalculation of activations f. We only need to recompute the nodes between a b node and the last
checkpoint preceding it when computing that b node during backprop.

® Memory consumption depends on the number of checkpoints. More effective then vanilla approach.

B /= min \GPU training

P00 O 36

https://fmin.xyz
https://hse25.fmin.xyz
https://github.com/MerkulovDaniil/hse25
https://t.me/fminxyz

Gradient checkpointing visualization

The animated visualization of the above approaches €)

An example of using a gradient checkpointing €9

B/~ M \GPU training

37

https://github.com/cybertronai/gradient-checkpointing
https://github.com/rasbt/deeplearning-models/blob/master/pytorch_ipynb/mechanics/gradient-checkpointing-nin.ipynb
https://fmin.xyz
https://hse25.fmin.xyz
https://github.com/MerkulovDaniil/hse25
https://t.me/fminxyz

‘f — min
Tz

Quantization

Quantization

38

https://fmin.xyz
https://hse25.fmin.xyz
https://github.com/MerkulovDaniil/hse25
https://t.me/fminxyz

Split the weight matrix into 2 well clustered factors *

Matrix
Decomposition

9

U'I

X e R™™ X~U+V o |

V=0Q{VQ, e R™"

Figure 16: Scheme of post-training quantization approach.

19Quantization of Large Language Models with an Overdetermined Basis

‘f min - Quantization

Clustering

N

Vi=Q,ViQY

X~ U+ Ve

39

https://arxiv.org/abs/2404.09737
https://fmin.xyz
https://hse25.fmin.xyz
https://github.com/MerkulovDaniil/hse25
https://t.me/fminxyz

	Тренды
	GPT-2 training Memory footprint
	Scaling Laws
	Automatic Mixed Precision (AMP)
	Large batch training
	MultiGPU training
	Quantization

