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Gradient methods for conditional problems.
Projected Gradient Descent. Frank-Wolfe
method. Idea of Mirror Descent algorithm
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Constrained optimization

Unconstrained optimization

min f(z)

reR"

® Any point x; € R" is feasible and could be a solution.
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Constrained optimization

Unconstrained optimization Constrained optimization
i min f(x
min f(z) min f(z)

® Any point z;, € R™ is feasible and could be a solution.  ® Not all € R™ are feasible and could be a solution.
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Constrained optimization

Unconstrained optimization Constrained optimization
min f(z) min f(z)

® Any point z;, € R™ is feasible and could be a solution.  ® Not all € R™ are feasible and could be a solution.
® The solution has to be inside the set S.
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Constrained optimization

Unconstrained optimization Constrained optimization
min f(z) min f(z)

® Any point z;, € R™ is feasible and could be a solution.  ® Not all € R™ are feasible and could be a solution.
® The solution has to be inside the set S.
® Example:

Z|Az — b||2 = min
1 l> Jel3<1
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Constrained optimization

Unconstrained optimization Constrained optimization
min f(z) min f(z)

® Any point z;, € R™ is feasible and could be a solution.  ® Not all € R™ are feasible and could be a solution.
® The solution has to be inside the set S.
® Example:
~||Az — b|3 — min
2| Ie = e,

Gradient Descent is a great way to solve unconstrained problem

Tpy = 7 — .V f(2y) (GD)

Is it possible to tune GD to fit constrained problem?
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Constrained optimization

Unconstrained optimization Constrained optimization
min f(z) min f(z)

® Any point z;, € R™ is feasible and could be a solution.  ® Not all € R™ are feasible and could be a solution.
® The solution has to be inside the set S.
® Example:

Z|Az — b||2 = min
1 l2 Jel3<1

Gradient Descent is a great way to solve unconstrained problem

Tpyr =2 — .V f(zy) (GD)
Is it possible to tune GD to fit constrained problem?

Yes. We need to use projections to ensure feasibility on every iteration.

B /= min o ditional methods 900
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Example: White-box Adversarial Attacks

® Mathematically, a neural network is a function

J(w;z)

‘How are you?’ X0.01 ‘Open the door’

Figure 1: Source
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Example: White-box Adversarial Attacks

® Mathematically, a neural network is a function

f(w;x)
® Typically, input z is given and network weights
w optimized

‘How are you?’ X0.01 ‘Open the door’

Figure 1: Source
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Example: White-box Adversarial Attacks

® Mathematically, a neural network is a function

f(w;x)
® Typically, input z is given and network weights
= w optimized

® Could also freeze weights w and optimize z,
adversarially!

‘Horse’ méin size(d) s.t. pred[f(w;xz+9)] £y

or

m?xl(w; x+0,y) s.t.size(d) <€, 0 <z+5 <1

‘How are you?’ X0.01 ‘Open the door’

Figure 1: Source
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Idea of Projected Gradient Descent

Figure 2: Suppose, we start from a point x,.
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Idea of Projected Gradient Descent

S —Vf(in)

Figure 3: And go in the direction of —V f(x},).

‘f - ?qyu} Conditional methods


https://fmin.xyz
https://hse25.fmin.xyz
https://github.com/MerkulovDaniil/hse25
https://t.me/fminxyz

Idea of Projected Gradient Descent

yr = T — oV f(zg)

Figure 4: Occasionally, we can end up outside the feasible set.
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Idea of Projected Gradient Descent

Yk

Tp+1 = PrOjs(yk)

Figure 5: Solve this little problem with projection!
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Idea of Projected Gradient Descent

‘f — min
Tz

Conditional methods

Y = 7, — o,V f(x)

Tjp1 = Projg (v — iV f(zy)) < o
Tpp1 = Projg (yp)

yr = 2 — oV f(zg)

Zp+1 = projgs(y)

Figure 6: lllustration of Projected Gradient Descent algorithm
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Projection

The distance d from point y € R™ to closed set S C R™:

Ay, 5[ - ) = inf{z —y| | = € S}

‘/ - Wy‘rﬁ Projection
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Projection

The distance d from point y € R™ to closed set S C R™:

Ay, 5[ - ) = inf{z —y| | = € S}

We will focus on Euclidean projection (other options are possible) of a point y € R™ on set S C R" is a point
proj¢(y) € S:

. !
prois(y) = argmin | — 3
xeS

‘/%m‘; Projection @ 0
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Projection

The distance d from point y € R™ to closed set S C R™:

Ay, 5[ - ) = inf{z —y| | = € S}

We will focus on Euclidean projection (other options are possible) of a point y € R™ on set S C R" is a point
proj¢(y) € S:

. !
prois(y) = argmin | — 3
xeS

o Sufficient conditions of existence of a projection. If S C R"™ - closed set, then the projection on set .S exists
for any point.

lf%595‘2 Projection @0 0
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Projection

The distance d from point y € R™ to closed set S C R™:
dy, S, |- I) = nf{|lz —y| | = € S}
We will focus on Euclidean projection (other options are possible) of a point y € R™ on set S C R" is a point
proj¢(y) € S:
. 1
prois(y) = argming [ — /3
xeS
o Sufficient conditions of existence of a projection. If S C R"™ - closed set, then the projection on set .S exists
for any point.

® Sufficient conditions of uniqueness of a projection. If S C R"” - closed convex set, then the projection on set
S’ is unique for any point.

lf%?“}‘i Projection @0 0
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Projection

The distance d from point y € R™ to closed set S C R™:

d(y, S, |- 1) = inf{fz —y| | = € S}

We will focus on Euclidean projection (other options are possible) of a point y € R™ on set S C R" is a point
proj¢(y) € S:

. !
prois(y) = argmin | — 3
xeS

o Sufficient conditions of existence of a projection. If S C R"™ - closed set, then the projection on set .S exists
for any point.

® Sufficient conditions of uniqueness of a projection. If S C R"” - closed convex set, then the projection on set
S’ is unique for any point.

® |f a set is open, and a point is beyond this set, then its projection on this set may not exist.

lf%?“}‘i Projection @0 0
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Projection

The distance d from point y € R™ to closed set S C R™:

dy, S, |- I) = nf{|lz —y| | = € S}
We will focus on Euclidean projection (other options are possible) of a point y € R™ on set S C R" is a point
proj¢(y) € S:

. !
prois(y) = argmin | — 3
xeS

Sufficient conditions of existence of a projection. If S C R™ - closed set, then the projection on set S exists
for any point.

Sufficient conditions of uniqueness of a projection. If S C R™ - closed convex set, then the projection on set
S’ is unique for any point.

If a set is open, and a point is beyond this set, then its projection on this set may not exist.

If a point is in set, then its projection is the point itself.

lf%?“}‘i Projection @0 0
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Projection criterion (Bourbaki-Cheney-Goldstein inequality)

1 Theorem
S
Let S C R"™ be closed and convex, Vz € S,y € R™. Then
(y — projg(y),x — projg(y)) < 0 (1) x
|z — projg (y)1* + lly — proj g (y)[* < [« — y? (2 .
Projs(y)

1. projg(y) is minimizer of differentiable convex function
d(y,S,| - ) = |z — y||* over S. By first-order characterization of
optimality. Yy

Figure 7: Obtuse or straight angle should be
for any point x € S

l/*ﬂ‘“, Projection 0 O 9
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Projection criterion (Bourbaki-Cheney-Goldstein inequality)

1 Theorem
S
Let S C R"™ be closed and convex, Vz € S,y € R™. Then
(y — projg(y),x — projg(y)) < 0 (1) x
|z — projg (y)1* + lly — proj g (y)[* < [« — y? (2 .
Projs(y)

1. projg(y) is minimizer of differentiable convex function
d(y,S,| - ) = |z — y||* over S. By first-order characterization of
optimality. Yy

Vd(projg(y))" (x — projg(y)) > 0 , _
Figure 7: Obtuse or straight angle should be
for any point x € S
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Projection criterion (Bourbaki-Cheney-Goldstein inequality)

1 Theorem
S
Let S C R"™ be closed and convex, Vz € S,y € R™. Then
(y — projg(y),x — projg(y)) < 0 (1) x
|z — projg (y)1* + lly — proj g (y)[* < [« — y? (2 .
Projs(y)

1. projg(y) is minimizer of differentiable convex function
d(y,S,| - ) = |z — y||* over S. By first-order characterization of

optimality. Yy
Vd(projg(y))" (x — projg(y)) > 0 , _
T Figure 7: Obtuse or straight angle should be
2 (projg(y) —y)" (z —projg(y)) >0 for any point z € S
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Projection criterion (Bourbaki-Cheney-Goldstein inequality)

