Non-smooth convex optimization. Lower
bounds: Subgradient method.
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Norms are not smooth

e,

A classical convex optimization problem is considered. We assume that f(z) is a convex function, but now we do not

p =« Norm Cone

require smoothness.
p =1 Norm Cone p =2 Norm Cone
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Figure 1: Norm cones for different p - norms are non-smooth
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Wolfe's example

B /— min

Non-smooth problems

Wolfe's example

Figure 2: Wolfe's example. ®Open in Colab
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Convex function linear lower bound

An important property of a continuous convex
function f(x) is that at any chosen point z
for all x € dom f the inequality holds:

f(@) > f(zq) + (9,7 — z¢)
f(zo) + (g, — z0)
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Figure 3: Taylor linear approximation serves as a global lower bound for a
convex function
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Subgradient calculus

An important property of a continuous convex
function f(x) is that at any chosen point z
for all x € dom f the inequality holds:

f(@) > f(zq) + (9,7 — z¢)

for some vector g, i.e., the tangent to the
function's graph is the global estimate from
below for the function.

® If f(z) is differentiable, then g = V f(z;)
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An important property of a continuous convex
function f(x) is that at any chosen point z
for all x € dom f the inequality holds:

f(@) > f(zq) + (9,7 — z¢)

for some vector g, i.e., the tangent to the
function's graph is the global estimate from
below for the function.
® If f(z) is differentiable, then g = V f(z;)
® Not all continuous convex functions are
differentiable.
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Convex function linear lower bound
An important property of a continuous convex
function f(x) is that at any chosen point z
Yy for all x € dom f the inequality holds:

f(@) > f(zq) + (9,7 — z¢)

f(mo) + <g, T — $0> for some vector g, i.e., the tangent to the
function's graph is the global estimate from
below for the function.
® If f(z) is differentiable, then g = V f(z;)
® Not all continuous convex functions are
differentiable.
We do not want to lose such a lovely property.
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Figure 3: Taylor linear approximation serves as a global lower bound for a
convex function
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Subgradient and subdifferential
A vector g is called the subgradient of a function f(x): S — R at a point z, if Vo € S:

f(@) = flao) + (9,2 — x)
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Subgradient and subdifferential
A vector g is called the subgradient of a function f(x): S — R at a point z, if Vo € S:

f(@) = flao) + (9,2 — x)

The set of all subgradients of a function f(z) at a point x, is called the subdifferential of f at x, and is denoted by

of (zq).
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Subgradient and subdifferential
A vector g is called the subgradient of a function f(x): S — R at a point z, if Vo € S:

f(@) = flao) + (9,2 — x)

The set of all subgradients of a function f(z) at a point x, is called the subdifferential of f at x, and is denoted by

of (zq).

Ya [—gl] f(z) N f(z) Ya f(z)
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) Figure 4: Subdifferential is a set of all possible subgradients
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Subgradient and subdifferential
Find 0f(z), if f(z) = |z|
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Subgradient and subdifferential
Find 0f(z), if f(z) = |z]

f(z) = ||

A

0f ()
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Subdifferential properties

® If 2, € ri(5), then Of(x) is a convex compact set.
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Subdifferential properties
® If 2, € ri(5), then Of(x) is a convex compact set.
® The convex function f(z) is differentiable at the point

zy = 0f(wg) = {V f(zo)}
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Subdifferential properties
® If 2, € ri(5), then Of(x) is a convex compact set.
® The convex function f(z) is differentiable at the point
zo = 0f(xg) = {V f(z0)}.
° If0f(xy) #0 Vzy €S, then f(x) is convex on S.
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Subdifferential properties

If 2o € ri(5), then Of(x) is a convex compact set.
The convex function f(z) is differentiable at the point
zo = 0f(xg) = {V f(z0)}.

If 0f(xy) #0 Vx, €S, then f(z) is convex on S.

i Subdifferential of a differentiable function

Let f : S — R be a function defined on the set
S in a Euclidean space R™. If 2y € ri(S) and f
is differentiable at z, then either 8f(z,) = 0 or
Af(zg) = {Vf(zy)}. Moreover, if the function f is
convex, the first scenario is impossible.

— mi .
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Subdifferential properties
® If 2, € ri(5), then Of(x) is a convex compact set.
® The convex function f(z) is differentiable at the point
zo = 0f(xg) = {V f(z0)}.
° If0f(xy) #0 Vzy €S, then f(x) is convex on S.

i Subdifferential of a differentiable function

Let f : S — R be a function defined on the set
S in a Euclidean space R™. If 2y € ri(S) and f
is differentiable at z, then either 8f(z,) = 0 or
Af(zg) = {Vf(zy)}. Moreover, if the function f is
convex, the first scenario is impossible.

Proof
1. Assume, that s € 0f(z,) for some s € R™ distinct
from V f(z,). Let v € R™ be a unit vector. Because
Zq is an interior point of S, there exists § > 0 such
that zy +tv € S for all 0 <t < d. By the definition
of the subgradient, we have

fzg +1tv) = flzo) + (s, 0)

— mi .
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10


https://fmin.xyz
https://hse25.fmin.xyz
https://github.com/MerkulovDaniil/hse25
https://t.me/fminxyz

Subdifferential properties
® If 2, € ri(5), then Of(x) is a convex compact set.
® The convex function f(z) is differentiable at the point
zo = 0f(xg) = {V f(z0)}.
° If0f(xy) #0 Vzy €S, then f(x) is convex on S.

i Subdifferential of a differentiable function

Let f : S — R be a function defined on the set
S in a Euclidean space R™. If 2y € ri(S) and f
is differentiable at z, then either 8f(z,) = 0 or
Af(zg) = {Vf(zy)}. Moreover, if the function f is
convex, the first scenario is impossible.

Proof
1. Assume, that s € 0f(z,) for some s € R™ distinct
from V f(z,). Let v € R™ be a unit vector. Because
Zq is an interior point of S, there exists § > 0 such
that zy +tv € S for all 0 <t < d. By the definition
of the subgradient, we have

fzg +1tv) = flzo) + (s, 0)

— mi .
‘/ fnﬂ Subgradient calculus

10


https://fmin.xyz
https://hse25.fmin.xyz
https://github.com/MerkulovDaniil/hse25
https://t.me/fminxyz

Subdifferential properties

° If z, € ri(S), then 9f(z) is a convex compact set. which implies:
® The convex function f(z) is differentiable at the point

zo = 0f(xg) = {V f(z0)}. Jzo + tv) = Jlzo) > (s,v)
° If0f(xy) #0 Vzy €S, then f(x) is convex on S. ¢

for all 0 < t < §. Taking the limit as ¢ approaches 0 and

1 Subdifferential of a differentiable function using the definition of the gradient, we get:

Let f : S — R be a function defined on the set (Vf(zy),0) = lim flzg +tv) — flzo) > (s,)
S in a Euclidean space R™. If 2y € ri(S) and f t-0;0<¢ <8 t

is differentiable at x,, then either df(xy) = 0 or .

) . . 2. From this, (s — V f(x,),v) > 0. Due to the

Of(xy) = {V f(xy)}. Moreover, if the function f is arbitrarinesi of o (])Crseoc)an >set

convex, the first scenario is impossible. !

v _ 7 Vf(zo)
Proof s =V Flaol
1. Assume, that s € 0f(z,) for some s € R™ distinct )
from V f(z,). Let v € R™ be a unit vector. Because leading to s = V f(z).

