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Theorem

Assume that f is G-Lipschitz and convex, then
Subgradient method converges as:
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Non-smooth convex optimization lower bounds
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Non-smooth convex optimization lower bounds
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® Subgradient method is optimal for the problems above.
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® Subgradient method is optimal for the problems above.
® One can use Mirror Descent (a generalization of the subgradient method to a possiby non-Euclidian distance)
with the same convergence rate to better fit the geometry of the problem.
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® Subgradient method is optimal for the problems above.

® One can use Mirror Descent (a generalization of the subgradient method to a possiby non-Euclidian distance)
with the same convergence rate to better fit the geometry of the problem.

® However, we can achieve standard gradient descent rate O () (and even accelerated version O (7)) if we will
exploit the structure of the problem.
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Proximal mapping intuition
Consider Gradient Flow ODE:

Explicit Euler discretization:

— min .
‘/ 2,9,z Proximal operator
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Proximal mapping intuition
Consider Gradient Flow ODE:

dt
Explicit Euler discretization:

Tht1 — Tk _
. Vf(xy)

Leads to ordinary Gradient Descent method
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Proximal mapping intuition
Consider Gradient Flow ODE:

dx
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Explicit Euler discretization: Implicit Euler discretization:
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Implicit Euler discretization:
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Explicit Euler discretization:

Tht1 — Tk _
. Vf(xy)

Leads to ordinary Gradient Descent method
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dx
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Implicit Euler discretization:
Tpy1 — X
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Proximal mapping intuition
Consider Gradient Flow ODE:

Explicit Euler discretization:

Tht1 — Tk _
o Vf(xy)

Leads to ordinary Gradient Descent method

dx
T =—-Vf(z)

Implicit Euler discretization:
Tpy1 — X
k+1a k= _vf(xk+1)

w + V(1) =0
Tk 4 ()| =0
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Proximal operator visualization
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Figure 1: Source
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Proximal mapping intuition

® GD from proximal method. Back to the discretization:

— min .
‘/ 2,9,z Proximal operator
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® GD from proximal method. Back to the discretization:

Ty +aV (@) =24
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Proximal mapping intuition
® GD from proximal method. Back to the discretization:

Tpyy +aV () =24
(I +aV) (@) =y

a—0
~

T = +aVf) ey~ (I—-aVf)z,

Thus, we have a usual gradient descent with & — 0: z . =z, — oV f(z)

® Newton from proximal method. Now let's consider proximal mapping of a second order Taylor approximation of
the function f!(x):
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Proximal mapping intuition
® GD from proximal method. Back to the discretization:
Ty +aV (@) = 7
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Thus, we have a usual gradient descent with & — 0: z . =z, — oV f(z)
® Newton from proximal method. Now let's consider proximal mapping of a second order Taylor approximation of

the function f!(x):
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Proximal mapping intuition
® GD from proximal method. Back to the discretization:
Ty +aV (@) = 7
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T = +aVf) ey~ (I—-aVf)z,

Thus, we have a usual gradient descent with & — 0: z . =z, — oV f(z)

® Newton from proximal method. Now let's consider proximal mapping of a second order Taylor approximation of
the function f!(x):
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From projections to proximity

Let Ig be the indicator function for closed, convex S. Recall orthogonal projection m¢(y)

— min .
‘f 2,9,z Proximal operator
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From projections to proximity

Let Ig be the indicator function for closed, convex S. Recall orthogonal projection m¢(y)

1 9
ms(y) = argmin e — yl3-

With the following notation of indicator function

Rewrite orthogonal projection m4(y) as
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ms(y) := arg min Sz — y|?* + ().
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From projections to proximity

Let Ig be the indicator function for closed, convex S. Recall orthogonal projection m¢(y)

1 9
ms(y) = argmin e — yl3-

With the following notation of indicator function

Rewrite orthogonal projection m4(y) as
) in < |a — ol + Ls(a)
T = arg min — ||z — z).
s\y gweRn B ) S
Proximity: Replace Ig by some convex function!
. 1 2
prox, (y) = prox, , (y) = argmin |z — y|* +r(z)
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Regularized / Composite Objectives

Many nonsmooth problems take the form

min (z) = f(z) + r(x)

TeR™
® |asso, L1-LS, compressed sensing

1
f(x) = Az — b3, r(z) = Azl

— mi y -
‘f ﬁ}‘l Composite optimization

f(z)

Smooth

r(z)

Non-smooth

12
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Regularized / Composite Objectives

Many nonsmooth problems take the form

min (z) = f(z) + r(x)

TeR™
® |asso, L1-LS, compressed sensing
1
fl@) =5l Az — b3, r(z) = Mz,

® | 1-Logistic regression, sparse LR

f(z) = —ylog h(z)—(1—y) log(1=h(z)),r(z) = Alz|,

— mi y -
‘f fnﬂ Composite optimization

f(z)

Smooth

r(z)
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Proximal mapping intuition
Optimality conditions:

— mi . -
‘/ ?qyu} Composite optimization

0€ Vf(z*)+ or(z*)

13
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Proximal mapping intuition
Optimality conditions:
0€ Vf(z*)+ or(z*)
0 € aVf(z*) + adr(z*)
zt € aVf(z')+ (I +adr)(z")
a* —aVf(z*) € (I +adr)(z")
" = (I + adr) L (z* — aVf(z*))
z* = prox, (z" —aV f(z"))

Which leads to the proximal gradient method:
Thy1 = PVOX,-,a(xk —aV f(zy))

And this method converges at a rate of O(4)!

— mi y -
‘f fny"; Composite optimization
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Proximal mapping intuition
Optimality conditions:
0€ Vf(z*)+ or(z*)
0 € aVf(z*) + adr(z*)
x* € aVf(z*) + (I + adr)(z*)
z* —aVf(z*) € (I + adr)(z*)
¥ = (I +adr)~(z* — aVf(z*))
z* = prox, (z" —aV f(z"))

Which leads to the proximal gradient method:
L1 = PrOX,-,a(xk —aVf(z))

And this method converges at a rate of O(4)!

1 Another form of proximal operator

1 , 1
sle—al3] proxp(zy) = arg min | f(z) + Sl — 243

prox; , (z) = prox,, ((z)) = arg;lel]% af(z) + 5

‘f - ?qyu} Composite optimization D0 0
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Proximal operators examples

° r(x)=Azl;, A>0
[prox,.(2)]; = [lz;| — Al - sign(z;),

which is also known as soft-thresholding operator.

— mi y -
‘f Wy‘rﬁ Composite optimization
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Proximal operators examples

° r(x)=Azl;, A>0
[prox, ()]; = [lz;| — Al - sign(z;),
which is also known as soft-thresholding operator.
* r(z) =323, A>0

2
T

1+ X

prox, (z) =

— mi y -
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Proximal operators examples

° r(x)=Azl;, A>0
[prox,.(2)]; = [lz;| — Al - sign(z;),

which is also known as soft-thresholding operator.

o r(x) = 3laf3. A>0 .

1+ X

prox, (z) =

prox, (z, — aV f(x,)) = proj, (2, — aV f(xy))

— mi y -
‘f Wy‘rﬁ Composite optimization
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Proximal operator properties

i Theorem

Let 7 : R™ — R U {400} be a convex function for which prox_ is defined. If there exists such an & € R" that
r(x) < +00. Then, the proximal operator is uniquely defined (i.e., it always returns a single unique value).

Proof:
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Proximal operator properties

i Theorem

Let 7 : R™ — R U {400} be a convex function for which prox_ is defined. If there exists such an & € R" that
r(x) < +00. Then, the proximal operator is uniquely defined (i.e., it always returns a single unique value).

Proof:

The proximal operator returns the minimum of some optimization problem.

‘f%m‘; Composite optimization D0 0

15


https://fmin.xyz
https://hse25.fmin.xyz
https://github.com/MerkulovDaniil/hse25
https://t.me/fminxyz

Proximal operator properties

i Theorem

Let 7 : R™ — R U {400} be a convex function for which prox_ is defined. If there exists such an & € R" that
r(x) < +00. Then, the proximal operator is uniquely defined (i.e., it always returns a single unique value).

Proof:
The proximal operator returns the minimum of some optimization problem.

Question: What can be said about this problem?
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Proximal operator properties

i Theorem

Let 7 : R™ — R U {400} be a convex function for which prox_ is defined. If there exists such an & € R" that
r(x) < +00. Then, the proximal operator is uniquely defined (i.e., it always returns a single unique value).

Proof:
The proximal operator returns the minimum of some optimization problem.
Question: What can be said about this problem?

It is strongly convex, meaning it has exactly one unique minimum (the existence of Z is necessary for

~

(%) + 4|z — Z|3 to take a finite value somewhere).
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Proximal operator properties

i Theorem

Let r : R™ — RU{+00} be a convex function for which prox _is defined. Then, for any x,y € R", the following
three conditions are equivalent:

® prox,(z) =y,

Proof
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Proximal operator properties

i Theorem
Let r : R™ — RU{+00} be a convex function for which prox _is defined. Then, for any x,y € R", the following
three conditions are equivalent:

® prox (z) =y,
° r—year(y),

Proof

‘f - §ny1r; Composite optimization D0 0

16


https://fmin.xyz
https://hse25.fmin.xyz
https://github.com/MerkulovDaniil/hse25
https://t.me/fminxyz

Proximal operator properties

i Theorem

Let r : R™ — RU{+00} be a convex function for which prox _is defined. Then, for any x,y € R", the following
three conditions are equivalent:

® prox,(z) =y,

*z—y€eir(y),

e (x—y,z—y) <r(z)—r(y) for any z € R™.

Proof
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Proximal operator properties

i Theorem

Let r : R™ — RU{+00} be a convex function for which prox _is defined. Then, for any x,y € R", the following
three conditions are equivalent:

® prox,(z) =y,

*z—y€eir(y),

° (x—y,z—y) <r(z) —r(y) for any z € R™.

Proof

1. Let's establish the equivalence between the first and
second conditions. The first condition can be rewritten
as

2P TR
y = argmin (r() + o~ 7).

From the optimality condition for the convex function
r, this is equivalent to:

1
0€0(r(@)+ gla—a)|  =or)+y-w.