1 Theorem
S
Let S C R"™ be closed and convex, Vz € S,y € R™. Then
(y — projg(y),x — projg(y)) < 0 (1) x
|z — projg (y)1* + lly — proj g (y)[* < [« — y? (2 .
Projs(y)

1. projg(y) is minimizer of differentiable convex function
d(y,S,| - ) = |z — y||* over S. By first-order characterization of
optimality. Yy
Vd(projs(y))" (z — projg(y)) >

T Figure 7: Obtuse or straight angle should be
2 (projg(y) —y) (z — projg(y))

0
0 for any point x € S
0

\Y

INA

(y — proig(y))" (x — projg(y))
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Projection criterion (Bourbaki-Cheney-Goldstein inequality)

1 Theorem

Let S C R"™ be closed and convex, Vz € S,y € R™. Then
(y — projg(y),x — projg(y)) <0 1)
lz = projg ()I* + ly — projg (y)I* < |l — y|? 2
1. projg(y) is minimizer of differentiable convex function
d(y,S,| - ) = |z — y||* over S. By first-order characterization of

optimality.
Vd(projg(y))" (x — projg(y))

(y — projg(y)" (z — projg(y))

2. Use cosine rule 227y = ||lz|? + |ly||* — |« — y[* with 2 = 2 — proj¢(y)
and y = y — proj4(y). By the first property of the theorem:

— mi —
‘/ nin Projection

y)) =0
T Figure 7: Obtuse or straight angle should be
2 (projg(y) —y)" (z —projg(y)) >0 for any point z € S
y) <0
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Projection criterion (Bourbaki-Cheney-Goldstein inequality)

1 Theorem

Let S C R"™ be closed and convex, Vz € S,y € R™. Then
(y — projg(y),x — projg(y)) <0 1)
lz = projg ()I* + ly — projg (y)I* < |l — y|? 2
1. projg(y) is minimizer of differentiable convex function
d(y,S,| - ) = |z — y||* over S. By first-order characterization of

optimality.
Vd(projg(y))" (x — projg(y))

y)) >0
2 (projg(y) — )" (x — projg(y)) > 0
(y — projg(y)” (x — projg(y)) < 0

2. Use cosine rule 227y = ||lz|? + |ly||* — |« — y[* with 2 = 2 — proj¢(y)

and y = y — proj4(y). By the first property of the theorem:

0> 227y = |z — projg ()| + ly + projs (W) — = — y|?

— mi .
‘f nin Projection

projs(y)

Y

Figure 7: Obtuse or straight angle should be
for any point x € S
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Projection criterion (Bourbaki-Cheney-Goldstein inequality)

1 Theorem

Let S C R"™ be closed and convex, Vz € S,y € R™. Then
(y — projg(y),x — projg(y)) <0 1)
lz = projg ()I* + ly — projg (y)I* < |l — y|? 2
1. projg(y) is minimizer of differentiable convex function
d(y,S,| - ) = |z — y||* over S. By first-order characterization of

optimality.
Vd(projg(y))" (x — projg(y))

y)) >0
2 (projg(y) — )" (x — projg(y)) > 0
(y — projg(y)” (x — projg(y)) < 0

2. Use cosine rule 227y = ||lz|? + |ly||* — |« — y[* with 2 = 2 — proj¢(y)

and y = y — proj4(y). By the first property of the theorem:

0> 227y = |z — projg ()| + ly + projs (W) — = — y|?

B /omin o |z — Projs(y) ”2 +ly + projs(y)Hz <o — y”2

projs(y)

Y

Figure 7: Obtuse or straight angle should be
for any point x € S
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Projection operator is non-expansive

® A function f is called non-expansive if f is L-Lipschitz with L < 1 1. That is, for any two points z,y € dom f,
If(z) = f(y)l < L|x —yl, where L <1.

It means the distance between the mapped points is possibly smaller than that of the unmapped points.

!Non-expansive becomes contractive if L < 1.
lf%ﬁ}‘i Projection 00

10
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Projection operator is non-expansive

® A function f is called non-expansive if f is L-Lipschitz with L < 1 1. That is, for any two points z,y € dom f,
If(z) = f(y)l < L|x —yl, where L <1.

It means the distance between the mapped points is possibly smaller than that of the unmapped points.

® Projection operator is non-expansive:

Iproj(z) — proj(y)ll < [z — yll.

!Non-expansive becomes contractive if L < 1.
lf%ﬁ}‘i Projection P00 O 10
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Projection operator is non-expansive

® A function f is called non-expansive if f is L-Lipschitz with L < 1 1. That is, for any two points z,y € dom f,
If(z) = f(y)l < L|x —yl, where L <1.

It means the distance between the mapped points is possibly smaller than that of the unmapped points.

® Projection operator is non-expansive:
Iproj(z) — proj(y)lly < |z — yll,-
® Next: variational characterization implies non-expansiveness. i.e.,

(y — proj(y),z — proj(y)) <0 VxS = Iproj(z) — proj(y)lla < 2 — yl,-

!Non-expansive becomes contractive if L < 1.
‘f%m‘; Projection 00

10
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Projection operator is non-expansive

Shorthand notation: let ™ = proj and 7(z) denotes proj(z).

‘/ - ?qyu} Projection

11
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Projection operator is non-expansive

Shorthand notation: let ™ = proj and 7(z) denotes proj(z).

Begins with the variational characterization / obtuse angle inequality

(y—7(y),z—7(y)) <0 Vzes.

‘/ - Wy‘rﬁ Projection

11
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Projection operator is non-expansive

Shorthand notation: let ™ = proj and 7(z) denotes proj(z).

Begins with the variational characterization / obtuse angle inequality

(y—7(y),z—7(y)) <0 Vzes.

Replace x by () in Equation 3

(y —7(y), m(x) —7(y)) <0. (4)

‘/ - §ny1r; Projection

11
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Projection operator is non-expansive

Shorthand notation: let ™ = proj and 7(z) denotes proj(z).

Begins with the variational characterization / obtuse angle inequality

y—7m(y),z—7(y) <0 VzeSs.
Replace x by () in Equation 3 Replace y by « and « by 7(y) in Equation 3

{y —m(y), m(x) —7(y)) <0. (4) (x —m(2), 7(y) — m(x)) < 0.

— mi —
‘/ nin Projection

11
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Projection operator is non-expansive

Shorthand notation: let ™ = proj and 7(z) denotes proj(z).

Begins with the variational characterization / obtuse angle inequality
(y—m(y),z—7(y) <0 Vzes.
Replace x by () in Equation 3 Replace y by « and « by 7(y) in Equation 3

{y —m(y), m(x) —7(y)) <0. (4) (x — m(z), 7(y) — m(z)) < 0.
(Equation 4)+(Equation 5) will cancel w(y) — 7(z), not good. So flip the sign of (Equation 5) gives

(m(z) —a,m(x) —7(y)) <0.

— mi —
‘/ nin Projection
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Projection operator is non-expansive

Shorthand notation: let ™ = proj and 7(z) denotes proj(z).
Begins with the variational characterization / obtuse angle inequality
(y—7(y),z—7(y)) <0 Vzes.
Replace x by () in Equation 3 Replace y by « and « by 7(y) in Equation 3
(y —7(y),m(x) —7(y)) <0.
(Equation 4)+(Equation 5) will cancel w(y) — 7(z), not good. So flip the sign of (Equation 5) gives
(m(x) —z,7(z) —7(y)) <0.

(y—m(y) + () —z,7m(x) —7(y) <0
(y—z,7m(x) —m(y)) < —(n(x) —7(y), 7(x) — 7(y))
(y—z,7(y) — () > |v(z) —7(y)[3
) o > [m(z) —7(y)l3

— mi —
‘/ nin Projection

(4) (x —7(x),m(y) —m(x)) <O0.

11
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Projection operator is non-expansive

Shorthand notation: let ™ = proj and 7(z) denotes proj(z).