Zq is an interior point of S, there exists § > 0 such
that zy +tv € S for all 0 <t < d. By the definition
of the subgradient, we have

fzg +1tv) = flzo) + (s, 0)

— mi .
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Subdifferential properties

° If z, € ri(S), then 9f(z) is a convex compact set. which implies:
® The convex function f(z) is differentiable at the point

zo = 0f(xg) = {V f(z0)}. Jzo + tv) = Jlzo) > (s,v)
° If0f(xy) #0 Vzy €S, then f(x) is convex on S. ¢

for all 0 < t < §. Taking the limit as ¢ approaches 0 and

1 Subdifferential of a differentiable function using the definition of the gradient, we get:

Let f : S — R be a function defined on the set (Vf(zy),0) = lim Sz +tv) — flao) > (s,0)
S in a Euclidean space R™. If 2y € ri(S) and f t—0;0<t<s t
is differentiable at z, then either 8f(z,) = 0 or . i
Af(zg) = {Vf(zy)}. Moreover, if the function f is 2 Frtc)).r: t}.“s’ (s f_ V1(wo),v) % 0. Due to the
convex, the first scenario is impossible. arbrtrariness ot v, one can se
b= — s =V f(xy)
Proof ls =V (o)l
1. Assume, that s € 0f(z,) for some s € R™ distinct )
from V f(z,). Let v € R™ be a unit vector. Because leading to s = Vf(zg). ) )
x, is an interior point of S, there exists § > 0 such 3. Furthermore, if the function f is convex, then
that 2, + tv € S for all 0 < t < 8. By the definition according to the differential condition of convexity
of the subgradient, we have f(x) > f(zo) +(V[f(xg), 2 — x) for all 2 € 5. But

by definition, this means V f(z,) € 0f(z).
fzg +1tv) = flzo) + (s, 0)
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Subdifferential calculus

1 Moreau - Rockafellar theorem (subdifferential of a
linear combination)

Let f,(x) be convex functions on convex sets S;, i =

1,n. Then if ﬂ ri(S;) # 0 then the function
flx) = Zaifi(ac), a; > 0 has a subdifferential
=1

Ogf(x) on the set S = ﬁ S, and

i=1

Osf(x Za s, filx

— mi .
‘/ §“}‘l Subgradient calculus
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Subdifferential calculus

1 Moreau - Rockafellar theorem (subdifferential of a
linear combination)

Let f,(x) be convex functions on convex sets S;, i =

1,n. Then if ﬂ ri(S;) # 0 then the function

), a; > 0 has a subdifferential

flz) = z 0,y

Ogf(x) on the set S = ﬁ S, and

i=1

Osf(x Za s, filx

Subgradient calculus

1 Dubovitsky - Milutin theorem (subdifferential of a
point-wise maximum)

Let f;(x) be convex functions on the open convex
set S CR", z, € S, and the pointwise maximum is
defined as f(z) = maxf;(z). Then:

(2

9sf(wy) = conv{ U 85fi<'r0)} , I@)={iell

iel(xg)

11
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Subdifferential calculus

® J(af)(xz) =adf(x), fora >0
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Subdifferential calculus

® Jaf)(xz) =adf(x), fora >0
* I fi)(x) =32 9f;(x), f; - convex functions
° J(f(Ax +b))(x) = ATE)f(Ax-l-b) f - convex function
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Algorithm

A vector g is called the subgradient of the function f(x): S — R at the point z, if Vo € S:

f(@) = flao) + (9,2 — x0)

B /= min g adient Method
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Algorithm

A vector g is called the subgradient of the function f(x): S — R at the point z, if Vo € S:
f(x) = fzo) + (9,2 — xg)

The idea is very simple: let's replace the gradient V f(z;,) in the gradient descent algorithm with a subgradient g;, at
point x:
Try1 = Tk — br>

where g, is an arbitrary subgradient of the function f(xz) at the point x;, g, € 0f(x},)

‘f% fn.}‘; Subgradient Method P00 O 14


https://fmin.xyz
https://hse25.fmin.xyz
https://github.com/MerkulovDaniil/hse25
https://t.me/fminxyz

Algorithm

A vector g is called the subgradient of the function f(x): S — R at the point z, if Vo € S:
f(@) = fzo) + (9,2 — x)
The idea is very simple: let's replace the gradient V f(z;,) in the gradient descent algorithm with a subgradient g;, at
point x,;:
Try1 = Tk — br>
where g, is an arbitrary subgradient of the function f(xz) at the point x;, g, € 0f(x},)

Note that the subgradient method is not guaranteed to be a descent method; the negative subgradient need not
be a descent direction, or the step size may cause f(z,,1) > f(z}).

That is why we usually track the best value of the objective function

best _ : .
fi = min f(z,).

B /= min g adient Method
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Convergence bound

|z — 27 = oy — 2" — apgy|® =
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= |z, — 2*|* + ofllgrl® — 204 {9y, T — 2%)
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Convergence bound

lzp i1 — 2*)° = oy — 2 — aggy|® =
= |z, — 2*|* + ofllgrl® — 204 {9y, T — 2%)
< g — 2* P + aillgpl® — 200 (f () — f(2%))

20 (f(wy) — f(2*)) < g — 2% = zgyn — 27 + oo

Let us sum the obtained inequality for k =0, ..., 7T — 1:

T-1 T—1
> 20 (flxg) = @) < g — 2|2 = g — 272 + Y afllgel?
k=0 k=0

B /= min g adient Method
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Convergence bound

® |et's write down how close we came to
lzpsr = 2*? = o — 2" — apgi]® = the optimum z* = arg min flz) = argf*

= |z, — x*HQ + 04%”916”2 —2ay.(gy,, T, — ) on the last iteration:
<oy — 2 + aillgil® — 204, (f () — f(a¥))

20 (f(wy) — f(2*)) < g — 2% = zgyn — 27 + oo

Let us sum the obtained inequality for k =0, ..., 7T — 1:
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Convergence bound

® |et's write down how close we came to
lzpis — 2*? = o — 2 — aygyl® = the optimum z* = arg ;161]}%1}1 f(z) = argf*
= |z — 2 + aillgl® — 20, (gy, x), — %) on the last iteration:
< lay — 2" + o}lap|? — 204 (f(wy) — f(a7))  © For2 subgradient:
204(f () — £(2") < Iy — [ — [eges — [ + ol |? it =) < T = S

Let us sum the obtained inequality for k =0, ..., 7T — 1:

T-1

T-1
> 204 (f(wg) = f(@)) < g — 2" = fog —2"* + 3 oF gl
k=0 k=0
T-1
<llwg — "2+ Y oflgul?
k=0
T-1
<R*4+G*) o}
k=0

B /= min g adient Method 900
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Convergence bound

e el e e
= |z — 2 + aillgl® — 20, (gy, x), — %)
< g — 212 + aZllgil® — 204 (f (=) — f(z*))
20, (f(@p) — f(@*)) < o — 2P = |opsn — 277 + af g
Let us sum the obtained inequality for k =0, ..., 7T — 1:

T-1

T-1
> 204 (f(wg) = f(@)) < g — 2" = fog —2"* + 3 oF gl
k=0 k=0
T-1
<llwg — "2+ Y oflgul?
k=0
T-1
<R*4+G*) o}
k=0

B /= min g adient Method

® |et's write down how close we came to
the optimum z* = arg ;161]%1711 f(z) = argf*
on the last iteration:

® For a subgradient:
(Grr ™ — ) < f2*) — f(xp).