I=y

‘f%m‘; Composite optimization D0 0
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Proximal operator properties

i Theorem

Let r : R™ — RU{+00} be a convex function for which prox _is defined. Then, for any x,y € R", the following
three conditions are equivalent:

® prox,(z) =y,

*z—y€eir(y),

° (x—y,z—y) <r(z) —r(y) for any z € R™.

Proof
1. Let's establish the equivalence between the first and 2. From the definition of the subdifferential, for any
second conditions. The first condition can be rewritten subgradient g € df(y) and for any z € R%:
as

. N - —y) < —r(y).
y = arg min (r(:c) + §||1: — r\|2> . (9,2 —y) <7(2) —7(y)
FER
e In particular, this holds true for g =z — y.
Conversely, it is also clear: for g = x — y, the above

relationship holds, which means g € dr(y).

From the optimality condition for the convex function
r, this is equivalent to:

1
0€0(r(@)+ gla—a)|  =or)+y-w.

I=y

‘f% fn.}‘; Composite optimization P00 O 16
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Proximal operator properties

i Theorem

The operator prox,.(z) is firmly nonexpansive (FNE)

lprox, () — prox, ()3 < (prox, (z) — prox,(y), = —y)
and nonexpansive:

lprox, () — prox,.(y)[l, < | —yl»

Proof

1. Let u = prox (), and v = prox_(y). Then, from the
previous property:

(T —u, 2y —u) <7r(z) —r(u)

(y —v, 2 —v) <7(z) —7(v).

— mi y -
‘f fny"; Composite optimization

17
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Proximal operator properties

i Theorem

The operator prox,.(z) is firmly nonexpansive (FNE)

Iprox,.(2) — prox, ()3 < (prox,(z) — prox, (y), z —y)

and nonexpansive:
lprox, () — prox,.(y)[l, < | —yl»

Proof

1. Let u = prox (), and v = prox_(y). Then, from the
previous property:

(T —u, 2y —u) <7(z) —r(w)
(y—v,2, —v) <7(z) —r(v).
2. Substitute z; = v and 2, = u. Summing up, we get:
(x —u,v—u) + (y—v,u—v) <0,
(—yv—u)+v—ulz <0.

— mi y -
‘f ﬁ}‘l Composite optimization

17


https://fmin.xyz
https://hse25.fmin.xyz
https://github.com/MerkulovDaniil/hse25
https://t.me/fminxyz

Proximal operator properties

i Theorem

The operator prox,.(z) is firmly nonexpansive (FNE)

lprox, () — prox, ()3 < (prox, (z) — prox,(y), = —y)

and nonexpansive:
lprox, () — prox,.(y)[l, < | —yl»

Proof
1. Let u = prox,(x), and v = prox_(y). Then, from the 3. Which is exactly what we need to prove after
previous property: substitution of wu, v.

(x—u,zy —u) <r(z) —r(u) lu— 3 < (& —y,u—wv)
(y—v,29 —v) <1(zp) — 1 (V).
2. Substitute z; = v and 2, = u. Summing up, we get:
(x —u,v—u) + (y—v,u—v) <0,
(—y,v—u) + v—ul3 <O0.

‘f - ﬁ}‘l Composite optimization QDO
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Proximal operator properties

i Theorem

The operator prox,.(z) is firmly nonexpansive (FNE)

lprox, () — prox, ()3 < (prox, (z) — prox,(y), = —y)

and nonexpansive:
lprox, () — prox,.(y)[l, < | —yl»

Proof
1. Let u = prox,(x), and v = prox_(y). Then, from the 3. Which is exactly what we need to prove after
previous property: substitution of wu, v.

(—u,2y —u) <r(z) —r(u) Jlu—vl3 < (z—y,u—v)
{y =25 =) <7(2p) = 7(v). 4. The last point comes from simple

2. Substitute z; = v and 2, = u. Summing up, we get:
(x —u,v—u) + (y—v,u—v) <0,

(z—y,v—u)+[v—ul3 <0.
‘f%m‘; Composite optimization D0 0

Cauchy-Bunyakovsky-Schwarz for the last inequality.
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Proximal operator properties

i Theorem

Let f : R" - RU {400} and r : R — R U {400} be convex functions. Additionally, assume that f is
continuously differentiable and L-smooth, and for r, prox_ is defined. Then, z* is a solution to the composite
optimization problem if and only if, for any a > 0, it satisfies:

z* = prox, (z" —aV f(z"))

Proof

1. Optimality conditions:

‘/%m‘; Composite optimization D0 0
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Proximal operator properties

i Theorem

Let f : R" - RU {400} and r : R — R U {400} be convex functions. Additionally, assume that f is
continuously differentiable and L-smooth, and for r, prox_ is defined. Then, z* is a solution to the composite
optimization problem if and only if, for any a > 0, it satisfies:

z* = prox, (z" —aV f(z"))
Proof

1. Optimality conditions:
0 eV f(z*)+ Or(z*)
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Proximal operator properties

i Theorem

Let f : R" - RU {400} and r : R — R U {400} be convex functions. Additionally, assume that f is
continuously differentiable and L-smooth, and for r, prox_ is defined. Then, z* is a solution to the composite
optimization problem if and only if, for any a > 0, it satisfies:

z* = prox, (z" —aV f(z"))

Proof

1. Optimality conditions:
0 eV f(z*)+ Or(z*)
—aVf(z*) €adr(z*)
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Proximal operator properties
i Theorem
Let f : R" - RU {400} and r : R — R U {400} be convex functions. Additionally, assume that f is

continuously differentiable and L-smooth, and for r, prox_ is defined. Then, z* is a solution to the composite
optimization problem if and only if, for any a > 0, it satisfies:

z* = prox, (z" —aV f(z"))

Proof

1. Optimality conditions:
0 eV f(z*)+ Or(z*)
—aVf(z*) €adr(z*)
¥ —aVf(z*) —a* €adr(z”)
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Proximal operator properties

i Theorem

Let f : R" - RU {400} and r : R — R U {400} be convex functions. Additionally, assume that f is
continuously differentiable and L-smooth, and for r, prox_ is defined. Then, z* is a solution to the composite
optimization problem if and only if, for any a > 0, it satisfies:

z* = prox, (z" —aV f(z"))

Proof
1. Optimality conditions:
0 eV f(z*)+ Or(z*)
—aVf(z*) €adr(z*)
¥ —aVf(z*) —a* €adr(z”)
2. Recall from the previous lemma:
prox, (z) =y <z —y € Or(y)

‘f%m‘; Composite optimization D0 0
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Proximal operator properties

i Theorem

Let f : R" - RU {400} and r : R — R U {400} be convex functions. Additionally, assume that f is
continuously differentiable and L-smooth, and for r, prox_ is defined. Then, z* is a solution to the composite
optimization problem if and only if, for any a > 0, it satisfies:

z* = prox, (z" —aV f(z"))

Proof
1. Optimality conditions:
0 eV f(z*)+ Or(z*)
—aVf(z*) €adr(z*)
¥ —aVf(z*) —a* €adr(z”)
2. Recall from the previous lemma:
prox, (z) =y <z —y € Or(y)
3. Finally,
z* = prox,,.(z" —aVf(z*)) = prox, (" — aV f(z"))

‘f%m‘; Composite optimization D0 0
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‘f — min
Tz

Theoretical tools for convergence analysis

Theoretical tools for convergence analysis
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Convergence tools ¢ & €

i Theorem
Let f: R™ — R be an L-smooth convex function. Then, for any z,y € R™, the following inequality holds:
F@) + (V5(),y =) + 5195 () = VSR < f(y) or, equivalently
IVf(y) = V@3 =IVF(@) = VIl: <2L(f(z) - fly) = (VIy).z—y))

Proof

1. To prove this, we'll consider another function ¢(y) = f(y) — (Vf(z),y). It is obviously a convex function (as a
sum of convex functions). And it is easy to verify, that it is an L-smooth function by definition, since

Voly) = Vf(y) = V(@) and [Veo(y,) — Vo)l = IV (1) — VI(y)l < Ly, — val.-
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Convergence tools ¢ & €

i Theorem

Let f: R™ — R be an L-smooth convex function. Then, for any z,y € R™, the following inequality holds:

$@)+ (V@) y =) + 52195 (@) = VSR < f(y) or, equivalenly
IV £y) = VI @I =IVf(@) = V5 w)I§ < 2L (f(2) = f() = (VI () =)

Proof

1. To prove this, we'll consider another function ¢(y) = f(y) — (Vf(z),y). It is obviously a convex function (as a
sum of convex functions). And it is easy to verify, that it is an L-smooth function by definition, since

Vo(y) =V f(y) = Vf(z) and [Ve(y,) — Vo)l = [V (Y1) = Vi ()l < Ly, — 32l
2. Now let’s consider the smoothness parabolic property for the ¢(y) function:
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Convergence tools ¢ & €

i Theorem

Let f: R™ — R be an L-smooth convex function. Then, for any z,y € R™, the following inequality holds:

$@)+ (V@) y =) + 52195 (@) = VSR < f(y) or, equivalenly
IV £y) = VI @I =IVf(@) = V5 w)I§ < 2L (f(2) = f() = (VI () =)

Proof

1. To prove this, we'll consider another function ¢(y) = f(y) — (Vf(z),y). It is obviously a convex function (as a
sum of convex functions). And it is easy to verify, that it is an L-smooth function by definition, since

Vo(y) =V f(y) = Vf(z) and [Ve(y,) — Vo)l = [V (Y1) = Vi ()l < Ly, — 32l
2. Now let’s consider the smoothness parabolic property for the ¢(y) function:

o) < p(x) + (Vola),y —2) + Zly — I3
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Convergence tools ¢ & €

i Theorem
Let f: R™ — R be an L-smooth convex function. Then, for any z,y € R™, the following inequality holds:
F@) + (V5(),y =) + 5195 () = VSR < f(y) or, equivalently
IVf(y) = V@3 =IVF(@) = VIl: <2L(f(z) - fly) = (VIy).z—y))

Proof

1. To prove this, we'll consider another function ¢(y) = f(y) — (Vf(z),y). It is obviously a convex function (as a
sum of convex functions). And it is easy to verify, that it is an L-smooth function by definition, since