Begins with the variational characterization / obtuse angle inequality

(y—m(y),z—7(y) <0 Vzes. 3)
Replace x by () in Equation 3 Replace y by « and « by 7(y) in Equation 3
(y—m(y),m(x) —n(y)) <0. (4) (x — m(z), 7(y) — m(z)) < 0. (5)
(Equation 4)+(Equation 5) will cancel w(y) — 7(z), not good. So flip the sign of (Equation 5) gives
(n(z) =, m(x) —7(y)) < 0. (6)
By Cauchy-Schwarz inequality, the
(y—7(y) +7(x) —z,7(z) —7(y) <0 left-hand-side is upper bounded by
ly—a,m(z) —7(y)) < —(w(x) — 7(y), 7(z) — (y)) |v—zl2lm(y) — 7T(.CL’)H2,>WE get i
0 —.7(0) =) 2 ) (01 ncasl ) iy iths the proo”
[(y —2) (7 (y) — 7(2))ly = |7(z) — 7 (y)]3
P00 O 11

— mi .
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Example: projection on the ball
Findmg(y) =m, if S={z e R" ||z —zy| <R}, y ¢ S
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Example: projection on the ball
Find mg(y) =m if S={z eR" ||z —zy| <R}, y ¢ S

Build a hypothesis from the figure: 7 =z, + R - “

Y= TOH
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Example: projection on the ball
Find mg(y) =m if S={z eR" ||z —zy| <R}, y ¢ S

Build a hypothesis from the figure: 7 =z, + R - H

Y= TOH

Check the inequality for a convex closed set: (7 —y)T(z —7) >0
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Example: projection on the ball
Find mg(y) =m if S={z eR" ||z —zy| <R}, y ¢ S
Build a hypothesis from the figure: 7 =z, + R - Hy ToH

Check the inequality for a convex closed set: (7 —y)T(z —7) >0

G“‘y+3ﬁ_iﬁ>TG“”“‘R§_z&>‘
Cy%XRwrdvT<umwaﬂR@xw>

ly = ol ly — |l

w (y— )" (=) |y — 20| — Ry —x)) =
ly — ol
Bly =2l (V7 (2 — ) .
s (=) = w0) = Bly—wol) =
(Rl —ol) (LTl E20) )

‘/ - §“}‘l Projection

12
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Example: projection on the ball
Find mg(y) =m if S={z eR" ||z —zy| <R}, y ¢ S
Build a hypothesis from the figure: 7 =z, + R - HU ToH

Check the inequality for a convex closed set: (7 —y)T(z —7) >0

Y—g

T
=
ly — o ly — o

<<y*-"fo><R*Hy*on>> ((mfmo>||yfxo||—R<y—xo>> _
ly — ol ly — o]
w (yfxO)T ((x—xp) ly—2zo]l — Ry —x¢)) =
ly — ol
R=lly—=wol ¢, \T(0 . .
ly — ol ((y o) ( o) — Ry OH)
(Rl —ol) (L=l Eo20) )
B/ omin oo ion

The first factor is negative for point selection y.
The second factor is also negative, which
follows from the Cauchy-Bunyakovsky
inequality:
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Example: projection on the ball
Find mg(y) =m if S={z eR" ||z —zy| <R}, y ¢ S
Build a hypothesis from the figure: 7 =z, + R - HU toH

Check the inequality for a convex closed set: (7 —y)T(z —7) >0

Y—g

T
=
ly — o ly — o

<<y*-’vo><R*HywH>> <<m7m0>||y—xo||—R<y—xo>> -
v = ol [y — o]
R—|y—=x
%M(y*%)”(f%xo)llyfxon—R(yfmo)):
R=lly—=wol ¢, \T(0 . .
ly — ol ((y o) ( o) — Ry OH)
(Rl —ol) (L=l Eo20) )
B/ omin oo ion

The first factor is negative for point selection y.
The second factor is also negative, which
follows from the Cauchy-Bunyakovsky
inequality:

(y — o) (x — ) < ly — @l — o

(y — )" (x — ) ly = olllx — ol

“R<
ly — o ly — o
Yy
.
s # proj(y)
R
zg
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Example: projection on the halfspace

Find mg(y) =7, if S = {z € R" | ¢Tz = b}, y ¢ S. Build a hypothesis from the figure: ™ =y + ac. Coefficient
is chosen so that 7 € S: ¢I'r = b, so:

‘/%W;rﬁ Projection @0 O
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Example: projection on the halfspace

Find mg(y) =7, if S = {z € R" | ¢Tz = b}, y ¢ S. Build a hypothesis from the figure: ™ =y + ac. Coefficient
is chosen so that 7 € S: ¢I'r = b, so:

cTe=b

Figure 9: Hyperplane
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Example: projection on the halfspace

Find mg(y) =7, if S = {z € R" | ¢Tz = b}, y ¢ S. Build a hypothesis from the figure: ™ =y + ac. Coefficient
is chosen so that 7 € S: ¢I'r = b, so:

CT;E =b Ty+ac)=b
Yy cTy+acTe=50
)
. cTy=b—aclc
Check the inequality for a convex closed set:
(r—y)T(x—m) >0
(y+ac—y)T(z—y—ac)=
act(z —y—ac) =
Figure 9: Hyperplane a(cTz) — a(cTy) — a?(cPe) =
ab—a(b—acle) — a?cTe

ab—ab+ o?cTe—a?2cTe =0>0

lf%ﬁ}‘i Projection 00
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‘f — min
Tz

Projected Gradient Descent (PGD)

Projected Gradient Descent (PGD)
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Idea

‘f — min
Tz

Y = 7, — o,V f(x)

Tjp1 = Projg (v — iV f(zy)) < o
Tpp1 = Projg (yp)

yr = 2 — oV f(zg)

Zp+1 = projgs(y)

Figure 10: lllustration of Projected Gradient Descent algorithm
Projected Gradient Descent (PGD)
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Convergence tools ¢ & €

i Theorem
Let f: R™ — R be an L-smooth convex function. Then, for any z,y € R™, the following inequality holds:
F@) + (V5(),y =) + 5195 () = VSR < f(y) or, equivalently
IVf(y) = V@3 =IVF(@) = VIl: <2L(f(z) - fly) = (VIy).z—y))

Proof

1. To prove this, we'll consider another function ¢(y) = f(y) — (Vf(z),y). It is obviously a convex function (as a
sum of convex functions). And it is easy to verify, that it is an L-smooth function by definition, since

Voly) = Vf(y) = V(@) and [Veo(y,) — Vo)l = IV (1) — VI(y)l < Ly, — val.-

‘/ - fn.}‘; Projected Gradient Descent (PGD) @0 O 16
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Proof

1. To prove this, we'll consider another function ¢(y) = f(y) — (Vf(z),y). It is obviously a convex function (as a
sum of convex functions). And it is easy to verify, that it is an L-smooth function by definition, since

Vo(y) =V f(y) = Vf(z) and [Ve(y,) — Vo)l = [V (Y1) = Vi ()l < Ly, — 32l
2. Now let’s consider the smoothness parabolic property for the ¢(y) function:
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Let f: R™ — R be an L-smooth convex function. Then, for any z,y € R™, the following inequality holds:
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Proof

1. To prove this, we'll consider another function ¢(y) = f(y) — (Vf(z),y). It is obviously a convex function (as a
sum of convex functions). And it is easy to verify, that it is an L-smooth function by definition, since

Vo(y) =V f(y) = Vf(z) and [Ve(y,) — Vo)l = [V (Y1) = Vi ()l < Ly, — 32l
2. Now let’s consider the smoothness parabolic property for the ¢(y) function:

o) < p(x) + (Vola),y —2) + Zly — I3
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i Theorem
Let f: R™ — R be an L-smooth convex function. Then, for any z,y € R™, the following inequality holds:
F@) + (V5(),y =) + 5195 () = VSR < f(y) or, equivalently
IVf(y) = V@3 =IVF(@) = VIl: <2L(f(z) - fly) = (VIy).z—y))

Proof

1. To prove this, we'll consider another function ¢(y) = f(y) — (Vf(z),y). It is obviously a convex function (as a
sum of convex functions). And it is easy to verify, that it is an L-smooth function by definition, since

Vo(y) =V f(y) = Vf(z) and [Ve(y,) — Vo)l = [V (Y1) = Vi ()l < Ly, — 32l
2. Now let’s consider the smoothness parabolic property for the ¢(y) function:

o) < p(x) + (Vola),y —2) + Zly — I3

TRY=Y— VW) (y - %Vw(y)> < o(y) + <Vs0(y)7 —%Vw(y)> + illvw(y)l\g
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Convergence tools ¢ & €

i Theorem

Let f: R™ — R be an L-smooth convex function. Then, for any z,y € R™, the following inequality holds:

$@)+ (V@) y =) + 52195 (@) = VSR < f(y) or, equivalenly
IV £y) = VI @I =IVf(@) = V5 w)I§ < 2L (f(2) = f() = (VI () =)