® We additionally assume that |g,[> < G?

15
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Convergence bound

|2y — 2% = |z — 2% — eggpl® =
= |z — 2 + aillgl® — 20, (gy, x), — %)
< g, — 2 + afllgil® — 20, (f () — f(27))
205, (f(y) = f(2*) < g, — 2 = gy — 2 + i ]gil?

Let us sum the obtained inequality for k =0, ..., 7T — 1:

T-1 T-1
> 204 (f(wg) = f(@)) < g — 2" = fog —2"* + 3 oF gl
k=0 k=0
T-1
<llwg — "2+ Y oflgul?
k=0
T-1
<R*4+G*) o}
k=0

B /= min g adient Method

Let's write down how close we came to
the optimum z* = arg ;161]%1711 f(z) = argf*
on the last iteration:

For a subgradient:

(Grr ™ — ) < f2*) — f(xp).

We additionally assume that |g,|? < G
We use the notation R = |zy — 2™,

15
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Convergence bound

® Finally, note:

S 20, (f(y) —
k=0

B /= min g adient Method

)

ﬂ
L

>
Il

200, (fpest

—f@) =

( best

Z 20,
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Convergence bound

® Finally, note:

T-1 T-1
D204 (fla) = f27) 2 Y 204 (£ — f(a*) = (£ = Z 20
k=0 k=0
® Which leads to the basic inequality:
T—1
R*+G? Y ol
* k=0
f]l;est _ f(:v ) < —
23 o
k=0

B /= min g adient Method


https://fmin.xyz
https://hse25.fmin.xyz
https://github.com/MerkulovDaniil/hse25
https://t.me/fminxyz

Convergence bound

® Finally, note:

~
L
~

-1

200, (f(2y) = f2%) = ) 204 (= — f(a%)) = (= = f(a)) ) 20y,

0

H
L

o
Il

0

>
Il

T‘r
(=}

® Which leads to the basic inequality:

2 2 'S o
R+ G kzoak
best * o=
[ = flz) < T 1
2 o
k=0

® From this point we can see, that if the stepsize strategy is such that

T—1 T—1
Y al<oo, Sap=oo
k=0 k=0

then the subgradient method converges (step size should be decreasing, but not too fast).

B /= min g adient Method
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Different step size strategies
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Different step size strategies
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Convergence bound. Non-smooth convex case. Constant step size

i Theorem
Let f be a convex G-Lipschitz function and R = |z, — 2*|,. For a fixed step size «, subgradient method
satisfies )
R a
best __ ) < 7G2
TS =) <5 Ty

® Note, that with any constant step size, the first term of the right-hand side is decreasing, but the second term
stays constant.

B /= min g adient Method
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Convergence bound. Non-smooth convex case. Constant step size

i Theorem

Let f be a convex G-Lipschitz function and R = |z, — 2*|,. For a fixed step size «, subgradient method

satisfies )
R «

best ) < 2

@) s 5 p 3¢

® Note, that with any constant step size, the first term of the right-hand side is decreasing, but the second term

stays constant.

® Some versions of the subgradient method (e.g., diminishing nonsummable step lengths) work when the

assumption on |g; |, < G doesn't hold; see ! or 2.

!B. Polyak. Introduction to Optimization. Optimization Software, Inc., 1987.
2N. Shor. Minimization Methods for Non-differentiable Functions. Springer Series in Computational Mathematics. Springer, 1985.

‘fﬁ}fnﬂ Subgradient Method P00 O 19
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Convergence bound. Non-smooth convex case. Constant step size

i Theorem
Let f be a convex G-Lipschitz function and R = |z, — 2*|,. For a fixed step size «, subgradient method
satisfies )
R a
best __ ) < 7G2
TS =) <5 Ty

® Note, that with any constant step size, the first term of the right-hand side is decreasing, but the second term

stays constant.

® Some versions of the subgradient method (e.g., diminishing nonsummable step lengths) work when the

assumption on |g; |, < G doesn't hold; see ! or 2.

® |et's find the optimal step size « that minimizes the right-hand side of the inequality.

!B. Polyak. Introduction to Optimization. Optimization Software, Inc., 1987.
2N. Shor. Minimization Methods for Non-differentiable Functions. Springer Series in Computational Mathematics. Springer, 1985.

‘fﬁ}fnﬂ Subgradient Method P00 O 19
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Convergence bound. Non-smooth convex case. Constant step size

i Theorem

Let f be a convex G-Lipschitz function and R = |z, — 2*||5. For a fixed step size & = g\/I subgradient
method satisfies

GR

fret =) < 7

® This version requires knowledge of the number of iterations in advance, which is not usually practical.

B /= min g adient Method

20
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Convergence bound. Non-smooth convex case. Constant step size

i Theorem

Let f be a convex G-Lipschitz function and R = |z, — 2*||5. For a fixed step size & = g\/I subgradient
method satisfies
GR

fret =) < 7

® This version requires knowledge of the number of iterations in advance, which is not usually practical.
® |t is interesting to mention, that if you want to find the optimal stepsizes for the whole sequence
0, Qq, ..., 1, you will get the same result.

B /= min g adient Method

20
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Convergence bound. Non-smooth convex case. Constant step size

i Theorem

Let f be a convex G-Lipschitz function and R = |z, — 2*||5. For a fixed step size & = g\/I subgradient
method satisfies

GR

R = 1) <
Vk
® This version requires knowledge of the number of iterations in advance, which is not usually practical.
® |t is interesting to mention, that if you want to find the optimal stepsizes for the whole sequence

0, Qq, ..., 1, you will get the same result.

® Why? Because the right-hand side is convex and symmetric function of ag, oy, ..., oy, .

B /= min g adient Method

20
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Convergence bound. Non-smooth convex case. Constant step length

i Theorem
Let f be a convex G-Lipschitz function and R = ||z, —x*||. For a fixed step length v = ay | g 2. i-e. oy, = HgZHQ’
subgradient method satisfies
GR?> Gy
best *) < ~r
e N

® Note, that for the subgradient method, we typically can not use the norm of the subgradient as a stopping
criterion (imagine f(x) = |x|). There are some variants of more advanced stopping criteria, but the convergence
is so slow, so typically we just set a maximum number of iterations.

lf%ﬁ}‘i Subgradient Method P00 O 21
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Convergence bound. Non-smooth convex case. Practical strategy

i Theorem
Let f be a convex G-Lipschitz function and R = |z, — x*|,. For a diminishing step size strategy a;, = G\/%,
subgradient method satisfies
‘ GR(2+Ink)
best __ %) <

1. Bounding sums:

B /= min g adient Method 00

22
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Convergence bound. Non-smooth convex case. Practical strategy
i Theorem

Let f be a convex G-Lipschitz function and R = |z, — x*|,. For a diminishing step size strategy a;, = G\/%,
subgradient method satisfies

o « _ GR(2+Ink)
R =) £ ——F——

4VEk+1
1. Bounding sums:
T-1 2 T 2
R 1 R
S-S M),
k=0 k=1

B /= min g adient Method

22
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Convergence bound. Non-smooth convex case. Practical strategy
i Theorem