Vo(y) =V f(y) = Vf(z) and [Ve(y,) — Vo)l = [V (Y1) = Vi ()l < Ly, — 32l
2. Now let’s consider the smoothness parabolic property for the ¢(y) function:

o) < p(x) + (Vola),y —2) + Zly — I3

TRY=Y— VW) (y - %Vw(y)> < o(y) + <Vs0(y)7 —%Vw(y)> + illvw(y)l\g
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Convergence tools ¢ & €

i Theorem

Let f: R™ — R be an L-smooth convex function. Then, for any z,y € R™, the following inequality holds:

$@)+ (V@) y =) + 52195 (@) = VSR < f(y) or, equivalenly
IV £y) = VI @I =IVf(@) = V5 w)I§ < 2L (f(2) = f() = (VI () =)

Proof

1. To prove this, we'll consider another function ¢(y) = f(y) — (Vf(z),y). It is obviously a convex function (as a
sum of convex functions). And it is easy to verify, that it is an L-smooth function by definition, since

Vo(y) =V f(y) = Vf(z) and [Ve(y,) — Vo)l = [V (Y1) = Vi ()l < Ly, — 32l
2. Now let’s consider the smoothness parabolic property for the ¢(y) function:

o) < p(x) + (Vola),y —2) + Zly — I3
<oy + <Vs0(y)7—%vw(y)> + illvw(y)l\g

< py) — 57 IV

— mi . .
‘f fn.}‘; Theoretical tools for convergence analysis P00 O
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Convergence tools W y €

3. From the first order optimality conditions for the convex function Vo(y) = Vf(y) — Vf(z) = 0. We can
conclude, that for any z, the minimum of the function ¢(y) is at the point y = . Therefore:

ola) < (y— T Ve0)) < 00) — 51V

— mi . .
‘/ §ny1r; Theoretical tools for convergence analysis PO
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Convergence tools W y €

3. From the first order optimality conditions for the convex function Vi (y) = V f(y) — Vf(z) = 0. We can
conclude, that for any z, the minimum of the function ¢(y) is at the point y = . Therefore:

ola) < (y— T Ve0)) < 00) — 51V

4. Now, substitute p(y) = f(y) — (Vf(z),y):

— min : .
‘/ Tz Theoretical tools for convergence analysis PO
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Convergence tools W y €

3. From the first order optimality conditions for the convex function Vi (y) = V f(y) — Vf(z) = 0. We can
conclude, that for any z, the minimum of the function ¢(y) is at the point y = . Therefore:

ola) < (y— T Ve0)) < 00) — 51V
4. Now, substitute p(y) = f(y) — (Vf(x),y):

F(@) — (V1)) < F) — (V(@)o) — 57 197 () ~ V@)1

— min : .
‘/ Tz Theoretical tools for convergence analysis PO
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Convergence tools W y €

3. From the first order optimality conditions for the convex function Vi (y) = V f(y) — Vf(z) = 0. We can
conclude, that for any z, the minimum of the function ¢(y) is at the point y = . Therefore:

ola) < (y— T Ve0)) < 00) — 51V
4. Now, substitute p(y) = f(y) — (Vf(x),y):
F(@) — (V1)) < F) — (V(@)o) — 57 197 () ~ V@)1

F@) (T @)y =) + 5 IV A @)~ VIW)B < f0)

— min : .
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Convergence tools W y €

3. From the first order optimality conditions for the convex function Vi (y) = V f(y) — Vf(z) = 0. We can
conclude, that for any z, the minimum of the function ¢(y) is at the point y = . Therefore:

ola) < (y— T Ve0)) < 00) — 51V
4. Now, substitute p(y) = f(y) — (Vf(x),y):
F(@) — (V1)) < F) — (V(@)o) — 57 197 () ~ V@)1

F@) (T @)y =) + 5 IV A @)~ VIW)B < f0)
IV5(6) ~ V£ < 2L (o) ~ 7(@) — (Vf(2),y )

— min : .
‘/ Tz Theoretical tools for convergence analysis PO
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Convergence tools W y €

3. From the first order optimality conditions for the convex function Vi (y) = V f(y) — Vf(z) = 0. We can
conclude, that for any z, the minimum of the function ¢(y) is at the point y = . Therefore:

ola) < (y— T Ve0)) < 00) — 51V
4. Now, substitute p(y) = f(y) — (Vf(x),y):
F(@) — (V1)) < F) — (V(@)o) — 57 197 () ~ V@)1

F@) (T @)y =) + 5 IV A @)~ VIW)B < f0)

IVF(y) = V@3 < 2L (fy) — f(z) = (Vf(z),y —2))
swichxandy [ Vf(2) = V()3 < 2L (f(z) — fy) = (VI(y).z —y))

— min : .
‘f Tz Theoretical tools for convergence analysis DO
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Convergence tools W y €

3. From the first order optimality conditions for the convex function Vi (y) = V f(y) — Vf(z) = 0. We can
conclude, that for any z, the minimum of the function ¢(y) is at the point y = . Therefore:

ola) < (y— T Ve0)) < 00) — 51V
4. Now, substitute p(y) = f(y) — (Vf(x),y):
F(@) — (V1)) < F) — (V(@)o) — 57 197 () ~ V@)1

F@) (T @)y =) + 5 IV A @)~ VIW)B < f0)

IVF(y) = V@3 < 2L (fy) — f(z) = (Vf(z),y —2))
swichxandy [ Vf(2) = V()3 < 2L (f(z) — fy) = (VI(y).z —y))

— min : .
‘f Tz Theoretical tools for convergence analysis DO
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3. From the first order optimality conditions for the convex function Vi (y) = V f(y) — Vf(z) = 0. We can
conclude, that for any z, the minimum of the function ¢(y) is at the point y = . Therefore:

ola) < (y— T Ve0)) < 00) — 51V
4. Now, substitute p(y) = f(y) — (Vf(x),y):
F(@) — (V1)) < F) — (V(@)o) — 57 197 () ~ V@)1

F@) (T @)y =) + 5 IV A @)~ VIW)B < f0)

IVF(y) = V@3 < 2L (fy) — f(z) = (Vf(z),y —2))
swichxandy [ Vf(2) = V()3 < 2L (f(z) — fy) = (VI(y).z —y))

The lemma has been proved. From the first view it does not make a lot of geometrical sense, but we will use it as a
convenient tool to bound the difference between gradients.
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i Theorem

Let f: R™ — R be continuously differentiable on R™. Then, the function f is u-strongly convex if and only if
for any z,y € R the following holds:

Strongly convex case 1 >0 (Vf(x) —Vf(y),z—y) > plr —y|?
Convexcase p =0 (Vf(z)—Vf(y),z—y)>0

Proof

1. We will only give the proof for the strongly convex case, the convex one follows from it with setting 1 = 0. We
start from necessity. For the strongly convex function

1) > f(@) + (T f(@),y — o) + Slo— ol

F@) = )+ (VF)w =) + Sla — ol
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2. For the sufficiency we assume, that (V f(z) — Vf(y),z — y) > pllz — y|?. Using Newton-Leibniz theorem
1
f(a) = fly) + |, (Vfy +tz —y)),z —y)dt:
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2. For the sufficiency we assume, that (V f(z) — Vf(y),z — y) > pllz — y|?. Using Newton-Leibniz theorem
1
f(a) = fly) + |, (Vfy +tz —y)),z —y)dt:

(@) — fly) — (VF )z —y) = l (VFy + tle —y))a — y)dt — (V(y),x — )
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2. For the sufficiency we assume, that (V f(z) — Vf(y),z — y) > pllz — y|?. Using Newton-Leibniz theorem
J@) = f) + [ (VI + e —y).x—y)dt
1
£@) = ) = (Vf ) =) = [ (VH+ tlo = y)oa =t = (V)2 )
o

i ) 1
P [y 4t = ) - V), - )
0
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2. For the sufficiency we assume, that (V f(z) — Vf(y),z — y) > pllz — y|?. Using Newton-Leibniz theorem
1
f(a) = fly) + |, (Vfy +tz —y)),z —y)dt:

(@) — fly) — (VF )z —y) = l (VFy + tle —y))a — y)dt — (V(y),x — )

1

(VF(y)e—y)= |, (Vf(y),e—y)dt / (VF(y+tx—y) — V), (x —y))dt
0

1
yttlemy)y=temy) / UV + tz —y) = V), tz —y))dt
0
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2. For the sufficiency we assume, that (V f(z) — Vf(y),z — y) > pllz — y|?. Using Newton-Leibniz theorem
1
f(a) = fly) + |, (Vfy +tz —y)),z —y)dt:

(@) — fly) — (VF )z —y) = l (VFy + tle —y))a — y)dt — (V(y),x — )

1

(VF(y)e—y)= |, (Vf(y),e—y)dt / (VF(y+tx—y) — V), (x —y))dt
0

NV (y+tz—y) — V(y), tlx—y))dt

yt+t(z—y)—y=t(z—y)

>

-]
[

T plt(z —y)|?dt
0
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2. For the sufficiency we assume, that (V f(z) — Vf(y),z — y) > pllz — y|?. Using Newton-Leibniz theorem
1
f(a) = fly) + |, (Vfy +tz —y)),z —y)dt:

ﬂ@—f@%%vﬂwm—yrzl<Vﬂy+ﬂx—w%x—wﬁ—wvﬂww—w

1

(VF(y)e—y)= |, (Vf(y),e—y)dt / (VF(y+tx—y) — V), (x —y))dt
0

VI +ta—y) = Vi)t —y)dt

yt+t(z—y)—y=t(z—y)

>

-]
[

1
Ol )Pt =l — ol [t
0 0
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2. For the sufficiency we assume, that (V f(z) — Vf(y),z — y) > pllz — y|?. Using Newton-Leibniz theorem
1
f(a) = fly) + |, (Vfy +tz —y)),z —y)dt:

(@) — fly) — (VF )z —y) = l (VFy + tle —y))a — y)dt — (V(y),x — )

1

(VF(y)e—y)= |, (Vf(y),e—y)dt / (VF(y+tx—y) — V), (x —y))dt
0

VI +ta—y) = Vi)t —y)dt

yt+t(z—y)—y=t(z—y)

>

-]
[

1
I
il )Pt =l — ol [ tdt = o~ ol
0 0 2
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2. For the sufficiency we assume, that (V f(z) — Vf(y),z — y) > pllz — y|?. Using Newton-Leibniz theorem
1
f(a) = fly) + |, (Vfy +tz —y)),z —y)dt:

(@) — fly) — (VF )z —y) = l (VFy + tle —y))a — y)dt — (V(y),x — )