Proof

1. To prove this, we'll consider another function ¢(y) = f(y) — (Vf(z),y). It is obviously a convex function (as a
sum of convex functions). And it is easy to verify, that it is an L-smooth function by definition, since

Vo(y) =V f(y) = Vf(z) and [Ve(y,) — Vo)l = [V (Y1) = Vi ()l < Ly, — 32l
2. Now let’s consider the smoothness parabolic property for the ¢(y) function:

o) < p(x) + (Vola),y —2) + Zly — I3
<oy + <Vs0(y)7—%vw(y)> + illvw(y)l\g

< py) — 57 IV

B/~ min  peted Gradient Descent (PGD) 900
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Convergence tools W y €

3. From the first order optimality conditions for the convex function Vo(y) = Vf(y) — Vf(z) = 0. We can
conclude, that for any z, the minimum of the function ¢(y) is at the point y = . Therefore:

ola) < (y— T Ve0)) < 00) — 51V

B/~ min b eted Gradient Descent (PGD) @ 0

17


https://fmin.xyz
https://hse25.fmin.xyz
https://github.com/MerkulovDaniil/hse25
https://t.me/fminxyz

Convergence tools W y €

3. From the first order optimality conditions for the convex function Vi (y) = V f(y) — Vf(z) = 0. We can
conclude, that for any z, the minimum of the function ¢(y) is at the point y = . Therefore:

ola) < (y— T Ve0)) < 00) — 51V

4. Now, substitute p(y) = f(y) — (Vf(z),y):
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Convergence tools W y €

3. From the first order optimality conditions for the convex function Vi (y) = V f(y) — Vf(z) = 0. We can
conclude, that for any z, the minimum of the function ¢(y) is at the point y = . Therefore:

ola) < (y— T Ve0)) < 00) — 51V
4. Now, substitute p(y) = f(y) — (Vf(x),y):
F(@) — (V1)) < F) — (V(@)o) — 57 197 () ~ V@)1

F@) (T @)y =) + 5 IV A @)~ VIW)B < f0)
IV5(6) ~ V£ < 2L (o) ~ 7(@) — (Vf(2),y )

B/~ min b eted Gradient Descent (PGD) @ 0
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Convergence tools W y €

3. From the first order optimality conditions for the convex function Vi (y) = V f(y) — Vf(z) = 0. We can
conclude, that for any z, the minimum of the function ¢(y) is at the point y = . Therefore:

ola) < (y— T Ve0)) < 00) — 51V
4. Now, substitute p(y) = f(y) — (Vf(x),y):
F(@) — (V1)) < F) — (V(@)o) — 57 197 () ~ V@)1

F@) (T @)y =) + 5 IV A @)~ VIW)B < f0)

IVF(y) = V@3 < 2L (fy) — f(z) = (Vf(z),y —2))
swichxandy [ Vf(2) = V()3 < 2L (f(z) — fy) = (VI(y).z —y))
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ola) < (y— T Ve0)) < 00) — 51V
4. Now, substitute p(y) = f(y) — (Vf(x),y):
F(@) — (V1)) < F) — (V(@)o) — 57 197 () ~ V@)1
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Convergence tools W y €

3. From the first order optimality conditions for the convex function Vi (y) = V f(y) — Vf(z) = 0. We can
conclude, that for any z, the minimum of the function ¢(y) is at the point y = . Therefore:

ola) < (y— T Ve0)) < 00) — 51V
4. Now, substitute p(y) = f(y) — (Vf(x),y):
F(@) — (V1)) < F) — (V(@)o) — 57 197 () ~ V@)1

F@) (T @)y =) + 5 IV A @)~ VIW)B < f0)

IVF(y) = V@3 < 2L (fy) — f(z) = (Vf(z),y —2))
swichxandy [ Vf(2) = V()3 < 2L (f(z) — fy) = (VI(y).z —y))

The lemma has been proved. From the first view it does not make a lot of geometrical sense, but we will use it as a
convenient tool to bound the difference between gradients.

B/~ min  peted Gradient Descent (PGD) 900
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4JA\ JA\ /J/A\
Convergence tools Y W ¥ €

i Theorem

Let f: R™ — R be continuously differentiable on R™. Then, the function f is u-strongly convex if and only if
for any z,y € R the following holds:

Strongly convex case 1 >0 (Vf(x) —Vf(y),z—y) > plr —y|?
Convexcase p =0 (Vf(z)—Vf(y),z—y)>0

Proof

1. We will only give the proof for the strongly convex case, the convex one follows from it with setting 1 = 0. We
start from necessity. For the strongly convex function

1) > f(@) + (T f(@),y — o) + Slo— ol

F@) = )+ (VF)w =) + Sla — ol

B/~ min  peted Gradient Descent (PGD) 900
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JA\ /JA\ /JA\ /A\
Convergence tools v W Wy Wy

2. For the sufficiency we assume, that (V f(z) — Vf(y),z — y) > pllz — y|?. Using Newton-Leibniz theorem
1
f(a) = fly) + |, (Vfy +tz —y)),z —y)dt:

B/~ min b eted Gradient Descent (PGD) @ 0
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Convergence tools v W Wy Wy

2. For the sufficiency we assume, that (V f(z) — Vf(y),z — y) > pllz — y|?. Using Newton-Leibniz theorem
1
f(a) = fly) + |, (Vfy +tz —y)),z —y)dt:

(@) — fly) — (VF )z —y) = l (VFy + tle —y))a — y)dt — (V(y),x — )

B/~ min b eted Gradient Descent (PGD) @ 0
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JA\ /JA\ /J/A\ /A\
Convergence tools v W Wy Wy

2. For the sufficiency we assume, that (V f(z) — Vf(y),z — y) > pllz — y|?. Using Newton-Leibniz theorem
J@) = f) + [ (VI + e —y).x—y)dt
1
£@) = ) = (Vf ) =) = [ (VH+ tlo = y)oa =t = (V)2 )
o

i ) 1
P [y 4t = ) - V), - )
0

B/~ min b eted Gradient Descent (PGD) @ 0

19


https://fmin.xyz
https://hse25.fmin.xyz
https://github.com/MerkulovDaniil/hse25
https://t.me/fminxyz
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Convergence tools Y W ¥ ¥

2. For the sufficiency we assume, that (V f(z) — Vf(y),z — y) > pllz — y|?. Using Newton-Leibniz theorem
1
f(a) = fly) + |, (Vfy +tz —y)),z —y)dt:

(@) — fly) — (VF )z —y) = l (VFy + tle —y))a — y)dt — (V(y),x — )

1

(VF(y)e—y)= |, (Vf(y),e—y)dt / (VF(y+tx—y) — V), (x —y))dt
0

1
yttlemy)y=temy) / UV + tz —y) = V), tz —y))dt
0

B/~ min b eted Gradient Descent (PGD) @ 0

19


https://fmin.xyz
https://hse25.fmin.xyz
https://github.com/MerkulovDaniil/hse25
https://t.me/fminxyz

JA\ JA\ /A
Convergence tools Y W ¥ ¥

2. For the sufficiency we assume, that (V f(z) — Vf(y),z — y) > pllz — y|?. Using Newton-Leibniz theorem
1
f(a) = fly) + |, (Vfy +tz —y)),z —y)dt:

(@) — fly) — (VF )z —y) = l (VFy + tle —y))a — y)dt — (V(y),x — )

1

(VF(y)e—y)= |, (Vf(y),e—y)dt / (VF(y+tx—y) — V), (x —y))dt
0

NV (y+tz—y) — V(y), tlx—y))dt

yt+t(z—y)—y=t(z—y)

>

-]
[

T plt(z —y)|?dt
0

B/~ min b eted Gradient Descent (PGD) @ 0
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JA\ JA\ /A
Convergence tools Y W ¥ ¥

2. For the sufficiency we assume, that (V f(z) — Vf(y),z — y) > pllz — y|?. Using Newton-Leibniz theorem
1
f(a) = fly) + |, (Vfy +tz —y)),z —y)dt:

ﬂ@—f@%%vﬂwm—yrzl<Vﬂy+ﬂx—w%x—wﬁ—wvﬂww—w

1

(VF(y)e—y)= |, (Vf(y),e—y)dt / (VF(y+tx—y) — V), (x —y))dt
0

NV (y+tz—y) — V(y), tlx—y))dt

yt+t(z—y)—y=t(z—y)