Let f be a convex G-Lipschitz function and R =

[zq — z*|5. For a diminishing step size strategy oy, = G\/%,
subgradient method satisfies
, GR(2+Ink)
best __ *) <L _/
1. Bounding sums:
T-1 2 T 2 T—1 T T+1
R 1 R R R 1 2R
2
oy = =5 — < —=(14mInT); == —2—/ —dt=—"(VT+1-1).
;_o ’ ; k= G2 kz:: G kz:: VETGh o Vi ¢

B /= min g adient Method

22
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Convergence bound. Non-smooth convex case. Practical strategy

i Theorem

Let f be a convex G-Lipschitz function and R = |z, — x*|,. For a diminishing step size strategy a;, = G\/%,
subgradient method satisfies

GR(2+Ink)

best __ T

1. Bounding sums:

T-1 T+1

| =
\’;U

k=0 k=1 =0

2. We drop the last —1 in the upper bound above and use the basic inequality:

B /= min g adient Method 900

, RRE1 R . i £l 1 2R\/7

22
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Convergence bound. Non-smooth convex case. Practical strategy

i Theorem
Let f be a convex G-Lipschitz function and R = |z, — x*|,. For a diminishing step size strategy a;, = G\/%,
subgradient method satisfies
‘ GR(2+Ink)
best __ %) <

1. Bounding sums:

T—1 2 T 2 T-1 T T+1
R 1 R R 1 R 1 2R

Sot=gmd <l Se=gd eg [ GasFETEI-Y
k=0 k=1 k=0 = vk 1 Vit

R2+G? Y o2
best * k=0
2> o
k=0

B /= min g adient Method 00

22
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Convergence bound. Non-smooth convex case. Practical strategy

i Theorem
Let f be a convex G-Lipschitz function and R = |z, — x*|,. For a diminishing step size strategy a;, = G\/%,
subgradient method satisfies
o flo < FLOERD
1. Bounding sums:
T—1 T T—1 T T+1
I;Oaz: RZ;}C < R—z(1+1nT), D o= g;% > g/l %dt: %(\/m—l)

R?+G? a?
et () < & _ R+ R*(1+InT)
T — _ —
2Tzla 48(VT +1)
k=0

B /= min g adient Method 00

22
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Convergence bound. Non-smooth convex case. Practical strategy

i Theorem
Let f be a convex G-Lipschitz function and R = |z, — x*|,. For a diminishing step size strategy a;, = G\/%,
subgradient method satisfies
. GR(2+ Ink)
best __ *) <
1. Bounding sums:
T—1 9 T 2 T-1 T T+1
R 1 R R 1 R 1 2R
2
ap = —5 — < —=(14mInT); o = — —2—/ —dt=—(VT+1-1)
Lt e kit 2Takvital vt el
2. We drop the last —1 in the upper bound above and use the basic inequality:
—1
R? + G2 o?
et () < kgo f_R4AR(1+InT)  GR2+InT)
r - 1 T O4EB(VTH1) 4T+l
23 «
k=0

B /= min g adient Method 00

22
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Non-smooth strongly convex case

Non-smooth
Convex

B /= min g adient Method

Non-smooth
W - strongly convex

23
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Non-smooth strongly convex case

Non-smooth
Convex

*(%)

B /= min g adient Method

Non-smooth
W - strongly convex

° (%)

23
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Non-smooth strongly convex case

i Theorem
Let f be u-strongly convex on a convex set and x,y be arbitrary points. Then for any g € 0f(x),

(g2 = 9) = f(2) = F(5) + B — ol

1. For any A € [0,1), by p-strong convexity,
FO + (1= Ny) € AMf(@) + (1= f(y) = SAL =Nz gyl

B /= min g adient Method

24
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Non-smooth strongly convex case

i Theorem
Let f be u-strongly convex on a convex set and x,y be arbitrary points. Then for any g € 0f(x),

(g2 = 9) = f(2) = F(5) + B — ol

1. For any A € [0,1), by p-strong convexity,
O + (1= Ny) < Af(@) + (1= N fly) = EAL= Nz =yl

2. By the subgradient inequality at =, we have
fQz+ (1 =Ny) = f(@)+ (g Az +(1-Ny—=2) — fQz+(1-Ny) > flx)—(1—-A){g.z—y)

lf%ﬁ}‘i Subgradient Method P00 O 24
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Non-smooth strongly convex case

i Theorem

Let f be u-strongly convex on a convex set and x,y be arbitrary points. Then for any g € 0f(x),

(g2 = 9) = f(2) = F(5) + B — ol

1. For any A € [0,1), by p-strong convexity,
O + (1= Ny) < Af(@) + (1= N fly) = EAL= Nz =yl

2. By the subgradient inequality at =, we have

fAz+ (1 =Ny) > f(z)+{g. Az +(1-Ny—z) — [fQz+(1-Ny) = f(2)—(1—-A)({g,z—y).
3. Thus,
f(iv)*(1*/\)<g7w*y>SAf(wH(l*A)f()**Alf )z —yl?

(T=Nf(x) <A =Nfly)+ (1 =N{g,z—y) — §A(1 =Mz —yl?

J@) < F) + (g, —y) = KXo — y?

lf%ﬁ}‘i Subgradient Method P00 O 24
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Non-smooth strongly convex case

i Theorem

Let f be u-strongly convex on a convex set and x,y be arbitrary points. Then for any g € 0f(x),

(g2 = 9) = f(2) = F(5) + B — ol

1. For any A € [0,1), by p-strong convexity,
O + (1= Ny) < Af(@) + (1= N fly) = EAL= Nz =yl

2. By the subgradient inequality at =, we have
JOz+(1=Xy) > f@) + g e+ (1= Ny—2) =[O+ (1= > fz) — (1= Mg,z —y).
(- N A+ =) — B A= Nl —?
(1=XNf(x) <A =Nfly) + 1 =N{g,z—y) — §A(1 =Nz —yl?
J@) < F) + (g, —y) = KXo — y?
4. Letting A — 1 gives f(z) < f(y) + (9,2 — ) — &z —yl? = {g.2 —y) > f(2) — F(y) + 4]z —y]P.

lf%ﬁ}‘i Subgradient Method P00 O 24
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Convergence bound. Non-smooth strongly convex case.

i Theorem

Let f be a pu-strongly convex function (possibly non-smooth) with minimizer z* and bounded subgradients

lgx] < G. Using the step size o, = u(%ﬂ) the subgradient method guarantees for k > 0 that:

. 2G?
frest— fla®) < ke

1. We start with the method formulation as before:

B /= min g adient Method 90 0

25
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Convergence bound. Non-smooth strongly convex case.

i Theorem

Let f be a pu-strongly convex function (possibly non-smooth) with minimizer z* and bounded subgradients

lgx] < G. Using the step size o, = u(%ﬂ) the subgradient method guarantees for k > 0 that:

. 2G?
JRet = fla) < ke
1. We start with the method formulation as before:

|z — 2 = oy, — 2" — ayg, ) =

B /= min g adient Method 90 0

25


https://fmin.xyz
https://hse25.fmin.xyz
https://github.com/MerkulovDaniil/hse25
https://t.me/fminxyz

Convergence bound. Non-smooth strongly convex case.

i Theorem

Let f be a pu-strongly convex function (possibly non-smooth) with minimizer z* and bounded subgradients

lgx] < G. Using the step size o, = u(%ﬂ) the subgradient method guarantees for k > 0 that:

2G?
best *

— flz") < —.
= e <
1. We start with the method formulation as before:

|y — 2% = llop — 2 — aggil® =

= |z, — 2** + aillgxl® — 20 (gp, 74 — =)