1

(VF(y)e—y)= |, (Vf(y),e—y)dt / (VF(y+tx—y) — V), (x —y))dt
0

VI +ta—y) = Vi)t —y)dt

yt+t(z—y)—y=t(z—y)

>

-]
[

1
I
il )Pt =l — ol [ tdt = o~ ol
0 0 2
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2. For the sufficiency we assume, that (V f(z) — Vf(y),z — y) > pllz — y|?. Using Newton-Leibniz theorem
1
f(a) = fly) + |, (Vfy +tz —y)),z —y)dt:

(@) — fly) — (VF )z —y) = l (VFy + tle —y))a — y)dt — (V(y),x — )

1

(Vi) e—y=f (Viwe—ydt  _ / (VF(y+tx—y) — V), (x —y))dt
0

NV y+tz—y) — V(y), tz—y))dt

yt+t(z—y)—y=t(z—y) -

1

1
- 1
> [l )Pt =l — ol? [ it = o~ ol
0 0

[
[

Thus, we have a strong convexity criterion satisfied

F@) = )+ (VF)w =)+ Sla — ol
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2. For the sufficiency we assume, that (V f(z) — Vf(y),z — y) > pllz — y|?. Using Newton-Leibniz theorem
1
f(a) = fly) + |, (Vfy +tz —y)),z —y)dt:

(@) — fly) — (VF )z —y) = l (VFy + tle —y))a — y)dt — (V(y),x — )

1

(Vi) e—y=f (Viwe—ydt  _ / (VF(y+tx—y) — V), (x —y))dt
0

NV y+tz—y) — V(y), tz—y))dt

yt+t(z—y)—y=t(z—y) -

1

1
- 1
> [l )Pt =l — ol? [ it = o~ ol
0 0

[
[

Thus, we have a strong convexity criterion satisfied

f(@) = f(y) + (VF (). —9) + Flle = y13 or, equivivalently
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2. For the sufficiency we assume, that (V f(z) — Vf(y),z — y) > pllz — y|?. Using Newton-Leibniz theorem
1
f(a) = fly) + |, (Vfy +tz —y)),z —y)dt:

(@) — fly) — (VF )z —y) = l (VFy + tle —y))a — y)dt — (V(y),x — )

(Vi) e—y=f (Viwe—ydt  _ / (VF(y+tx—y) — V), (x —y))dt
0

NV y+tz—y) — V(y), tz—y))dt

yt+t(z—y)—y=t(z—y) -

1

1
- 1
> [l )Pt =l — ol? [ it = o~ ol
0 0

/
/

Thus, we have a strong convexity criterion satisfied
F@) = J(y) + (V) o =) + Slla =yl or, equivivalently:

switch x and y — <Vf(1')71' — y> S - (f(EL') - f(y) + %HI - y”%)
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Convergence

i Theorem
Consider the proximal gradient method

Ty = prox,,. (x, — aVf(x))

For the criterion p(z) = f(z) + r(x), we assume:
® fis convex, differentiable, dom(f) = R"™, and V f is Lipschitz continuous with constant L > 0.
® ris convex, and prox, (z;) = arg min [ar(z) + §x — 2;,|3] can be evaluated.
TeR™

Proximal gradient descent with fixed step size « = 1/ satisfies

*

_ Ly —a'|?

p(ry) — ¢ % ;

Proximal gradient descent has a convergence rate of O(1/k) or O(1/¢). This matches the gradient descent rate!
(But remember the proximal operation cost)
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Proof
1. Let's introduce the gradient mapping, denoted as G, (), acts as a “gradient-like object:
Tpp1 = prox,,,. (v, — aV f(zy))
Ty = T — G (2y).
where G, (z) is:

G, (z)= é (:r — prox,,,. (x—aVf (x)))

Observe that G, () = 0 if and only if  is optimal. Therefore, G, is analogous to V f. If x is locally optimal, then
G, (x) = 0 even for nonconvex f. This demonstrates that the proximal gradient method effectively combines gradient
descent on f with the proximal operator of r, allowing it to handle non-differentiable components effectively.

‘/ - fn.}‘; Proximal Gradient Method. Convex case @0 O 26
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Proof
1. Let's introduce the gradient mapping, denoted as G, (), acts as a “gradient-like object:

Lhy1 = Proxm(wk —aVf(xy))
Lhy1 = T — aG(zy,).

where G, (z) is:
G, (z)= é (:r — prox,,,. (x—aVf (x)))

Observe that G, () = 0 if and only if  is optimal. Therefore, G, is analogous to V f. If x is locally optimal, then
G, (x) = 0 even for nonconvex f. This demonstrates that the proximal gradient method effectively combines gradient
descent on f with the proximal operator of r, allowing it to handle non-differentiable components effectively.

2. We will use smoothness and convexity of f for some arbitrary point x:
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Proof
1. Let's introduce the gradient mapping, denoted as G, (), acts as a “gradient-like object:
Tpp1 = prox,,,. (v, — aV f(zy))
Ty = T — G (2y).
where G, (z) is:

G, (z)= é (:r — prox,,,. (x—aVf (x)))

Observe that G, () = 0 if and only if  is optimal. Therefore, G, is analogous to V f. If x is locally optimal, then
G, (x) = 0 even for nonconvex f. This demonstrates that the proximal gradient method effectively combines gradient
descent on f with the proximal operator of r, allowing it to handle non-differentiable components effectively.

2. We will use smoothness and convexity of f for some arbitrary point x:

L
smoothness  f (@4 1) < flay) + (VF(2p), Ty — 24) + 5”371«“ — )3
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Proof
1. Let's introduce the gradient mapping, denoted as G, (), acts as a “gradient-like object:

Lhy1 = Proxm(wk —aVf(xy))

Tpi1 = T — Gy ().
where G, (z) is:
G, (z)= é (:r — prox,,,. (x—aVf (x)))

Observe that G, () = 0 if and only if  is optimal. Therefore, G, is analogous to V f. If x is locally optimal, then
G, (x) = 0 even for nonconvex f. This demonstrates that the proximal gradient method effectively combines gradient
descent on f with the proximal operator of r, allowing it to handle non-differentiable components effectively.

2. We will use smoothness and convexity of f for some arbitrary point x:
L
smoothness f(21,41) < flag) + (VI (@), Ty — 2p) + 5”371«“ — a3

convexity f(2)> f(zy)+H(V f(zy),z—zy)

‘/ - fn.}‘; Proximal Gradient Method. Convex case @0 O 26


https://fmin.xyz
https://hse25.fmin.xyz
https://github.com/MerkulovDaniil/hse25
https://t.me/fminxyz

Convergence W 9 @ @ ©

Proof
1. Let's introduce the gradient mapping, denoted as G, (), acts as a “gradient-like object:

Lhy1 = Proxm(wk —aVf(xy))

Tpi1 = T — Gy ().
where G, (z) is:
G, (z)= é (:r — prox,,,. (x—aVf (x)))

Observe that G, () = 0 if and only if  is optimal. Therefore, G, is analogous to V f. If x is locally optimal, then
G, (x) = 0 even for nonconvex f. This demonstrates that the proximal gradient method effectively combines gradient
descent on f with the proximal operator of r, allowing it to handle non-differentiable components effectively.

2. We will use smoothness and convexity of f for some arbitrary point x:
L
smoothness f(21,41) < flag) + (VI (@), Ty — 2p) + 5”371«“ — a3

2
i L
comvedy F@)2 ) H(VHleu)x ) < () — (9 (), 0 — o)+ (VH(@R), Ter — 7) + 2= |Gar )13
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Proof
1. Let's introduce the gradient mapping, denoted as G, (), acts as a “gradient-like object:
Tpp1 = prox,,,. (v, — aV f(zy))
Ty = T — G (2y).
where G, (z) is:

G, (z)= é (:r — prox,,,. (x—aVf (x)))

Observe that G, () = 0 if and only if  is optimal. Therefore, G, is analogous to V f. If x is locally optimal, then
G, (x) = 0 even for nonconvex f. This demonstrates that the proximal gradient method effectively combines gradient
descent on f with the proximal operator of r, allowing it to handle non-differentiable components effectively.

2. We will use smoothness and convexity of f for some arbitrary point x:
L
smoothness f(21,41) < flag) + (VI (@), Ty — 2p) + 5”371«“ — a3
2
) L
comerty J2 e TS0 < f(2) — (Y f(20), & = 22) + (V@) Tis — 20 + S5 1Ga()B

2L
< f(@) + (VI ()t — 2) + 5| G ()3
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3. Now we will use a proximal map property, which was proven before:
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3. Now we will use a proximal map property, which was proven before:

Tpyq = prox,, (z, —aVf(z)) < z, —aVf(zy) — x4 € Oar(zy,)

‘/ - Wy‘l} Proximal Gradient Method. Convex case
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3. Now we will use a proximal map property, which was proven before:

Tpyr = Prox,, (z, — aV f(z;)) < zy, — aV f(xzy) — 2y € Oar(zyy,y)
Since x| — xp, = —aG,(x,) = aG,(z,) —aVf(xy,) € dar(x, )

‘/ - Wy‘rﬁ Proximal Gradient Method. Convex case
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3. Now we will use a proximal map property, which was proven before:

Tpyy = Prox,, (z, — oV f(zy)) < z), — aV f(zy) =z € Oar(zyyy)
Since x| — xp, = —aG,(x,) = aG,(z,) —aVf(xy,) € dar(x, )
Golwg) = V(xy) € Or(yq)
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3. Now we will use a proximal map property, which was proven before:
Ty = prox,,, (z, —aVf(zy)) < z, — oV f(xy) — Ty € Oor(2pyy)
Since x| — xp, = —aG,(x,) = aG,(z,) —aVf(xy,) € dar(x, )
Gy lxy) = V(xy) € Or(zyyy)