>

-]
[

1
(e — Wﬁ=uM—MP/tw
(0] 0
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2. For the sufficiency we assume, that (V f(z) — Vf(y),z — y) > pllz — y|?. Using Newton-Leibniz theorem
1
f(a) = fly) + |, (Vfy +tz —y)),z —y)dt:

(@) — fly) — (VF )z —y) = l (VFy + tle —y))a — y)dt — (V(y),x — )

1

(VF(y)e—y)= |, (Vf(y),e—y)dt / (VF(y+tx—y) — V), (x —y))dt
0

VI +ta—y) = Vi)t —y)dt

yt+t(z—y)—y=t(z—y)

>

-]
[

1
I
il )Pt =l — ol [ tdt = o~ ol
0 0 2
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2. For the sufficiency we assume, that (V f(z) — Vf(y),z — y) > pllz — y|?. Using Newton-Leibniz theorem
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2. For the sufficiency we assume, that (V f(z) — Vf(y),z — y) > pllz — y|?. Using Newton-Leibniz theorem
1
f(a) = fly) + |, (Vfy +tz —y)),z —y)dt:

(@) — fly) — (VF )z —y) = l (VFy + tle —y))a — y)dt — (V(y),x — )

1

(Vi) e—y=f (Viwe—ydt  _ / (VF(y+tx—y) — V), (x —y))dt
0

NV y+tz—y) — V(y), tz—y))dt

yt+t(z—y)—y=t(z—y) -

1

1
- 1
> [l )Pt =l — ol? [ it = o~ ol
0 0

[
[

Thus, we have a strong convexity criterion satisfied

F@) = )+ (VF)w =)+ Sla — ol
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2. For the sufficiency we assume, that (V f(z) — Vf(y),z — y) > pllz — y|?. Using Newton-Leibniz theorem
1
f(a) = fly) + |, (Vfy +tz —y)),z —y)dt:

(@) — fly) — (VF )z —y) = l (VFy + tle —y))a — y)dt — (V(y),x — )

1

(Vi) e—y=f (Viwe—ydt  _ / (VF(y+tx—y) — V), (x —y))dt
0

NV y+tz—y) — V(y), tz—y))dt
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1
- 1
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[
[

Thus, we have a strong convexity criterion satisfied

f(@) = f(y) + (VF (). —9) + Flle = y13 or, equivivalently
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2. For the sufficiency we assume, that (V f(z) — Vf(y),z — y) > pllz — y|?. Using Newton-Leibniz theorem
1
f(a) = fly) + |, (Vfy +tz —y)),z —y)dt:

ﬂ@—f@%%vﬂww—yrzl<Vﬂy+ﬂx—w%x—wﬁ—wvﬂww—w

(Vi) e—y=f (Viwe—ydt  _ / (VF(y+tx—y) — V), (x —y))dt
0

NV y+tz—y) — V(y), tz—y))dt

yt+t(z—y)—y=t(z—y) -

1

1
- 1
> [l )Pt =l — ol? [ it = o~ ol
0 0

/
/

Thus, we have a strong convexity criterion satisfied
1 L
f(@) = f(y) +(Vf(y):2 —y) + 5w —yl3 or. equivivalently:

switch x and y — <Vf(1')71' — y> S - (f(EL') - f(y) + %HI - y”%)
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Convergence rate for smooth and convex case VOO
i Theorem
Let f: R™ — R be convex and differentiable. Let S C R™d be a closed convex set, and assume that there is

a minimizer x* of f over S; furthermore, suppose that f is smooth over S with parameter L. The Projected
Gradient Descent algorithm with stepsize % achieves the following convergence after iteration k > 0:

Ljzo — 2[5

flzg) —f* < o
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Let f: R™ — R be convex and differentiable. Let S C R™d be a closed convex set, and assume that there is

a minimizer x* of f over S; furthermore, suppose that f is smooth over S with parameter L. The Projected
Gradient Descent algorithm with stepsize % achieves the following convergence after iteration k > 0:

Ljzo — 2[5

flzg) —f* < o

1. Let's prove sufficient decrease lemma, assuming, that y, = x;, — %Vf(xk) and cosine rule
22Ty = |2 + yl* — | — y[*:
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i Theorem

Let f: R™ — R be convex and differentiable. Let S C R™d be a closed convex set, and assume that there is
a minimizer x* of f over S; furthermore, suppose that f is smooth over S with parameter L. The Projected
Gradient Descent algorithm with stepsize % achieves the following convergence after iteration k > 0:

Ljzo — 2[5

flzg) —f* < o

1. Let's prove sufficient decrease lemma, assuming, that y, = x;, — %Vf(xk) and cosine rule
22Ty = |2 + yl* — | — y[*:

L
Smoothness:  f(7),1) < fzy) + (Vf(2p), 2pq — 74) + §Hl’k+1 —z]?
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1. Let's prove sufficient decrease lemma, assuming, that y, = x;, — %Vf(xk) and cosine rule
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Gradient Descent algorithm with stepsize % achieves the following convergence after iteration k > 0:
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i Theorem

Let f: R™ — R be convex and differentiable. Let S C R™d be a closed convex set, and assume that there is
a minimizer x* of f over S; furthermore, suppose that f is smooth over S with parameter L. The Projected
Gradient Descent algorithm with stepsize % achieves the following convergence after iteration k > 0:

Ljzo — 2[5

flzg) —f* < o

1. Let's prove sufficient decrease lemma, assuming, that y, = x;, — %Vf(xk) and cosine rule
22Ty = |2 + yl* — | — y[*:
L
Smoothness:  f(zy,1) < (i) + (VI (@0), 2ips — ) + S lpey — 2l
L
Method: = fl@g) = LY — Tps Tpr — Tp) + 510040 — |
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. L L
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2. Now we do not immediately have progress at each step. Let's use again cosine rule:

1
(19 @ m =) = 5 (ZIVH@OIR + oy — 2 = o — 2" = 29wl

(VS @dm =) = 5 (GIVI @R + o =1 ~ o — )
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1
(19 @ m =) = 5 (ZIVH@OIR + oy — 2 = o — 2" = 29wl

(VS @dm =) = 5 (GIVI @R + o =1 ~ o — )

3. We will use now projection property: [z — proj(y)|* + |y — projg(y)|I* < [lz — y[* with & = 2%,y = y,:

|z — projg (yi)|* + lyx — projg(wi) I* < o — vyl

(7 e e e e e
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2. Now we do not immediately have progress at each step. Let's use again cosine rule:

1
(19 @ m =) = 5 (ZIVH@OIR + oy — 2 = o — 2" = 29wl

L
(VS)a =) = 5 (V@R + o — a1 ~ Iy — o1

3. We will use now projection property: [z — proj(y)|* + |y — projg(y)|I* < [lz — y[* with & = 2%,y = y,:

|z — projg (yi)|* + lyx — projg(wi) I* < o — vyl
lyy, — 2*? > o — 21 |% + lyp — 2ppa |

4. Now, using convexity and previous part:
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1
(19 @ m =) = 5 (ZIVH@OIR + oy — 2 = o — 2" = 29wl

L
(VS)a =) = 5 (V@R + o — a1 ~ Iy — o1

3. We will use now projection property: [z — proj(y)|* + |y — projg(y)|I* < [lz — y[* with & = 2%,y = y,:

|z — projg (yi)|* + lyx — projg(wi) I* < o — vyl
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4. Now, using convexity and previous part:

Convexity: ) = < (Vf(xy), v — 2%)
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2. Now we do not immediately have progress at each step. Let's use again cosine rule:

1
(19 @ m =) = 5 (ZIVH@OIR + oy — 2 = o — 2" = 29wl

L
(VS)a =) = 5 (V@R + o — a1 ~ Iy — o1

3. We will use now projection property: [z — proj(y)|* + |y — projg(y)|I* < [lz — y[* with & = 2%,y = y,:

2% — projg (y)I” + lyx — projg (yi)* < o™ — g >
Iy — 2*1? = lo* — 2pa P + s — 2 I
4. Now, using convexity and previous part:
Convexity: flxy) — f* <(Vf(z),x, —x*)
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2. Now we do not immediately have progress at each step. Let's use again cosine rule:

1
(19 @ m =) = 5 (ZIVH@OIR + oy — 2 = o — 2" = 29wl

L/1
(Vi) - %) = 5 ( GIVI@IP + o — 2 = o~ =°I?)