B /= min g adient Method 90 0

25
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Convergence bound. Non-smooth strongly convex case.

i Theorem

Let f be a p-strongly convex function (possibly non-smooth) with minimizer z* and bounded subgradients

lgx] < G. Using the step size o, = W the subgradient method guarantees for k > 0 that:

2G?

f}?est _ f(x*) < Mk

1. We start with the method formulation as before:
|y — 2% = llop — 2 — aggil® =
= |z, — 2** + aillgxl® — 20 (gp, 74 — =)
<lwg — 2P + agllgl? — 200 (f () — f(2*) — epillzy — 27|

B /= min g adient Method 90 0

25
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Convergence bound. Non-smooth strongly convex case.

i Theorem

Let f be a p-strongly convex function (possibly non-smooth) with minimizer z* and bounded subgradients

lgx] < G. Using the step size o, = W the subgradient method guarantees for k > 0 that:

2G?

f}?est _ f(x*) < Mk

1. We start with the method formulation as before:
|y — 2% = llop — 2 — aggil® =
= |z, — 2** + aillgxl® — 20 (gp, 74 — =)
< g, — 22 + afllgil* — 20, (f () — f(2*)) — eyl — @
= (1= pag) |y, — 2** + aZllgel? — 20y, (f(xy) — f(z7))

*“2

B /= min g adient Method 90 0
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Convergence bound. Non-smooth strongly convex case.

i Theorem

Let f be a p-strongly convex function (possibly non-smooth) with minimizer z* and bounded subgradients

lgx] < G. Using the step size o, = W the subgradient method guarantees for k > 0 that:

2G?

= S < <

1. We start with the method formulation as before:
|21 — 21 = oy — 2% — agge]® =
= [y, — 21 + i llgil® — 20 (gp, 24 — %)
< oy — 2% + agllgil® — 200 (f () — f(27) — aypllay —
= (1= poy) |z, — 2% + o lgl® — 204, (f (1) — f(2*))
20 (f(2p) — f@*) < (1= poy) oy — 27 — gy — 2* 1 + of]lgil?

*“2

B /= min g adient Method 90 0
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Convergence bound. Non-smooth strongly convex case.

i Theorem

Let f be a p-strongly convex function (possibly non-smooth) with minimizer z* and bounded subgradients

lgx] < G. Using the step size o, = W the subgradient method guarantees for k > 0 that:

2G?

= S < <

1. We start with the method formulation as before:
|21 — 21 = oy — 2% — agge]® =
= [y, — 21 + i llgil® — 20 (gp, 24 — %)
< oy — 2% + agllgil® — 200 (f () — f(27) — aypllay —
= (1= poy) |z, — 2% + o lgl® — 204, (f (1) — f(2*))
20 (f(2p) — f@*) < (1= poy) oy — 27 — gy — 2* 1 + of]lgil?

. 1—pa 1 . «
flzy) = fa7) < ﬁkllxk o 7H$k+1 — P+ ol

*“2

2c 2c
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Convergence bound. Non-smooth strongly convex case. Proof

2. Substitute the step size oy, = ﬁ into the inequality:

‘f - ?qyu} Subgradient Method
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Convergence bound. Non-smooth strongly convex case. Proof

2. Substitute the step size oy, = ﬁ into the inequality:

p(k—1)

4

fla) = f*) < ;

), — lzp — "2 +
k k41 y

B /= min g adient Method

1
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Convergence bound. Non-smooth strongly convex case. Proof

2. Substitute the step size oy, = ﬁ into the inequality:
_ < 2 77 _ Y id ShL et — -
fla) = Ja7) < B =P = B 0P s
f@y) = f@) < = oy — 2" = = — o — 2" + ﬁllgkll2
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Convergence bound. Non-smooth strongly convex case. Proof

2. Substitute the step size oy, = ﬁ into the inequality:
* l’l’(k‘_l) *||2 lu’(k+1) * (|2 1 2
_ < 2 77 _ Y id ShL et — -
fla) = Ja) < B =P = B e = sl
f@y) = f@) < = oy — 2" = = — o — 2" + ﬁ”gk”2
wk(k—1)
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|~ 4
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Convergence bound. Non-smooth strongly convex case. Proof

2. Substitute the step size oy, = ﬁ into the inequality:
* l’l’(k‘_l) *||2 lu’(k+1) * (|2 1 2
_ < 2 77 _ Y id ShL et — -
fla) = Ja) < B =P = B e = sl
f@y) = f@) < = oy — 2" = = — o — 2" + ﬁ”gk”2
wk(k—1)

. phk(k+1)
|~ 4

IN

1
k(f(zy) — f(=*)) f”xk - |z — 2 + ;Hgkllz

3. Summing up the inequalities for all k =0,1,...,T — 1, we get:
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Convergence bound. Non-smooth strongly convex case. Proof

2. Substitute the step size oy, = ﬁ into the inequality:
* l’l’(k_ 1) *||2 lu’(k+ 1) * (|2 1 2
_ <P _ N d S _ -
flar) = fa) < B = ot B P 4l
f@y) = f@) < = oy — 2" = = — o — 2" + ﬁ”gk”2
k(f(xg) — f2")) < f”xk — - f”zkﬂ —z*? + ;Hgkllz
3. Summing up the inequalities for all k =0,1,...,T — 1, we get:
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Convergence bound. Non-smooth strongly convex case. Proof

2. Substitute the step size oy, = ﬁ into the inequality:
* l’l’(k_ 1) *||2 lu’(k+ 1) * (|2 1 2
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flar) = fa) < B = ot B P 4l
f@y) = f@) < = oy — 2" = = — o — 2" + ﬁ”gk”2
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3. Summing up the inequalities for all k =0,1,...,T — 1, we get:
T-1 T-1 2
. w(T—-1T .\ 1 G*T
S k(o) = £@) < 0= HE oy — P+ 5 Y gl < T
k=0 gy} K

B /= min g adient Method 0


https://fmin.xyz
https://hse25.fmin.xyz
https://github.com/MerkulovDaniil/hse25
https://t.me/fminxyz

Convergence bound. Non-smooth strongly convex case. Proof

2. Substitute the step size oy, = ﬁ into the inequality:
o o ME—=1) a2 ME+T) . 1
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1
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Convergence bound. Non-smooth strongly convex case. Proof

2. Substitute the step size o, = ﬁ into the inequality:
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Convergence bound. Non-smooth strongly convex case. Proof
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Convergence bound. Non-smooth strongly convex case. Proof

2. Substitute the step size o, = ﬁ into the inequality:
o o mk—1) a2 M(E+1) . 1
fla) = Ja) < B =P = B e = sl
f@y) = f@) < = oy — 2" = = — o — 2" + ﬁ”gk”2
oy o HE(E—1) a2 PE(E+1)
k(fzg) = (@) < —— o — 2" — ——F—

1
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3. Summing up the inequalities for all k =0,1,...,T — 1, we get:
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Convergence bound. Non-smooth strongly convex case. Proof

2. Substitute the step size o, = ﬁ into the inequality:
o o mk—1) a2 M(E+1) . 1
fla) = Ja) < B =P = B e = sl
f@y) = f@) < = oy — 2" = = — o — 2" + ﬁ”gk”2
oy o HE(E—1) a2 PE(E+1)
k(fzg) = (@) < —— o — 2" — ——F—