4. By the definition of the subgradient of convex function r for any point x:
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3. Now we will use a proximal map property, which was proven before:
Tpyy = Prox,, (z, — oV f(zy)) < z), — aV f(zy) =z € Oar(zyyy)
Since x| — xp, = —aG,(x,) = aG,(z,) —aVf(xy,) € dar(x, )
Golwg) = V(xy) € Or(yq)
4. By the definition of the subgradient of convex function r for any point x:

r(x) > r(x) F(g T —2pq), g€ OIr(Tyyq)
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3. Now we will use a proximal map property, which was proven before:
Tpyy = Prox,, (z, — oV f(zy)) < z), — aV f(zy) =z € Oar(zyyy)
Since x| — xp, = —aG,(x,) = aG,(z,) —aVf(xy,) € dar(x, )
Gy lxy) = V(xy) € Or(zyyy)
4. By the definition of the subgradient of convex function r for any point x:
7(x) > 1(Tq) + (9, — Tpy1), g€ Or(Tpyq)
substitute specific subgradient T’(I) > T($k+1) + <Ga (Z‘k) — Vf(I), Tr — .Z‘k+1>
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3. Now we will use a proximal map property, which was proven before:
Tpyy = Prox,, (z, — oV f(zy)) < z), — aV f(zy) =z € Oar(zyyy)
Since x| — xp, = —aG,(x,) = aG,(z,) —aVf(xy,) € dar(x, )
Gy lxy) = V(xy) € Or(zyyy)
4. By the definition of the subgradient of convex function r for any point x:
7(x) > 1(Tq) + (9, — Tpy1), g€ Or(Tpyq)
substitute specific subgradient T’(I) > T($k+1) + <Ga (Z‘k) — Vf(I), Tr — .Z‘k+1>
r(@) 2 r(@g) +(Golag), o — ) — (V@) — 21 49)
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3. Now we will use a proximal map property, which was proven before:
Ty = prox,,, (z, —aVf(zy)) < z, — oV f(xy) — Ty € Oor(2pyy)
Since x| — xp, = —aG,(x,) = aG,(z,) —aVf(xy,) € dar(x, )
Gy lxy) = V(xy) € Or(zyyy)
4. By the definition of the subgradient of convex function r for any point x:
7(x) > 1(Tq) + (9, — Tpy1), g€ Or(Tpyq)
substitute specific subgradient T’(I) > T($k+1) + <Ga (Z‘k) — Vf(I), Tr — .Z‘k+1>
r(@) 2 r(@g) +(Golag), o — ) — (V@) — 21 49)
(Vf(@),zpy —2) <v(@) —r(@p) = (Galzy), 2 — 2p)
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Convergence VYOO
3. Now we will use a proximal map property, which was proven before:
Tpyy = Prox,, (z, — oV f(zy)) < z), — aV f(zy) =z € Oar(zyyy)
Since x| — xp, = —aG,(x,) = aG,(z,) —aVf(xy,) € dar(x, )
Gy lxy) = V(xy) € Or(zyyy)
4. By the definition of the subgradient of convex function r for any point x:
7(x) > 1(Tq) + (9, — Tpy1), g€ Or(Tpyq)
substitute specific subgradient T’(I) > T(l‘k+1) + <Ga (.Z‘k) — Vf(I), Tr — .Z‘k+1>
r(@) 2 r(@g) +(Golag), o — ) — (V@) — 21 49)
(Vf(@),zpy —2) <v(@) —r(@p) = (Galzy), 2 — 2p)
5. Taking into account the above bound we return back to the smoothness and convexity:
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3. Now we will use a proximal map property, which was proven before:
Ty = prox,,, (z, —aVf(zy)) < z, — oV f(xy) — Ty € Oor(2pyy)
Since x| — xp, = —aG,(x,) = aG,(z,) —aVf(xy,) € dar(x, )
Gy lxy) = V(xy) € Or(zyyy)
4. By the definition of the subgradient of convex function r for any point x:
7(x) > 1(Tq) + (9, — Tpy1), g€ Or(Tpyq)
substitute specific subgradient T’(I) > T(l‘k+1) + <Ga (.Z‘k) — Vf(I), Tr — .Z‘k+1>
r(@) 2 r(@g) +(Golag), o — ) — (V@) — 21 49)
(Vf(@),zpy —2) <v(@) —r(@p) = (Galzy), 2 — 2p)
5. Taking into account the above bound we return back to the smoothness and convexity:

oL
(@) < f(2) + (V@) 2 —2) + TIIGQ(%)H%

— mi . .
‘/ fn‘}'; Proximal Gradient Method. Convex case

27


https://fmin.xyz
https://hse25.fmin.xyz
https://github.com/MerkulovDaniil/hse25
https://t.me/fminxyz

Convergence W v @ & ©

3. Now we will use a proximal map property, which was proven before:
Ty = prox,,, (z, —aVf(zy)) < z, — oV f(xy) — Ty € Oor(2pyy)
Since x| — xp, = —aG,(x,) = aG,(z,) —aVf(xy,) € dar(x, )
Gy lxy) = V(xy) € Or(zyyy)
4. By the definition of the subgradient of convex function r for any point x:
7(x) > 1(Tq) + (9, — Tpy1), g€ Or(Tpyq)
substitute specific subgradient T’(I) > T(l‘k+1) + <Ga (.Z‘k) — Vf(I), Tr — .Z‘k+1>
r(@) 2 r(@g) +(Golag), o — ) — (V@) — 21 49)
(Vf(@),zpy —2) <v(@) —r(@p) = (Galzy), 2 — 2p)
5. Taking into account the above bound we return back to the smoothness and convexity:

oL
(@) < f(2) + (V@) 2 —2) + TIIGQ(%)H%

f@yiy) < f(@) +7(@) = r(ep) = (Ga(@p), @ = @) + %HGQ(%)HS
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3. Now we will use a proximal map property, which was proven before:
Ty = prox,,, (z, —aVf(zy)) < z, — oV f(xy) — Ty € Oor(2pyy)
Since x| — xp, = —aG,(x,) = aG,(z,) —aVf(xy,) € dar(x, )
Gy lxy) = V(xy) € Or(zyyy)
4. By the definition of the subgradient of convex function r for any point x:
7(x) > 1(Tq) + (9, — Tpy1), g€ Or(Tpyq)
substitute specific subgradient T’(I) > T(l‘k+1) + <Ga (.Z‘k) — Vf(I), Tr — .Z‘k+1>
r(@) 2 r(@g) +(Golag), o — ) — (V@) — 21 49)
(Vf(@),zpy —2) <v(@) —r(@p) = (Galzy), 2 — 2p)
5. Taking into account the above bound we return back to the smoothness and convexity:

f(@yn) < fl2) + (V) 20 —2) + %HGQ(%)H%
f@yiy) < f(@) +7(@) = r(ep) = (Ga(@p), @ = @) + %HGQ(%)HS

f@y0) +r(2pp) < (@) +1(@) = (Golag), @ — 2) + G (7)) + %IIGQ (z4)[3
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6. Using o(z) = f(x) 4+ r(x) we can now prove extremely useful inequality, which will allow us to demonstrate
monotonic decrease of the iteration:

B /= min o imal Gradient Method. Convex case 900
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6. Using o(z) = f(x) 4+ r(x) we can now prove extremely useful inequality, which will allow us to demonstrate
monotonic decrease of the iteration:

Plr11) < 9w) ~ (Col), 0 — 1) — (Cal), 0C, (@) + LGB
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6. Using o(z) = f(x) 4+ r(x) we can now prove extremely useful inequality, which will allow us to demonstrate
monotonic decrease of the iteration:

Plr11) < 9w) ~ (Col), 0 — 1) — (Cal), 0C, (@) + LGB

P(Th1) < 9(@) + (Colay) ax — ) + 5 (aL —2) |Gyl
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6. Using o(z) = f(x) 4+ r(x) we can now prove extremely useful inequality, which will allow us to demonstrate
monotonic decrease of the iteration:

Plr11) < 9w) ~ (Col), 0 — 1) — (Cal), 0C, (@) + LGB

P(Th1) < 9(@) + (Colay) ax — ) + 5 (aL —2) |Gyl
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6. Using o(z) = f(x) 4+ r(x) we can now prove extremely useful inequality, which will allow us to demonstrate
monotonic decrease of the iteration:

Plr11) < 9w) ~ (Col), 0 — 1) — (Cal), 0C, (@) + LGB
P(Th1) < 9(@) + (Colay) ax — ) + 5 (aL —2) |Gyl

plp1) < o) +(Golg), 2, — ) — %I\Ga(wk)l\é
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6. Using o(z) = f(x) 4+ r(x) we can now prove extremely useful inequality, which will allow us to demonstrate
monotonic decrease of the iteration:

Plr11) < 9w) ~ (Col), 0 — 1) — (Cal), 0C, (@) + LGB

P(pin) < (@) +(Golwy), 2p — ) + % (aL —2) |Gy ()3

a<i=g(al-2)<-%

1
L

plp1) < o) +(Golg), 2, — ) — %I\Ga(wk)l\é

7. Now it is easy to verify, that when & = z;, we have monotonic decrease for the proximal gradient algorithm:

P(ar1) < p(wy) = SICal@)l
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8. When z = z*:
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8. When z = z*:

P(r1) < @a”) + (Gay), zp —2%) — %IIGQ(%)H%
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8. When z = z*:
«
(1) S (@) + (Golay), 3 —a™) — E”Ga(‘rk)”%

P(@h41) = @(a") < (Golay), oy — ) = S Gl

‘/ - ?qyu} Proximal Gradient Method. Convex case
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Convergence VY v
8. When z = z*:
«
(1) S (@) + (Golay), 3 —a™) — E”Ga(‘rk)”%
«
P(rp1) — p(@) <(Gy(7), 7 — ) — 5”&1(%)”%

< o [2(aGy (), 1 — &%) — [aGy () ]3]

‘/ - ?qyu} Proximal Gradient Method. Convex case
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8. When z = z*:
«
(1) S (@) + (Golay), 3 —a™) — EIIGQ(JE;@)H%

P(@h41) = @(a") < (Golay), oy — ) = S Gl

IA

oo 20Ga(), 0, — 2%~ oG]

67

IA

35 2(aGa(@y) ), — 2") — |aGy (@)l — |z — @[3 + oy, — 23]

‘/ - ?qyu} Proximal Gradient Method. Convex case
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8. When z = z*:
(67
o(Tpy1) < (") +(Gy(T)), 7 — 27) — §||Ga($k)||§

P(@h41) = @(a") < (Golay), oy — ) = S Gl

IA

oo 20Ga(), 0, — 2%~ oG]
1

2a
1

2«

IA

200G (), 2y — 27) =[0Gy ()3 — log — 23 + 2y, — 27[3]

[z — 2" — aGy (x5 + 2y, — 27 [3]