3. We will use now projection property: [z — proj(y)|* + |y — projg(y)|I* < [lz — y[* with & = 2%,y = y,:

|z — projg (yi)|* + lyx — projg(wi) I* < o — vyl
lyy, — 2*? > o — 21 |% + lyp — 2ppa |

4. Now, using convexity and previous part:

Convexity: (@) — < (Vf(xy), 7 — %)
L
< L (BIVF@IR + o~ ~ b ="~ by — )
k-1 =l I =
Sum fori=0,k—1 Z [f(z;)— ] < 7‘|Vf( )”2 + 5”9”0 S 9 Z ly; — mi+1”2
i=0 i=0 i=0
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5. Bound gradients with sufficient decrease inequality 7:

‘f - ?qyu} Projected Gradient Descent (PGD)
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5. Bound gradients with sufficient decrease inequality 7:

e
|

-

e

Do) = fl<

i=0 %

B/~ min b eted Gradient Descent (PGD)

=
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[f(xz) — (@) + 5”% - $i+1|‘2} + 5“950 —z*? - B Z ly; — x4
i=0
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5. Bound gradients with sufficient decrease inequality 7:

k-1 k-1 I 0L , L&k ,
Z[f(mi)*f*] < [f(xi)*f(xi+1)+§||yi*$i+1” } + 5“950*55*” *§Z||yﬁﬂfi+1\|
=0 i=0 i=0

IA

= I =
flzg) = flzy) + b Z ly; — @5 l® + 5”950 —a*? — b Z ly; — 2 [1?
i=0 =0
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5. Bound gradients with sufficient decrease inequality 7:

k-1 k-1 I 0L , L&k ,
Z[f(mi)*f*] < [f(xi)*f(37i+1)+§||yi*$i+1” } + 5“950*55*” *§Z||yﬁﬂfi+1\|
=0 i=0 i=0

IA

il I il
flzg) = flzy) + b Z ly; — @5 l® + 5”950 —a*? — b Z ly; — 2 [1?
i=0 =0

L
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5. Bound gradients with sufficient decrease inequality 7:

k-1 k-1 I 0L , L&k ,
Z[f(mi)*f*] < [f(xi)*f(37i+1)+§||yi*$i+1” } + 5“950*55*” *§Z||yﬁﬂfi+1\|
=0 i=0 i=0
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il I il
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5. Bound gradients with sufficient decrease inequality 7:

k-1 k-1 I 0L , L&k ,
Z[f(mi)*f*] < [f(xi)*f($i+1)+§||yi*$i+1” } + 5“950*55*” *§Z||yﬁﬂfi+1\|
=0 i=0 i=0

= I =
< flzg) = flzy) + b Z ly; — @5 l® + 5”950 —a*? — b Z ly; — 2 [1?
i=0 =0
L *)|12
< Flag) — Flag) + Hlrg — |

;f(xZ) —kfr < f($0) - f(xk) + ngO - HC*HQ
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6. From the sufficient decrease inequality

1 L
F@e) < @) = spIVF@OIP + 5 lve — 2l
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F@e) < @) = spIVF@OIP + 5 lve — 2l
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6. From the sufficient decrease inequality
1 2 L 2
Fan) < F@) = g IV F@OI + 5y — 2l

we use the fact that x,; = proj¢(y;). By definition of projection,

Iy — zpiall < llyi — 24,
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6. From the sufficient decrease inequality
L 2, L 2
F@pen) < flan) = 57 IVA@)P + S lye — 2rpa s
we use the fact that x,; = proj¢(y;). By definition of projection,
Ny — @rgall <y — 2l

and recall that y, = x, — £V f(2) implies ||ly, — 2| = [V f(2;)]. Hence
L1

L L 1
7 lyy, — 24 [1 < 3 lyy, — 24 l” = 372 IVf(zp)l? = oL IV £ ()P
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6. From the sufficient decrease inequality
L 2, L 2
F@pen) < flan) = 57 IVA@)P + S lye — 2rpa s
we use the fact that x,; = proj¢(y;). By definition of projection,
Ny — @rgall <y — 2l

and recall that y, = x, — £V f(2) implies ||ly, — 2| = [V f(2;)]. Hence
L1

L L 1
7 lyy, — 24 [1 < 3 lyy, — 24 l” = 372 IVf(zp)l? = oL IV £ ()P

Substitute back into (x):

FEnn) < F@) = e IVF@IIE + g IV @I = f(o).
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6. From the sufficient decrease inequality
L 2, L 2
F@pen) < flan) = 57 IVA@)P + S lye — 2rpa s
we use the fact that x,; = proj¢(y;). By definition of projection,
Ny — @rgall <y — 2l

and recall that y, = x, — £V f(2) implies ||ly, — 2| = [V f(2;)]. Hence
L1

L L 1
7 lyy, — 24 [1 < 3 lyy, — 24 l” = 372 IVf(zp)l? = oL IV £ ()P

Substitute back into (x):
Faa) < ) = 5 I F @I + g IV F @I = Fa).

Hence
f(xpyr) < flxy) for each k,
so {f(x})} is a monotonically nonincreasing sequence.
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7. Final convergence bound From step 5, we have already established
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fe) = 117 < Sleo — 'R
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7. Final convergence bound From step 5, we have already established

-
—

fe) = 117 < Sleo — 'R

Il
o

i

Since f(x;) decreases in i, in particular f(x;) < f(z;) for all ¢ < k. Therefore

k—

Elf) — £ < Y [f) — 5] < Slleo — oI,

=0

—
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7. Final convergence bound From step 5, we have already established

—

-

fe) = 117 < Sleo — 'R

Il
o

i

Since f(x;) decreases in i, in particular f(x;) < f(z;) for all ¢ < k. Therefore

k—1 I
k£ = 1< [fe) = 1] < S llwg — 215,
i=0
which immediately gives ,

2k

This completes the proof of the 0(%) convergence rate for convex and L-smooth f under projection constraints.
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Convergence rate for smooth strongly convex case \W VA V4

i Theorem

Let f : R® — R be p-strongly convex. Let S C R™d be a closed convex set, and assume that there is a
minimizer x* of f over S; furthermore, suppose that f is smooth over S with parameter L. The Projected
Gradient Descent algorithm with stepsize @ < % achieves the following convergence after iteration k£ > 0:

k
o — 213 < (1 —ap)” 2o — 23

Proof
1. We first prove the stationary point property: projq(z* —aV f(z*)) = .

This follows from the projection criterion and the first-order optimality condition for z*. Let y = z* — oV f(x*).
We need to show (y —z*, 2z —2*) <O forall z € S.

(" —aVf(z*) —a*, 2 —2*) = —a(Vf(z*),z —az*) <0

The inequality holds because a > 0 and (V f(z*),x — z*) > 0 is the optimality condition for z*.
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1. Considering the distance to the solution and using the stationary point property:
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1. Considering the distance to the solution and using the stationary point property:

|21 — 273 = Iprojg(z), — aV f(xy)) — 2*[3
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1. Considering the distance to the solution and using the stationary point property:

|21 — 273 = Iprojg(z), — aV f(xy)) — 2*[3

stationary point property — HpI’OjS(ZBk — OéVf(Ik)) — pI’OjS(I* — O[Vf({lj*))ng
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1. Considering the distance to the solution and using the stationary point property:

|21 — 2*13 = lprojg (s — aV f(zy)) — 2713
stationary point property — HpI’OjS(ZIZk — OéVf(Ik)) — pI’OjS(I* — O[Vf({lj*))ng
nonexpansiveness § Hl‘k — CYVf(.TL’k) — (I* — an(x*))”%
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1. Considering the distance to the solution and using the stationary point property:

|21 — 273 = Iprojg(z), — aV f(xy)) — 2*[3
stationary point property = ||proj ¢ (), — aV f(x,)) — projg(z* — aV f(z*))|3
s < |, — 0¥ f(z) — (& — 0¥ £(a*) I3
= oy — 2% = 2a(V f(zy,) = VF(@*), 2, — %) + 2|V f(z),) — Vf(@")]3

B/~ min b eted Gradient Descent (PGD) @ 0
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1. Considering the distance to the solution and using the stationary point property:

|21 — 273 = Iprojg(z), — aV f(xy)) — 2*[3
stationary point property = ||proj ¢ (), — aV f(x,)) — projg(z* — aV f(z*))|3
s < |, — 0¥ f(z) — (& — 0¥ £(a*) I3
= oy — 2% = 2a(V f(zy,) = VF(@*), 2, — %) + 2|V f(z),) — Vf(@")]3