1
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3. Summing up the inequalities for all k =0,1,...,T — 1, we get:
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Convergence bound. Non-smooth strongly convex case. Proof

2. Substitute the step size o, = ﬁ into the inequality:
o o mk—1) a2 M(E+1) . 1
fla) = Ja) < B =P = B e = sl
f@y) = f@) < = oy — 2" = = — o — 2" + ﬁ”gk”2
oy o HE(E—1) a2 PE(E+1)
k(fzg) = (@) < —— o — 2" — ——F—

1
lzg i — 212 + = lgil?
4 4 k+1 u k

3. Summing up the inequalities for all k =0,1,...,T — 1, we get:
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Summary. Subgradient method

Problem Type Stepsize Rule Convergence Rate Iteration Complexity
1 1 1
Convex & Lipschitz problems o~ — o — o (—)
o v <“F ) i
Strongly convex & Lipschitz problems ar T O (%) O (g)
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Numerical experiments

1 M mxn
f@) = 5 [Ar = b3+ el min,  A€R™, A(LATA) € [ L],

Linear Least Squares with £; Regularization (LASSO).
m=1000, n=100, A=0, p=0, L=10. Optimal sparsity: 0.0e+00

Function Gap Distance to Optimal Solution Subgradient Norm
102 4 ‘ 10t |
. = 10" 1
-2 ] x =
<Y ! s
s 10-6 4 X 1071 1072 -
0 200 400 600 0 200 400 600 0 200 400 600
Iteration Iteration Iteration
—— Subgrad Ir 1.0e-02. Sparsity 0.0e+00 Subgrad Ir 1.5e-02. Sparsity 0.0e+00

Figure 6: Smooth convex case. Sublinear convergence, no convergence in domain
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Numerical experiments

1 M mxn
f@) = 5 [Ar = b3+ el min,  A€R™, A(LATA) € [ L],

Linear Least Squares with £; Regularization (LASSO).
m=1000, n=100, A=0.1, u=0, L=10. Optimal sparsity: 1.0e-02

Function Gap Distance to Optimal Solution Subgradient Norm
34 1 w
10 B 10 102 41
5 5
!4 =
é 10 | 3
S X 10° 4 ~ 104
= 1071 1 o
0 200 400 600 0 200 400 600 0 200 400 600
Iteration Iteration Iteration
—— Subgrad Ir 1.0e-02. Sparsity 0.0e+00 Subgrad Ir 1.5e-02. Sparsity 0.0e+00

Figure 7: Non-smooth convex case. Small \ value imposes non-smoothness. No convergence with constant step size
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Numerical experiments
1 1 mxn
f@) = 5—Az = b3 + A=)y — min, A eR™", A(FATA) € [ L].

Linear Least Squares with £; Regularization (LASSO).
m=1000, n=100, A=1, p=0, L=10. Optimal sparsity: 7.0e-02

Function Gap Distance to Optimal Solution Subgradient Norm
103 4
103 - 10 4
< Z
0] —
’IE 10! L 10 5 )
S Ed 10°1
T 107! A 1071
0 200 400 600 0 200 400 600 0 200 400 600
Iteration Iteration Iteration
—— Subgrad Ir 1.0e-02. Sparsity 0.0e+00 ——— Subgrad Ir 1.5e-02. Sparsity 0.0e+00

Figure 8: Non-smooth convex case. Larger A value reveals non-monotonicity of f(z;). One can see that a smaller constant step size
leads to a lower stationary level.
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Numerical experiments

1
f@) = 5—Az = b3 + Az]; — min, A eR™", A(FATA) € [ L].

Linear Least Squares with £; Regularization (LASSO).
m=100, n=100, A=1, u=0, L=10. Optimal sparsity: 2.3e-01

Function Gap Distance to Optimal Solution Subgradient Norm

5 ]
— 10 _ 102 i 103 ]
Y *>< j—

2 4 =
L 10 | S 102
X ; 100 4 =
E 5-1 =

10 T 101 4
0 2000 4000 0 2000 4000 0 2000 4000
Iteration Iteration Iteration
—— Subgrad Ir 1.0e-02. Sparsity 0.0e+00 —— Subgrad Ir a/k (a=1.0e+00). Sparsity 2.0e-02

Figure 9: Non-smooth convex case. Diminishing step size leads to the convergence fot the f]EeSt
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Numerical experiments

1 M mxn
f@) = Az = b3 + Az]; — min, A €R™", A(FATA) € [ L).

Linear Least Squares with £; Regularization (LASSO).
m=100, n=100, A=1, p=0, L=10. Optimal sparsity: 2.3e-01

Function Gap Distance to Optimal Solution Subgradient Norm
1 102 E
10t A

“ 1 -

P10 o =

= ! > 1

= <X 107!+ — 1074

= 107! A =

0 2000 4000 0 2000 4000 0 2000 4000
Iteration Iteration Iteration
—— Subgrad Ir 1.0e-02. Sparsity 0.0e+00 —— Subgrad Ir a/vk (a=1.0e-01). Sparsity 0.0e+00

Figure 10: Non-smooth convex case. a—\/% step size leads to the convergence fot the f,EeSt
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Numerical experiments

1 M mxn
f@) = Az = b3 + Az]; — min, A €R™", A(FATA) € [ L).

Linear Least Squares with £; Regularization (LASSO).
m=100, n=100, A=1, p=0, L=10. Optimal sparsity: 2.3e-01

Function Gap Distance to Optimal Solution Subgradient Norm
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= =

0 20000 40000 0 20000 40000 0 20000 40000
Iteration Iteration Iteration

—— Subgrad Ir 1.0e-02. Sparsity 0.0e+00 —— Subgrad Ir a/vk (a=1.0e-01). Sparsity 1.0e-02

Figure 11: Non-smooth convex case. % step size leads to the convergence fot the f,EeSt

‘f - ;nyu; Subgradient Method

33


https://fmin.xyz
https://hse25.fmin.xyz
https://github.com/MerkulovDaniil/hse25
https://t.me/fminxyz

Numerical experiments

1 M mxn
f@) = 5 |Ar = b+ Aaly > min, A €R™, A (LATA) € i L.

Linear Least Squares with £; Regularization (LASSO).
m=100, n=100, A=1, p=1, L=10. Optimal sparsity: 2.0e-01

. Function Gap Distance to Optimal Solution Subgradient Norm
10
_ 103 o
107 4 o 10t _
. | ERS
& 10 X 107 ——
- M 10° 4
0 500 1000 0 500 1000 0 500 1000
Iteration Iteration Iteration
—— Subgrad Ir 3.0e-02. Sparsity 0.0e+00 —— Subgrad Ir a/k (a=9.0e-01). Sparsity 0.0e+00

Figure 12: Non-smooth strongly convex case. a—,f step size leads to the convergence fot the f,ge“
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Numerical experiments

|Fixi) = 7

‘f — min
Tz

1 .
flx)= %”Am — bl + Nz|, — min, AeR™ " )\ (%ATA) € [w; L].