‘/ - Wy‘l} Proximal Gradient Method. Convex case
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8. When z = z*:
«
(1) S (@) + (Golay), 3 —a™) — EIIGQ(JE;@)H%

P(@h41) = @(a") < (Golay), oy — ) = S Gl

1
< 5o [2aGa (@), 2 — ) — oG (@)[3]
1
< 5 [2aGa (@), — ) — [aGo (@ )l3 — o — 213 + |z — 2”[3]
1
< 5o [l =2 — aGo (@)l + oy — 23]
1

35 1ok =215 = lzpen — 23]
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9. Now we write the bound above for all iterations i € 0,k — 1 and sum them:
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9. Now we write the bound above for all iterations i € 0,k — 1 and sum them:

k-1

Y (o) — 0la)] < 5 llzo — 213 — o, — 2°13]
=0

‘/ - Wy‘l} Proximal Gradient Method. Convex case
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9. Now we write the bound above for all iterations i € 0,k — 1 and sum them:

-1
* 1 * *
Z [p(z41) — p(z*)] < By (g — 2*[5 — |1y, — 2*[3]
1=0
< %on — "3

‘/ - Wy‘l} Proximal Gradient Method. Convex case
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9. Now we write the bound above for all iterations i € 0,k — 1 and sum them:

k-1
* 1 * *
S lp@in) — 0 < o [loo — ol — bz~ 2*13]
1=0
1 *
< %Hwo — "3

10. Since ¢(z};,) is a decreasing sequence, it follows that:

‘/ - Wy‘rﬁ Proximal Gradient Method. Convex case
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9. Now we write the bound above for all iterations i € 0,k — 1 and sum them:

k-1
* 1 * *
S lp@in) — 0 < o [loo — ol — bz~ 2*13]
1=0
1 *
< %Hwo — "3

10. Since ¢(z};,) is a decreasing sequence, it follows that:

o(ry) = kp(zy) < > o(w4)

%

—
e
—

b

@
Il
o
I
o

‘/ - Wy‘rﬁ Proximal Gradient Method. Convex case
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9. Now we write the bound above for all iterations i € 0,k — 1 and sum them:
k—1 1

< oo lle — 218 — o — 2°13]

Y
=
8
+
=
-
B
=
S
e
=
|

1
o — I3

INA

10. Since ¢(z};,) is a decreasing sequence, it follows that:

b
—

k—
o(ay) = ko(zy) < Z Tip1)

=0
k—
2 : z+1

S
Il
o

I/\
PT‘\H

‘/ - Wy‘rﬁ Proximal Gradient Method. Convex case
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9. Now we write the bound above for all iterations i € 0,k — 1 and sum them:
k—1 1
< —lzg — z*||2 — ||z), — =*||?
o= Mz — 2713 — I, — I3

Y
=
8
+
=
-
B
=
S
e
=
|

INA

1
7o —2°I3

10. Since ¢(z};,) is a decreasing sequence, it follows that:

k-1 k-1
o(zy) = ko(zy) < Z‘P Tit1)
=0 1=0
=
p(xy) < z ZSO Tip1)
1=0
NUEE S w1 < Iz — 213
p(ry) —p(z*) < T 2 [p(z41) — p(z*)] < W

‘f - Wy‘rﬁ Proximal Gradient Method. Convex case
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9. Now we write the bound above for all iterations i € 0,k — 1 and sum them:
k—1 1
< —lzg — z*||2 — ||z), — =*||?
o= Mz — 2713 — I, — I3

Y
=
8
+
=
-
B
=
S
e
=
|

INA

1
7o —2°I3

10. Since ¢(z};,) is a decreasing sequence, it follows that:

k-1 k-1
o(zy) = ko(zy) < Z‘P Tit1)
=0 1=0
=
p(xy) < z ZSO Tip1)
1=0
NUEE S w1 < Iz — 213
p(ry) —p(z*) < T 2 [p(z41) — p(z*)] < W

‘f - Wy‘rﬁ Proximal Gradient Method. Convex case

30


https://fmin.xyz
https://hse25.fmin.xyz
https://github.com/MerkulovDaniil/hse25
https://t.me/fminxyz

JA\ /A\ /A\
Convergence \V/ \V/ VV VWV

9. Now we write the bound above for all iterations i € 0,k — 1 and sum them:

Ny
5
e

i

s
R’X‘
in

1
= llzo = 2°[3 — Iz — 2*[]

INA

1
o — I3

10. Since ¢(z};,) is a decreasing sequence, it follows that:

k-1 k-1
o(zy) = ko(zy) < Z‘P Tis1)
=0 1=0
=
p(xy) < z ZSO Tip1)
1=0
NUEE S w1 < Iz — 213
p(ry) —p(z*) < T 2 [p(z41) — p(z*)] < W

—x* 2 . . .
Which is a standard % with v = 1, or, O () rate for smooth convex problems with Gradient Descent!

— mi . .
‘f fny"; Proximal Gradient Method. Convex case
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Proximal Gradient Method. Strongly convex case

Proximal Gradient Method. Strongly convex case
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Convergence

i Theorem
Consider the proximal gradient method

Tgy1 = Prox,,. (2, — aV f(zy))

For the criterion p(z) = f(z) + r(z), we assume:

® fis u-strongly convex, differentiable, dom(f) = R™, and V[ is Lipschitz continuous with constant L > 0.

® 7 is convex, and prox , () = arg m}% [ar(z) + %@ — 2;,|3] can be evaluated.
TE

Proximal gradient descent with fixed step size o < 1/L satisfies
k
Iz, —2* 13 < (1= an)” zo — =*[3

This is exactly gradient descent convergence rate. Note, that the original problem is even non-smooth!

‘f - fn.}‘; Proximal Gradient Method. Strongly convex case
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V/ \Y
Convergence W/ A4

Proof

1. Considering the distance to the solution and using the stationary point lemm:

‘/ - Wy‘rﬁ Proximal Gradient Method. Strongly convex case
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Convergence W/ A4

Proof

1. Considering the distance to the solution and using the stationary point lemm:

lzp 0 — 2713 = lIprox, p(zy — aVf(zy)) — 273

‘/ - §ny1r; Proximal Gradient Method. Strongly convex case
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Proof

1. Considering the distance to the solution and using the stationary point lemm:

lzp 0 — 2713 = lIprox, p(zy — aVf(zy)) — 273

stationary point lemm = ||proxaf(xk - OéVf(Cl?k)) - pI’OXaf(CE* - CVVf(.’L'*))”%

‘/ - §ny1r; Proximal Gradient Method. Strongly convex case
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V/ \Y
Convergence W/ A4

Proof

1. Considering the distance to the solution and using the stationary point lemm:

lwpsn — 2713 = llprox, p(z), — aV f(zy)) — 2"3
stationary point lemm = ||proxaf(xk - CKVf(lek)) - pI’OXaf(CC* - CVVf(.’L'*))”%

nonexpansiveness g ||l‘k — an(xk) —z* + Olvf(i‘*)"%

‘/ - fny"; Proximal Gradient Method. Strongly convex case

33


https://fmin.xyz
https://hse25.fmin.xyz
https://github.com/MerkulovDaniil/hse25
https://t.me/fminxyz

V/ \Y
Convergence W/ A4

Proof
1. Considering the distance to the solution and using the stationary point lemm:
211 — 2713 = lprox, s (z — aV f(2y) — 2|3
stationary point lemm = ||proxaf(xk - CKVf(lek)) - pI’OXaf(CC* - CVVf(.’L'*))”%

nonexpansiveness g ||l‘k — an(xk) —z* + Olvf(i‘*)"%

= [z, — 2** = 2a(V f(zy) = Vf(@*), 2, — 27) + o®|V f(z),) = VF(2")[3

‘/ - fny"; Proximal Gradient Method. Strongly convex case
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V/ \Y
Convergence W/ A4

Proof

1. Considering the distance to the solution and using the stationary point lemm:

leass — 22 = lprox, (@ — a¥ £ () — I3
stationary point lemm = [[prox,, (2, — aV f(xy,)) — prox, ,(z* — aV f(z*))[3
nonexpansiveness < |2, — aV f(z;,) — 2% + oV f(z*)]3
= oy — "2 = 2a(V f(2},) = V(@*), 2 — 2*) + 2|V f (=) — Vf(2")]3

2. Now we use smoothness from the convergence tools and strong convexity:

‘/ - fn‘}'; Proximal Gradient Method. Strongly convex case PO
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V/ \Y
Convergence W/ A4

Proof

1. Considering the distance to the solution and using the stationary point lemm:
lzp1 — 2*13 = lprox,, (z, — aV f(2)) — 2*[3
stationary point lemm = ||proxaf(xk - CKVf(lek)) - pI’OXaf((E* - CVVf(.’L'*))”%
nonexpansiveness g ||$k — an(xk) —z* + an(x*)H%
= |y, — 2*|? — 2a(V f(2y) = Vf(a*), zp, —a*) + @®|V f(ay) = V()3
2. Now we use smoothness from the convergence tools and strong convexity:

smoothness |V f(x;) — Vf(2*)|3 < 2L (f(wy) — f(a*) = (Vf(2"), 2 — 2))

‘/ - fn‘}'; Proximal Gradient Method. Strongly convex case PO
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V/ \Y
Convergence W/ A4

Proof

1. Considering the distance to the solution and using the stationary point lemm:
lzp1 — 2*13 = lprox,, (z, — aV f(2)) — 2*[3
stationary point lemm = ||P"°Xaf($k - CKVf(CL'k)) - proxaf(m* - an(a?*))”%
nonexpansiveness g ||$k — an(a:k) —z* + an(x*)H%
= |y, — 2*|? — 2a(V f(2y) = Vf(a*), zp, —a*) + @®|V f(ay) = V()3
2. Now we use smoothness from the convergence tools and strong convexity:
smoothness |V f(xy) — Vf(2*)|3 < 2L (f(zg) — f(2") = (Vf(a*),2), — 27))
strong convexity — (Vf(wy) = Vf(z"), vy, =) < = () = fa") + Slay — "[3) = (VS (a"), 2 —a7)

‘f - fn‘}'; Proximal Gradient Method. Strongly convex case P00 O
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JA\ JA\
Convergence W Wy

3. Substitute it:

‘f — min
Tz

Proximal Gradient Method. Strongly convex case

34


https://fmin.xyz
https://hse25.fmin.xyz
https://github.com/MerkulovDaniil/hse25
https://t.me/fminxyz