2. Now we use smoothness from the convergence tools and strong convexity:

B/~ min b eted Gradient Descent (PGD) @ 0
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1. Considering the distance to the solution and using the stationary point property:

|21 — 273 = Iprojg(z), — aV f(xy)) — 2*[3
stationary point property = ||proj ¢ (), — aV f(x,)) — projg(z* — aV f(z*))|3
s < |, — 0¥ f(z) — (& — 0¥ £(a*) I3
= oy — 2% = 2a(V f(zy,) = VF(@*), 2, — %) + 2|V f(z),) — Vf(@")]3

2. Now we use smoothness from the convergence tools and strong convexity:

smoothness |V f(z;) — Vf(2")|3 < 2L (f(z) — f(a*) = (Vf(2"), 2 — 2))

B/~ min b eted Gradient Descent (PGD) @ 0
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1. Considering the distance to the solution and using the stationary point property:
|zs1 — 2*13 = lprojg(z), — aV f(zy)) —2*[3
stationary point property — HpI’OjS(ZIZk — OéVf(Ik)) — pI’OjS(I* — an(x*))”%
nonexpansiveness § Hl‘k — CYVf(.TL’k) — ( *— an(x*))”%
= |y, — 2*|? = 2a(V f(2y) = Vf(@*), 2, — %) + ?|V f(2,) = Vf(2*)]3
2. Now we use smoothness from the convergence tools and strong convexity:
smoothness |V f(x,) — Vf(a*)[3 < 2L (f(xy) — f(a") — (Vf(a"), 2, — *))
strong comvexity — (¥ f(z,) — Vf (&), — ) < — () = S@*) + S o = 2°B) = (V4(a*), 2 — o)
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3. Substitute it:

‘f - ;nyu} Projected Gradient Descent (PGD)
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WV W
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3. Substitute it:

*

s = "3 < oy — 2 = 20 (flap) — S

+0%2L (f(zy) — f(2") = (Vf(z"), 2

‘f - ?qyu} Projected Gradient Descent (PGD)

N’ * * *
)+ Sl =27 13) —20(Vf (@), 2 — ")+

K —T)
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3. Substitute it:

2 = a3 < o, — ™ = 20 (flwy) = F@) + Slloy — 2713 ) — 20(V (@), — ")+
+a%2L (f(ay) = f(a") = (VF(a), 0, —27))
< (1—ap) ey —a*[* +2a(aL = 1) (flay) = f@*) = (Vf(a"), 2 =)
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3. Substitute it:

2 = a3 < o, — ™ = 20 (flwy) = F@) + Slloy — 2713 ) — 20(V (@), — ")+
+a%2L (f(ay) = f(a") = (VF(a), 0, —27))
< (1—ap) ey —a*[* +2a(aL = 1) (flay) = f@*) = (Vf(a"), 2 =)

4. Due to convexity of f: f(z,) — f(z*) — (Vf(z*),x;, — 2*) > 0. Therefore, if we use o <

=

lzp i — 213 < (1 —ap)lay, — 27,

which is exactly linear convergence of the method with up to 1 — £ convergence rate.
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Frank-Wolfe Method
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Figure 11: Marguerite Straus Frank (1927-2024) Figure 12: Philip Wolfe (1927-2016)

Frank-Wolfe Method
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Idea

‘f — min
€T,Y.z

Frank-Wolfe Method

Figure 13: lllustration of Frank-Wolfe (conditional gradient) algorithm
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Idea

‘f — min
€T,Y.z

Frank-Wolfe Method

Figure 14: lllustration of Frank-Wolfe (conditional gradient) algorithm
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Idea

‘f — min
€T,Y.z

Frank-Wolfe Method

Figure 15: lllustration of Frank-Wolfe (conditional gradient) algorithm
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Idea

‘f — min
€T,Y.z

Frank-Wolfe Method

Figure 16: lllustration of Frank-Wolfe (conditional gradient) algorithm
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Idea

B/ — min

Frank-Wolfe Method

Figure 17: lllustration of Frank-Wolfe (conditional gradient) algorithm

30


https://fmin.xyz
https://hse25.fmin.xyz
https://github.com/MerkulovDaniil/hse25
https://t.me/fminxyz

Idea

B/ — min

Frank-Wolfe Method

Figure 18: lllustration of Frank-Wolfe (conditional gradient) algorithm
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Idea

B/ — min

Frank-Wolfe Method

Figure 19: lllustration of Frank-Wolfe (conditional gradient) algorithm
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Idea

B/ — min

Frank-Wolfe Method

Y = argmin f, (v) = argmin(V f(zy), )

Tppr = VT + (1 — 7)Yk

Figure 20: Illustration of Frank-Wolfe (conditional gradient) algorithm
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V/ \
Convergence rate for smooth and convex case W VA V4
i Theorem

Let f: R™ — R be convex and differentiable. Let S C R™ be a closed convex set, and assume that there is a

minimizer x* of f over S; furthermore, suppose that f is smooth over S with parameter L. The Frank-Wolfe

algorithm with step size v, = % achieves the following convergence after iteration k& > 0:

2LR?

flay) —f* < P

where R = max |2 — yll is the diameter of the set .S.
x,ye

B /= min o Wolfe Method
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i Theorem

Let f: R™ — R be convex and differentiable. Let S C R™ be a closed convex set, and assume that there is a
minimizer x* of f over S; furthermore, suppose that f is smooth over S with parameter L. The Frank-Wolfe
algorithm with step size v, = % achieves the following convergence after iteration k& > 0:

2LR?

flay) —f* < P

where R = max |2 — yll is the diameter of the set .S.
x,ye

1. By L-smoothness of f, we have:

L
F(@pen) = £ (@3) S {VF (@) way — ) + 5 gy — 2l

L(1— Wk)Q

= (L= ) (V] (1) g — i) + o e —

B /= min o Wolfe Method
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Convergence rate for smooth and convex case W \y/ \v4
2. By convexity of f, for any z € S, including x*:

(Vf(zp), z — ) < flz) — flay)
In particular, for z = x*:

(V) a* — ) < fz*) — flzy)

B /= min o Wolfe Method
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2. By convexity of f, for any z € S, including x*:

(Vf(zp), z — ) < flz) — flay)
In particular, for z = x*:

(Vf(xy), 2" —ap) < fl) — flay)
3. By definition of y;,, we have (Vf(z.),y) < (Vf(x}),z*), thus:
(V@) g — ) < (V) 2" — ) < f@7) — flay)

B /= min o Wolfe Method
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2. By convexity of f, for any z € S, including x*:

(Vf(zp), z — ) < flz) — flay)
In particular, for z = x*:

(Vf(xy), 2" —ap) < fl) — flay)
3. By definition of y;,, we have (Vf(z.),y) < (Vf(x}),z*), thus:
(V@) g — ) < (V) 2" — ) < f@7) — flay)

4. Combining the above inequalities:

(i) = F @) < (13 (VF () = ) + 2028
L —w)?

R2
2

< (=) (f(2") = flag)) +

B /= min o Wolfe Method

2
lyx — 2l
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2. By convexity of f, for any z € S, including x*:

(Vf(zp), z — ) < flz) — flay)
In particular, for z = x*:

(Vf(xy), 2" —ap) < fl) — flay)
3. By definition of y;,, we have (Vf(z.),y) < (Vf(x}),z*), thus:
(V@) g — ) < (V) 2" — ) < f@7) — flay)

4. Combining the above inequalities:

(i) = F @) < (13 (VF () = ) + 2028

L(1 *’Yk)Q

R2
2

< (=) (f(2") = flag)) +

5. Rearranging terms:

Fap) = F@) < (flog) = f@) + (1= 7)* ——

B /= min o Wolfe Method

2
lyx — 2l

33


https://fmin.xyz
https://hse25.fmin.xyz
https://github.com/MerkulovDaniil/hse25
https://t.me/fminxyz

V/ \
Convergence rate for smooth and convex case W

_ fla)—f(=)

6. Denoting §;, = ~~Ers==, we get:

1—v)2 k-1
01 < Melk + ( B

JA\ J/A\
N/ /4

2

2 T k41

‘f - ?qyu} Frank-Wolfe Method

%t Gr1e
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6. Denoting §;, = M, we get:
(1—m)? k=1 2
< = 5
Oy < Mk + 5 Pl kJr(k—i—l)?
7. We will prove that §,, < k+1 by induction.
which gives us the desired result:
2L R?
— f* <
flzg) —f < k1

B /= min o Wolfe Method
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6. Denoting §;, = M, we get:
(1—m)? k=1 2
< Y0 = d
Ok S W0+ 1T 12
7. We will prove that §,, < k+1 by induction.
® Base: 62§%<%
which gives us the desired result:
2L R?
— f* <
flzg) —f < k1