Linear Least Squares with £; Regularization (LASSO).
m=100, n=100, A=1, u=1, L=10. Optimal sparsity: 2.0e-01

Distance to Optimal Solution Subgradient Norm

Function Gap

10? 5 102 -
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X100 4 =
| i)
100 4 E 10! 4
- 10—1 4
0 500 1000 0 500 1000 0 500 1000
Iteration Iteration Iteration
—— Subgrad Ir 3.0e-02. Sparsity 0.0e+00 ——— Subgrad Ir a/Vk (a=3.0e-01). Sparsity 1.0e-02
Figure 13: Non-smooth strongly convex case. a—\/% step size works worse
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Numerical experiments

1 « . n
fla)=— glog(l +exp(=b;(4;2))) + Alz]y — min, A, €R? b € {~1 1}

Binary Logistic Regression with £; Regularization.
m=300, n=50, A=0.1. Optimal sparsity: 8.6e-01

Function Gap Domain Gap Train Accuracy Test Accuracy
0.9 1

— 100 5 4
i *: g; 0.8 1 L‘? 0.90
£ 107! 1 100 5 < g
X 5 S 0.7 S 0.85 1
= o2 ] = < <

T T T T 06 L T T 0-80 L T T

0 2000 0 2000 0 2000 0 2000

Iteration Iteration Iteration Iteration
—— Subgrad Ir 1.0e-02. Sparsity 4.0e-02 ——— Subgrad Ir a/Vk (a=1.0e-01). Sparsity 2.0e-02

Figure 14: Logistic regression with ¢, regularization
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Numerical experiments

|fixe) — 7|

‘f — min
Tz

1072 A

1 « . n
fla)=— glog(l +exp(=b;(4;2))) + Alz]y — min, A, €R? b € {~1 1}

Function Gap

100 4

0 20000
Iteration

—— Subgrad Ir 1.0e-02. Sparsity 0.0e+00

Subgradient Method

Binary Logistic Regression with £; Regularization.
m=300, n=50, A=0.1. Optimal sparsity: 8.6e-01

Domain Gap Train Accuracy
0.9
[
— 10 2 0.8+
x e
| -1 ] S
g 10 g 0.7
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0.6 4
0 20000 0 20000
Iteration Iteration

Figure 15: Logistic regression with ¢, regularization
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0 20000

Iteration

—— Subgrad Ir a/Vk (a=1.0e-01). Sparsity 1.2e-01
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Numerical experiments
1 m
fla)=— Z,log(l +exp(=b;(4;2))) + Alz]y — min, A, €R? b € {~1 1}

Binary Logistic Regression with £; Regularization.
m=300, n=50, A=0.25. Optimal sparsity: 9.6e-01

Function Gap Domain Gap Train Accuracy Test Accuracy
10! 4 0.9 1
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. — 100 5 2084 o
ur S o 0.8 g
= -1 ! 10-1 4 é § 0-81
é 107 A i‘ g 0.7 4 2
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0 2000 0 2000 0 2000 0 2000
Iteration Iteration Iteration Iteration
—— Subgrad Ir 5.0e-03. Sparsity 2.0e-02 —— Subgrad Ir a/Vk (a=3.0e-01). Sparsity 0.0e+00

Figure 16: Logistic regression with ¢, regularization
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Numerical experiments
1 m
fla)=— Z,log(l +exp(=b;(4;2))) + Alz]y — min, A, €R? b € {~1 1}

Binary Logistic Regression with £; Regularization.
m=300, n=50, A=0.25. Optimal sparsity: 9.6e-01

Function Gap Domain Gap Train Accuracy Test Accuracy
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Iteration Iteration Iteration Iteration
—— Subgrad Ir 5.0e-03. Sparsity 0.0e+00 —— Subgrad Ir a/vk (a=3.0e-01). Sparsity 0.0e+00

Figure 17: Logistic regression with ¢, regularization
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Numerical experiments

1 & . n
fla)=— ;log(l +exp(=b;(4;2))) + Alz]y — min, A, €R? b € {~1 1}

Binary Logistic Regression with £; Regularization.
m=300, n=50, A=0.27. Optimal sparsity: 1.0e+00

Function Gap Domain Gap Train Accuracy Test Accuracy
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—— Subgrad Ir 5.0e-03. Sparsity 0.0e+00 —— Subgrad Ir a/vk (a=3.0e-01). Sparsity 0.0e+00

Figure 18: Logistic regression with ¢, regularization
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Numerical experiments

1 & . n
fla)=— ;log(l +exp(=b;(4;2))) + Alz]y — min, A, €R? b € {~1 1}

Binary Logistic Regression with £; Regularization.
m=300, n=50, A=0.27. Optimal sparsity: 1.0e+00
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Figure 19: Logistic regression with ¢, regularization
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Lower bounds

convex (non-smooth) 3 smooth (non-convex)*

*(%) ° ()

k;EN(y(EiQ) kew(?(%>

3Nesterov, Lectures on Convex Optimization
4Carmon, Duchi, Hinder, Sidford, 2017
5Nemirovski, Yudin, 1979

— min
‘f 2,9,z Lower bounds

smooth & convex smooth & strongly convex (or PL)!

ko~ 0 (ﬁlogé)


https://fmin.xyz/assets/files/Nesterov_the_best.pdf
https://arxiv.org/pdf/1710.11606.pdf
https://fmin.xyz/assets/files/nemyud1979.pdf
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Black box iteration

The iteration of gradient descent:

‘f - Wy‘rﬁ Lower bounds

$k+1 — le’k _ Oéka(:Bk)

=z

k—

1_

k
Zak zvf k— 1)

i=0

ak_1Vf(xk_1) _

abVf(x

")
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Black box iteration

The iteration of gradient descent:

xk-%—l — .Z’k _ akvf(xk)

=z

k-1 _

k
_ Zak zvf kz

7

Consider a family of first-order methods, where

k1 € 20 4 span {V f (2
2 € 2% + span {gg, gy, ...

— min
‘f 2,9,z Lower bounds

i=0

), VE(@h), ..., Vf(a*)}
» 91} where g; € O f(

AP IV F(xF ) — PV f(x

")

f - smooth

f - non-smooth
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Black box iteration

The iteration of gradient descent:
xk-%—l _ .I’k _ oszf(xk)
k-1 ak_1Vf(:Ek_1) _ Ockv_f(;rk)

k
Zak zvf k— z)

i=0

Consider a family of first-order methods, where

k€ 20 4 span {V f(2°), Vf(z!), ...,V f(zF)} f - smooth

) 1
xF 1 € 2% 4+ span{gg, 9, i}, Where g; € Of(x*)  f - non-smooth )

To construct a lower bound, we need to find a function f from the corresponding class such that any method from
the family 1 will work at least as slowly as the lower bound.

‘f% fn.}‘; Lower bounds P00 O 44
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Non-smooth convex case

i Theorem

There exists a function f that is G-Lipschitz and convex such that any method 1 satisfies
. GR
min f(x') — min f(zr) > ———
iel1,k) f@) xEB(R)f( )z 2(1 + Vk)

for R > 0 and k < n, where n is the dimension of the problem.

— min
‘f 2,9,z Lower bounds
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Non-smooth convex case

i Theorem

There exists a function f that is G-Lipschitz and convex such that any method 1 satisfies

: GR
. P <
ieTLA] 1) wgél(%f(x) T 2(1+ VE)

for R > 0 and k < n, where n is the dimension of the problem.
Proof idea: build such a function f that, for any method 1, we have

span{gg, g1s---» gy C span{ej,eq,...,€;}

where e, is the i-th standard basis vector. At iteration k < n, there are at least n — k coordinate of z are 0. This
helps us to derive a bound on the error.

lf%595‘2 Lower bounds 0 0O
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Non-smooth case (proof)

Consider the function:

. «
(@) = 8 max 2l + el

where , 3 € R are parameters, and z[1 : k] denotes the first k& components of x.