JA\ /JA\
Convergence Wy \y/

3. Substitute it:

‘/ — min
Tz

2 = a3 < o, — ™ = 20 (flwy) = F@) + Slloy — 2713 ) — 20(V (@), — ")+
+a%2L (f(ay) = f(a") = (VF(a), 0, —27))

Proximal Gradient Method. Strongly convex case PO
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JA\ /JA\
Convergence Wy \y/

3. Substitute it:

‘f — min
Tz

2 = a3 < o, — ™ = 20 (flwy) = F@) + Slloy — 2713 ) — 20(V (@), — ")+
+a%2L (f(ay) = f(a") = (VF(a), 0, —27))
< (1—ap) ey —a*[* +2a(aL = 1) (flay) = f@*) = (Vf(a"), 2 =)
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JA\ /JA\
Convergence Wy \y/

3. Substitute it:

2 = a3 < o, — ™ = 20 (flwy) = F@) + Slloy — 2713 ) — 20(V (@), — ")+
+a%2L (f(z)) = f(a*) = (Vf(a"), 2, — 27))
< (1= ap)lay =" + 2a(al — 1) (f(ay) = f(a*) = (Vf(a"), 2 —a7))

4. Due to convexity of f: f(z,) — f(z*) — (Vf(z*),x;, — 2*) > 0. Therefore, if we use o <

=

lzp i — 213 < (1 —ap)lay, — 27,

which is exactly linear convergence of the method with up to 1 — £ convergence rate.
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Accelerated Proximal Gradient — convex objective
i Accelerated Proximal Gradient Method
Let f : R — R be convex and L-smooth, r : R —RU{+00} be proper, closed and convex, p(z) = f(z)+r(x)

admit a minimiser z*, and suppose prox_,. is easy to evaluate for a > 0. With any x4 € domr define the
sequence

T

tg =1, Yo = To,

Ty = PYOX%T.(Z/k—l - %Vf(yk—l))v

L4+ /1+4t7

=5

t o, —1

(T — Tp1), k=1
ty

Yp = Tp +

Then for every k > 1

2L ||z — 7|3

(P(l‘k) - @(x*> < (k + 1)2

‘f - fn‘}'; Proximal Gradient Method. Strongly convex case P00 O
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Accelerated Proximal Gradient — pi-strongly convex objective

i Accelerated Proximal Gradient Method

Assume in addition that f is u-strongly convex (u > 0).
Set the step a = % and the fixed momentum parameter

5 = VL/p—1
VEI/p+1

Generate the iterates for k > 0 (take z_; = z;):

Y = T + B (2 — 1),
Tyy1 = prox,, (v, — aVf(yy))-

Then for every k >0

ple) —ole) < (1-1[2) (lao) - o(a) + Ky — 213)

‘f - fn‘}'; Proximal Gradient Method. Strongly convex case
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‘f — min
Tz

Numerical experiments

Numerical experiments
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Quadratic case

1 3 mxn
J@) = 5 Aw = b3+ Nlal, - min,  A€R™, A(EATA) € s L],

Linear Least Squares with £; Regularization (LASSO).
m=1000, n=100, A=0, p=0, L=10. Optimal sparsity: 0.0e+00

Function Gap Distance to Optimal Solution Subgradient Norm
2 |
_ 10 101 4
t._ = 10° 1
| 1072 4 x =
— | >
< X =
= 106 = 100 4 1073 |
0 200 400 600 0 200 400 600 0 200 400 600
Iteration Iteration Iteration
—— Subgrad Ir 9.0e-02. Sparsity 0.0e+00 Proximal Ir 9.0e-02. Sparsity 0.0e+00

Figure 2: Smooth convex case. Sublinear convergence, no convergence in domain, no difference between subgradient and proximal

methods
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Quadratic case

1 3 mxn
J@) = 5 Aw = b3+ Nlal, - min,  A€R™, A(EATA) € s L],

Linear Least Squares with £; Regularization (LASSO).
m=1000, n=100, A=1, p=0, L=10. Optimal sparsity: 2.3e-01

Function Gap Distance to Optimal Solution Subgradient Norm
2 5
\ 10 \
101 p
— 2 i _
i 10 =
! T 3
~ 1 fd)
g 10 N ¥ =
= \/\—_v_\ = 101 4
100 B
0 5 10 15 20 0 5 10 15 20 0 5 10 15
Iteration Iteration Iteration
—— Subgrad Ir 9.0e-02. Sparsity 0.0e+00 Proximal Ir 9.0e-02. Sparsity 1.9e-01

Figure 3: Non-smooth convex case. Sublinear convergence. At the beginning, the subgradient method and proximal method are
close.
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Quadratic case
1

f(z) = 5| Az —b]3 + Al, — min,

2m

AeRm™m  XN(LATA) € [u; L.

Linear Least Squares with £; Regularization (LASSO).
m=1000, n=100, A=1, p=0, L=10. Optimal sparsity: 2.3e-01

Function Gap Distance to Optimal Solution
100\ 10° 1
=~ * -5 —
L 107 D 5
g o £ 100 ]
0 250 500 750 0 250 500 750

Iteration

—— Subgrad Ir 9.0e-02. Sparsity 0.0e+00

Iteration

——— Proximal Ir 9.0e-02

Subgradient Norm

102 E

101 4

0 250 500 750
Iteration

. Sparsity 2.3e-01

Figure 4: Non-smooth convex case. If we take more iterations, the proximal method converges with the constant learning rate, which
is not the case for the subgradient method. The difference is tremendous, while the iteration complexity is the same.
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Binary logistic regression

1 « . n
fla)=— glog(l +exp(=b;(4;2))) + Alz]y — min, A, €R? b € {~1 1}

Binary Logistic Regression with £; Regularization.
m=300, n=50, A=0.1. Optimal sparsity: 8.6e-01

Function Gap Domain Gap Train Accuracy Test Accuracy
101 | 0.9
10—1 p
- — >0 g > 0.90 1
T 107+ 107 8 %° g
— | > =]
= < S 0.7 S 0.851
= 10114 — 1077 - < <
T T T T 06 L T T 080 L T T
0 20000 0 20000 0 20000 0 20000
Iteration Iteration Iteration Iteration
ibgrad Ir 1.0e-02. Sparsity 0.0e+00 ——— Subgrad Ir a/Vk (a=1.0e-01). Sparsity 1.2e-01 —— Proximal Ir 1.0e-02. Sparsity

Figure 5: Logistic regression with ¢, regularization
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Softmax

multiclass regression
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2 4
Time

—— Subgrad Ir 1.00 sparsity 0.000

Numerical experiments

o A

Ixic = x|

Ixic = x "1

Convex multiclass regression. lam=0.01.
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Example: ISTA

Iterative Shrinkage-Thresholding Algorithm (ISTA)

ISTA is a popular method for solving optimization problems involving L1 regularization, such as Lasso. It combines
gradient descent with a shrinkage operator to handle the non-smooth L1 penalty effectively.
® Algorithm:

K/AF“}‘L Numerical experiments D0 0
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Example: ISTA

Iterative Shrinkage-Thresholding Algorithm (ISTA)
ISTA is a popular method for solving optimization problems involving L1 regularization, such as Lasso. It combines
gradient descent with a shrinkage operator to handle the non-smooth L1 penalty effectively.
® Algorithm:
® Given xg, for k > 0, repeat:
Tht1 = PrOXyo ), (zr, — aVif(zy)),

where LS SWER (v) applies soft thresholding to each component of v.

K/AF“}‘L Numerical experiments D0 0
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Example: ISTA

Iterative Shrinkage-Thresholding Algorithm (ISTA)

ISTA is a popular method for solving optimization problems involving L1 regularization, such as Lasso. It combines
gradient descent with a shrinkage operator to handle the non-smooth L1 penalty effectively.
® Algorithm:
® Given xg, for k > 0, repeat:
Tht1 = PrOXyo ), (zr, — aVif(zy)),
where LS SWER (v) applies soft thresholding to each component of v.
® Convergence:

K/AF“}‘L Numerical experiments D0 0
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Example: ISTA

Iterative Shrinkage-Thresholding Algorithm (ISTA)

ISTA is a popular method for solving optimization problems involving L1 regularization, such as Lasso. It combines
gradient descent with a shrinkage operator to handle the non-smooth L1 penalty effectively.
® Algorithm:
® Given xg, for k > 0, repeat:
Tht1 = PrOXyo ), (zr, — aVif(zy)),
where LS SWER (v) applies soft thresholding to each component of v.

® Convergence:
® Converges at a rate of O(1/k) for suitable step size a.
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Example: ISTA

Iterative Shrinkage-Thresholding Algorithm (ISTA)

ISTA is a popular method for solving optimization problems involving L1 regularization, such as Lasso. It combines
gradient descent with a shrinkage operator to handle the non-smooth L1 penalty effectively.
® Algorithm:
® Given xg, for k > 0, repeat:
Tht1 = PrOXyo ), (zr, — aVif(zy)),
where LS SWER (v) applies soft thresholding to each component of v.

® Convergence:
® Converges at a rate of O(1/k) for suitable step size a.

® Application:
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Example: ISTA

Iterative Shrinkage-Thresholding Algorithm (ISTA)

ISTA is a popular method for solving optimization problems involving L1 regularization, such as Lasso. It combines
gradient descent with a shrinkage operator to handle the non-smooth L1 penalty effectively.
® Algorithm:
® Given xg, for k > 0, repeat:
Tht1 = PrOXyo ), (zr, — aVif(zy)),
where LS SWER (v) applies soft thresholding to each component of v.

® Convergence:
® Converges at a rate of O(1/k) for suitable step size a.

® Application:
® Efficient for sparse signal recovery, image processing, and compressed sensing.
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Example: FISTA

Fast Iterative Shrinkage-Thresholding Algorithm (FISTA)

FISTA improves upon ISTA's convergence rate by incorporating a momentum term, inspired by Nesterov's accelerated
gradient method.
® Algorithm:
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Example: FISTA

Fast Iterative Shrinkage-Thresholding Algorithm (FISTA)
FISTA improves upon ISTA's convergence rate by incorporating a momentum term, inspired by Nesterov's accelerated
gradient method.