‘/ - Wy‘rﬁ Lower bounds
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Non-smooth case (proof)

Consider the function:

_ a Yy e
fla) = B ma ali + G ol

where , 3 € R are parameters, and z[1 : k] denotes the first k& components of x.

Key Properties:

® The function f(x) is a-strongly convex due to the quadratic term &z 3.

— min
‘/ 2,9,z Lower bounds

46
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Non-smooth case (proof)

Consider the function: o

@) = 8 ma ali + Gl
where , 3 € R are parameters, and z[1 : k] denotes the first k& components of x.
Key Properties:

® The function f(x) is a-strongly convex due to the quadratic term &z 3.
® The function is non-smooth because the first term introduces a non-differentiable point at the maximum
coordinate of z.

‘/ - fnﬂ Lower bounds @0
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Non-smooth case (proof)

Consider the function: o

@) = 8 ma ali + Gl
where , 3 € R are parameters, and z[1 : k] denotes the first k& components of x.
Key Properties:

® The function f(x) is a-strongly convex due to the quadratic term &z 3.
® The function is non-smooth because the first term introduces a non-differentiable point at the maximum
coordinate of z.

‘/ - fnﬂ Lower bounds @0
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Non-smooth case (proof)

Consider the function: o

@) = 8 ma ali + Gl
where , 3 € R are parameters, and z[1 : k] denotes the first k& components of x.
Key Properties:

® The function f(x) is a-strongly convex due to the quadratic term &z 3.
® The function is non-smooth because the first term introduces a non-differentiable point at the maximum
coordinate of z.

Consider the subdifferential of f(z) at z:

0r(0) =0 (9 e ol ) + 0 (G 1e13)

=0 (max x[z]) + azx
i€[1,k]

= fBconv {ei |4 afi] = maxl‘[j]} +az
J

‘/ - fnﬂ Lower bounds @0
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Non-smooth case (proof)

Consider the function:

. «
x afi] + 13,

flx) = ﬁg}?k

where , 3 € R are parameters, and z[1 : k] denotes the first k& components of x.

Key Properties:

® The function f(x) is a-strongly convex due to the quadratic term &z 3.
® The function is non-smooth because the first term introduces a non-differentiable point at the maximum

coordinate of x.

Consider the subdifferential of f(z) at z:

0r(0) =0 (9 e ol ) + 0 (G 1e13)

i€[1,k]

— 80 (maX x[i]) +ox

i€[1,k]
= fBconv {ei |4 afi] = maxl‘[j]} +az

J

‘f — min
2oz

Lower bounds

It is easy to see, that if g € df(x) and |z|| < R, then
lgl < aR+p
Thus, fis aR + [-Lipschitz on B(R).
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Non-smooth case (proof)

Next, we describe the first-order oracle for this function. When queried for a subgradient at a point x, the oracle
returns
ax + ye;,

where i is the first coordinate for with z[i] = max, ;. zj].

® We ensure that |2°|| < R by starting from 20 = 0.

lf%ﬁ}‘i Lower bounds 0 0O
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Non-smooth case (proof)

Next, we describe the first-order oracle for this function. When queried for a subgradient at a point x, the oracle
returns
ax + ye;,

where i is the first coordinate for with z[i] = max, ;. zj].

® We ensure that |2°|| < R by starting from 20 = 0.
® When the oracle is queried at 20 = 0, it returns e;. Consequently, z! must lie on the line generated by e;.

‘f%m‘; Lower bounds 0 0O

47
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Non-smooth case (proof)

Next, we describe the first-order oracle for this function. When queried for a subgradient at a point x, the oracle
returns

ax + ye;,
where i is the first coordinate for with z[i] = max, ;. zj].

® We ensure that |2°|| < R by starting from 20 = 0.

® When the oracle is queried at 20 = 0, it returns e;. Consequently, z! must lie on the line generated by e;.
® By an induction argument, one shows that for all i, the iterate z* lies in the linear span of {eq,...,¢;}. In
particular, for i < k, the k + 1-th coordinate of x; is zero and due to the structure of f(z):

f(a) = 0.

— min
‘f 2,9,z Lower bounds

47
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Non-smooth case (proof)

® |t remains to compute the minimal value of f. Define the point y € R" as

y[i]:—% for 1 <i <k, ylij]=0 fork+1<i<n.
Q.

‘f - Wy‘rﬁ Lower bounds

48
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Non-smooth case (proof)

® |t remains to compute the minimal value of f. Define the point y € R" as

y[i]:—ﬂlC for 1 <i <k, ylij]=0 fork+1<i<n.
Q.

® Note, that 0 € Of(y):
0f(y) = ay + Beonv {ei | i:y[d] = m]axy[j]}

= ay + Beonv{e, | i : y[i] = 0}
0€df(y).

‘f - §ny1r; Lower bounds

48
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Non-smooth case (proof)

® |t remains to compute the minimal value of f. Define the point y € R" as

y[i]:—ﬂlC for 1 <i <k, ylij]=0 fork+1<i<n.
Q.

® Note, that 0 € Of(y):
0f(y) = ay + Beonv {ei | i:y[d] = m]axy[j]}

= ay + Beonv{e, | i : y[i] = 0}
0€df(y).

® |t follows that the minimum value of f = f(y) = f(z*) is

P e P
T ==k "2 W = 2ak

— min
‘f 2,9,z Lower bounds

48


https://fmin.xyz
https://hse25.fmin.xyz
https://github.com/MerkulovDaniil/hse25
https://t.me/fminxyz

Non-smooth case (proof)

® |t remains to compute the minimal value of f. Define the point y € R" as

y[i]:—ﬂlC for 1 <i <k, ylij]=0 fork+1<i<n.
Q.

® Note, that 0 € Of(y):
0f(y) = ay + Beonv {ei | i:y[d] = m]axy[j]}

= ay + Beonv{e, | i : y[i] = 0}

0€df(y).
® |t follows that the minimum value of f = f(y) = f(z*) is
A I -
T ==k 2 Wk = 20k

® Now we have:

— min
‘f 2,9,z Lower bounds

48
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Non-smooth case (proof)

We have: f(z%) — f(z*) > ﬁk while we need to prove that min f(z%) — f(z*)

‘/ - Wy‘l} Lower bounds

i€[1,k]

49
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Non-smooth case (proof)

We have: f(z%) — f(z*) > ﬁk while we need to prove that min f(z%) — f(z*) > TRk

i€[1,k]

Convex case

o= ¢ 1 8= vk
R1+Vk 1+ Vk
#* _ GREk
20 2(1+ k)
Note, in particular, that |y[3 = Of% = R? with these
parameters
52 GR

‘/ - §ny1r; Lower bounds

49
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Non-smooth case (proof)

We have: f(z?) —

Convex case

a:% ! 8= vk

1+ Vk 1+ vk
8  GRk
200 2(1+ k)
Note, in particular, that |y[3 = Df% = R? with these
parameters
i . 52 GR
min_f(z') — f(x —
i€1,k] )= f@) 2 20k 2(1+Vk)

‘f — min
Tz

Lower bounds

flz*) > ﬁk while we need to prove that min f(z%) — f(z*)

> GR
ie[1,k] = 201+vE)

Strongly convex case

G G

. . 2
Note, in particular, that |y|2 = % =
these parameters

G2
Zl;f[lllr]qu( at) — f(a*) >
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