® Algorithm:
® Initialize ¢ = yg, top = 1.
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Example: FISTA

Fast Iterative Shrinkage-Thresholding Algorithm (FISTA)

FISTA improves upon ISTA's convergence rate by incorporating a momentum term, inspired by Nesterov's accelerated
gradient method.
® Algorithm:
® Initialize g = g, ty = 1.
® For k > 1, update:
Tk = PrOXxal )y (Yp—1 — VI (Yp-1)) s
L+ /144t3
tk = f’

k-1 —1

t
Yp = Tg + v (Tp — Tp—1)-
k

l/*ﬂ‘“, Numerical experiments @0 O 44
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Example: FISTA

Fast Iterative Shrinkage-Thresholding Algorithm (FISTA)

FISTA improves upon ISTA's convergence rate by incorporating a momentum term, inspired by Nesterov's accelerated
gradient method.
® Algorithm:
® Initialize ¢ = yg, top = 1.
® For k > 1, update:
Tk = PrOXxal )y (Yp—1 — VI (Yp-1)) s

2
14 /1+42

O R

k-1 —1

t
Yp = Tg + v (Tp — Tp—1)-
k

® Convergence:
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Example: FISTA

Fast Iterative Shrinkage-Thresholding Algorithm (FISTA)

FISTA improves upon ISTA's convergence rate by incorporating a momentum term, inspired by Nesterov's accelerated
gradient method.
® Algorithm:
® Initialize ¢ = yg, top = 1.
® For k > 1, update:
Tk = PrOXxal )y (Yp—1 — VI (Yp-1)) s

2
14 /1+42

O R

teq—1

L (T, — Tp—1)-
k

Yp = Tg +

® Convergence:
® Improves the convergence rate to O(1/k?).
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Example: FISTA

Fast Iterative Shrinkage-Thresholding Algorithm (FISTA)

FISTA improves upon ISTA's convergence rate by incorporating a momentum term, inspired by Nesterov's accelerated
gradient method.
® Algorithm:
® Initialize ¢ = yg, top = 1.
® For k > 1, update:
Tk = PrOXxal )y (Yp—1 — VI (Yp-1)) s

2
14 /1+42

O R

teq—1

L (T, — Tp—1)-
k

Yp = Tg +

® Convergence:
® Improves the convergence rate to O(1/k?).

® Application:
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Example: FISTA

Fast Iterative Shrinkage-Thresholding Algorithm (FISTA)

FISTA improves upon ISTA's convergence rate by incorporating a momentum term, inspired by Nesterov's accelerated
gradient method.
® Algorithm:
® Initialize ¢ = yg, top = 1.
® For k > 1, update:
T = ProXyg ., (Yp—1 — VI (Yp-1)) s

2
14 /1+42

O R

k-1 —1

t
Yp = Tg + v (Tp — Tp—1)-
k

® Convergence:
® Improves the convergence rate to O(1/k?).

® Application:
® Especially useful for large-scale problems in machine learning and signal processing where the L1 penalty induces sparsity.
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Example: Matrix Completion

Solving the Matrix Completion Problem

Matrix completion problems seek to fill in the missing entries of a partially observed matrix under certain assumptions,
typically low-rank. This can be formulated as a minimization problem involving the nuclear norm (sum of singular
values), which promotes low-rank solutions.

® Problem Formulation: ]
min 5 | Po(X) — Po(M)[3 + AIX].,

where P, projects onto the observed set €2, and | - ||, denotes the nuclear norm.

— min . .
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Example: Matrix Completion

Solving the Matrix Completion Problem
Matrix completion problems seek to fill in the missing entries of a partially observed matrix under certain assumptions,
typically low-rank. This can be formulated as a minimization problem involving the nuclear norm (sum of singular

values), which promotes low-rank solutions.
® Problem Formulation: ]
min o [|Po(X) = Po(M)|F + AIX].,

where P, projects onto the observed set €2, and | - ||, denotes the nuclear norm.
® Proximal Operator:

— min . .
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Example: Matrix Completion

Solving the Matrix Completion Problem

Matrix completion problems seek to fill in the missing entries of a partially observed matrix under certain assumptions,
typically low-rank. This can be formulated as a minimization problem involving the nuclear norm (sum of singular
values), which promotes low-rank solutions.

® Problem Formulation: ]
min 5 | Po(X) — Po(M)[3 + AIX].,

where P, projects onto the observed set €2, and | - ||, denotes the nuclear norm.

® Proximal Operator:
® The proximal operator for the nuclear norm involves singular value decomposition (SVD) and soft-thresholding of the

singular values.

— min . .
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Example: Matrix Completion

Solving the Matrix Completion Problem

Matrix completion problems seek to fill in the missing entries of a partially observed matrix under certain assumptions,
typically low-rank. This can be formulated as a minimization problem involving the nuclear norm (sum of singular
values), which promotes low-rank solutions.

® Problem Formulation: ]
min 5 | Po(X) — Po(M)[3 + AIX].,

where P, projects onto the observed set €2, and | - ||, denotes the nuclear norm.

® Proximal Operator:
® The proximal operator for the nuclear norm involves singular value decomposition (SVD) and soft-thresholding of the

singular values.
® Algorithm:
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Example: Matrix Completion

Solving the Matrix Completion Problem

Matrix completion problems seek to fill in the missing entries of a partially observed matrix under certain assumptions,
typically low-rank. This can be formulated as a minimization problem involving the nuclear norm (sum of singular
values), which promotes low-rank solutions.

® Problem Formulation: ]
min 5 | Po(X) — Po(M)[3 + AIX].,

where P, projects onto the observed set €2, and | - ||, denotes the nuclear norm.

® Proximal Operator:
® The proximal operator for the nuclear norm involves singular value decomposition (SVD) and soft-thresholding of the

singular values.

® Algorithm:
® Similar proximal gradient or accelerated proximal gradient methods can be applied, where the main computational effort

lies in performing partial SVDs.
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Example: Matrix Completion

Solving the Matrix Completion Problem
Matrix completion problems seek to fill in the missing entries of a partially observed matrix under certain assumptions,
typically low-rank. This can be formulated as a minimization problem involving the nuclear norm (sum of singular
values), which promotes low-rank solutions.
® Problem Formulation: ]
min o [|Po(X) = Po(M)|F + AIX].,

where P, projects onto the observed set €2, and | - ||, denotes the nuclear norm.
® Proximal Operator:
® The proximal operator for the nuclear norm involves singular value decomposition (SVD) and soft-thresholding of the
singular values.
® Algorithm:
® Similar proximal gradient or accelerated proximal gradient methods can be applied, where the main computational effort
lies in performing partial SVDs.

® Application:
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Example: Matrix Completion

Solving the Matrix Completion Problem
Matrix completion problems seek to fill in the missing entries of a partially observed matrix under certain assumptions,
typically low-rank. This can be formulated as a minimization problem involving the nuclear norm (sum of singular
values), which promotes low-rank solutions.

® Problem Formulation:

!
min o [|Po(X) = Po(M)|F + AIX].,

where P, projects onto the observed set €, and || - ||, denotes the nuclear norm.
Q Proj *
® Proximal Operator:
® The proximal operator for the nuclear norm involves singular value decomposition (SVD) and soft-thresholding of the
singular values.
® Algorithm:
® Similar proximal gradient or accelerated proximal gradient methods can be applied, where the main computational effort
lies in performing partial SVDs.
® Application:
® Widely used in recommender systems, image recovery, and other domains where data is naturally matrix-formed but
partially observed.
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Summary

® |f we exploit the structure of the problem, we may beat the lower bounds for the unstructured problem.
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Summary

® |f we exploit the structure of the problem, we may beat the lower bounds for the unstructured problem.

® Proximal gradient method for a composite problem with an L-smooth convex function f and a convex proximal
friendly function r has the same convergence as the gradient descent method for the function f. The
smoothness/non-smoothness properties of r do not affect convergence.

B, /— min 0 0

Numerical experiments
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Summary

® |f we exploit the structure of the problem, we may beat the lower bounds for the unstructured problem.

® Proximal gradient method for a composite problem with an L-smooth convex function f and a convex proximal
friendly function r has the same convergence as the gradient descent method for the function f. The
smoothness/non-smoothness properties of r do not affect convergence.

® |t seems that by putting f = 0, any nonsmooth problem can be solved using such a method. Question: is this
true?
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Summary

® |f we exploit the structure of the problem, we may beat the lower bounds for the unstructured problem.

® Proximal gradient method for a composite problem with an L-smooth convex function f and a convex proximal
friendly function r has the same convergence as the gradient descent method for the function f. The
smoothness/non-smoothness properties of r do not affect convergence.

® |t seems that by putting f = 0, any nonsmooth problem can be solved using such a method. Question: is this
true?
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Summary

® |f we exploit the structure of the problem, we may beat the lower bounds for the unstructured problem.

® Proximal gradient method for a composite problem with an L-smooth convex function f and a convex proximal
friendly function r has the same convergence as the gradient descent method for the function f. The
smoothness/non-smoothness properties of r do not affect convergence.

® |t seems that by putting f = 0, any nonsmooth problem can be solved using such a method. Question: is this
true?

If we allow the proximal operator to be inexact (numerically), then it is true that we can solve any nonsmooth
optimization problem. But this is not better from the point of view of theory than solving the problem by
subgradient descent, because some auxiliary method (for example, the same subgradient descent) is used to solve
the proximal subproblem.

® Proximal method is a general modern framework for many numerical methods. Further development includes
accelerated, stochastic, primal-dual modifications and etc.
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Summary

® |f we exploit the structure of the problem, we may beat the lower bounds for the unstructured problem.

® Proximal gradient method for a composite problem with an L-smooth convex function f and a convex proximal
friendly function r has the same convergence as the gradient descent method for the function f. The
smoothness/non-smoothness properties of r do not affect convergence.

® |t seems that by putting f = 0, any nonsmooth problem can be solved using such a method. Question: is this
true?

If we allow the proximal operator to be inexact (numerically), then it is true that we can solve any nonsmooth
optimization problem. But this is not better from the point of view of theory than solving the problem by
subgradient descent, because some auxiliary method (for example, the same subgradient descent) is used to solve
the proximal subproblem.

® Proximal method is a general modern framework for many numerical methods. Further development includes
accelerated, stochastic, primal-dual modifications and etc.

® Further reading: Proximal operator splitting, Douglas-Rachford splitting, Best approximation problem, Three
operator splitting.
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