B /= min o Wolfe Method
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6. Denoting §;, = M, we get:

(L—7)? k-1 2
01 <76 = )
w1 = M0 T K1 T e
7. We will prove that §,, < k+1 by induction.
® Base: 62<1<2
® Assume ¢, < k~2+1
which gives us the desired result:
2L R?
— f* <
flzg) —f < k1

B /= min o Wolfe Method
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6. Denoting §;, = M, we get:

(L—7)? k-1 2
01 <76 = )
kel SN0 T Ty ik e
7. We will prove that §,, < k+1 by induction.
® Base: 62§%<%
® Assume ¢, < %H
®*Thendy <4 4+ Er—ma <im®™
en Op+1 k+1 E+T T (k+1)2 T kZ42k+1 k+2 -
which gives us the desired result:
2L R?
— f* <
flag) = f < k1

B /= min o Wolfe Method
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Lower bound for Frank-Wolfe method 2 ‘9<P

i Theorem

Consider any algorithm that accesses the feasible set S C R™ only via a linear minimization oracle (LMO). Let
the diameter of the set S be R. There exists an L-smooth strongly convex function f : R™ — R such that this

algorithm requires at least
. n LR2
min | —, ——
2" 16¢e

iterations (i.e., calls to the LMO) to construct a point Z € S with f(Z) — mig f(x) < e. The lower bound
ze

applies both for convex and strongly convex functions.

?BThe Complexity of Large-scale Convex Programming under a Linear Optimization Oracle
B /= min o Wolfe Method 00
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Lower bound for Frank-Wolfe method 2 ‘9<P

i Theorem

Consider any algorithm that accesses the feasible set S C R™ only via a linear minimization oracle (LMO). Let
the diameter of the set S be R. There exists an L-smooth strongly convex function f : R™ — R such that this

algorithm requires at least
. n LR2
min | =, ——
27 16e
iterations (i.e., calls to the LMO) to construct a point Z € S with f(Z) — mig f(x) < e. The lower bound
xE
applies both for convex and strongly convex functions.

Sketch of the proof. Consider the following optimization Note, that:

problem: ® fis 1-smooth;
1 ® the diameter of S'is R = 2;
i = min —|z|? ® fis strongly convex.
min f(z) = min g fz|3

n
S—{xGRnxz(), in—l}
=1

?BThe Complexity of Large-scale Convex Programming under a Linear Optimization Oracle

B /= min o Wolfe Method 00
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Lower bound for Frank-Wolfe method * ‘¢ ‘¥

1. The optimal solution is

a* 71— Zel, and f(z*) =

where ¢; = (0,...,0, 1 ,0,...,0)7 is the i-th standard basis vector.

s
position %

B /= min o Wolfe Method
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Lower bound for Frank-Wolfe method 3 Y ¢

1. The optimal solution is
a* 71 = Zel, and f(z*) =

where ¢, = (0,...,0, 1 ,0,...,0)7 is the i-th standard basis vector.

s
position %

2. A linear minimization oracle (LMO) over S returns a vertex e;. After k iterations, the method will have
discovered at most k different basis vectors ¢; ,...,¢e; . The best convex combination one can form is

12

?r‘\»a

B /= min o Wolfe Method 0
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Lower bound for Frank-Wolfe method 3 Y ¢

1. The optimal solution is
a* 71 = Zel, and f(z*) =

0,...,0, 1 ,0,..,0)7 is the i-th standard basis vector.
position 4
2. A linear minimization oracle (LMO) over S returns a vertex e;. After k iterations, the method will have
The best convex combination one can form is

discovered at most k different basis vectors e; ..., ¢;
k
2.,
=1

where e; =

I =

i

3. Evaluating the function at Z, we obtain:

F@) ~ f@) = o (m _ %) .

B /= min o Wolfe Method
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Lower bound for Frank-Wolfe method 3 Y ¢

1. The optimal solution is

a* 71— Zel, and f(z*) =

where ¢, = (0,...,0, 1 ,0,...,0)7 is the i-th standard basis vector.

) Lo .
position %

2. A linear minimization oracle (LMO) over S returns a vertex e;. After k iterations, the method will have

discovered at most k different basis vectors ¢; ,...,¢e; . The best convex combination one can form is

-1Ye,

?r‘\H

3. Evaluating the function at Z, we obtain:

F@) ~ f@) = o (L - 1) .

min{k,n} n

4. To ensure that f(Z) — f(z*) < e, it is necessary that (full proof is in the paper):

. .{Ei}_ _{n LR’
<~ Imin 2,45 = min 277165 .

3f¥The Complexity of Large-scale Convex Programming under a Linear Optimization Oracle

B /= min o Wolfe Method 0
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Frank-Wolfe method summary

® Method does not require projections, in some special cases allows to compute iterations in closed form

B /= min o Wolfe Method
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Frank-Wolfe method summary

® Method does not require projections, in some special cases allows to compute iterations in closed form

® Global convergence rate is O (%) for smooth and convex functions. Strong convexity does not improve the rate.
This is the lower bound for LMO

In comparison with projected gradient descent, the rate is worse, but iteration could be cheaper and more sparse
Recently, it was shown that for strongly convex sets, the rate can be improved to O (k—lz> (B8 paper)

If we allow away steps, the convergence becomes linear (B paper) in strongly convex case

Recent work showed the extension to non-smooth case (B§ paper) with convergence rate O (%)
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2d example. Frank-Wolfe method
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2d example. Frank-Wolfe method
Frank-Wolfe Method: Iteration 2
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2d example. Frank-Wolfe method
Frank-Wolfe Method: Iteration 3
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2d example. Frank-Wolfe method
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2d example. Frank-Wolfe method
Frank-Wolfe Method: Iteration 6
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2d example. Projected gradient descent
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2d example. Projected gradient descent

Projected Gradient Descent: Iteration 1
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2d example. Projected gradient descent
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Quadratic function. Box constraints

.1 i i = -0 L=
min ixTAx —b'a, Constrained convex quadratic problem: n=80, u=0, L=10

—1<z<1 Function Gap vs Iterations Domain Gap vs lterations
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Quadratic function. Box constraints

min leAx b Constrained strongly Convex quadratic problem: n=80, p=1, L=10
)
R
—Cfiwjl Function Gap vs Iterations Domain Gap vs Iterations
nxn 107 4 1071 4 (e,
AeR™™  X(A) € [u; L] R
. . . 1072 o, = 10-54
The projection is simple: & " """”‘-"“ﬂffi‘ﬁf"‘ﬁﬁ'\'é {'T‘“‘" Pl
Z 1074 X 1079
me(x) = clip(x,—1,1).
s(x) = clip(z, ~1,1)
or — Ll T r r T T T T T
. 0 50 100 150 200 0 50 100 150 200
ﬂ-S (I) = max (_la mln(lv ZZ‘)) . Iteration Iteration
The linear minimization oracle (LMO) for a Function Gap vs Time Domain Gap vs Time
given gradient g is given by y = argmin(g, z). 102 1014 Y
2eS -\vmmm‘\'\‘(\un\v, MIIEING, '\q“.’“,
Since the feasible set is separable across ¢ 1074 \h,\u,\.,,w' T £ 10-5 4
coordinates, the solution is computed R 10-5 il m" DR
. . = ] X 1079
coordinate—wise as =
10710 10-13 4
-1, ifg, >0, — iy . . . . . . .
Y = ) 0.00 025 050 075 1.00 0.00 025 050 075 1.00
17 If gz S 0 Time (seconds) le-3 Time (seconds) le-3
—— Projected Gradient Descent === Frank-Wolfe

‘fﬁ}fnﬂ Numerical experiments P00 O 42


https://fmin.xyz
https://hse25.fmin.xyz
https://github.com/MerkulovDaniil/hse25
https://t.me/fminxyz

Quadratic function. Simplex constraints (Lucky problem with diagonal matrix)

1

min -2 Az,
zeR™ 2
2>0,1T2z=1
AeR™™  X(A) € [0;100].
Method  Update time, ms  LMO/Projection
PGD 0.0069 0.0167
FW 0.0070 0.0066

The projection onto the unit simplex 7g(x)
can be done in O(nlogn) or expected O(n)
time. *

The LMO for a given gradient g is given by

y = argmin(g, z). The solution corresponds to
zeS
a vertex of the simplex:

y=e; where j=argming,.
i

[f(x) - £°%]

[f(x) - £

min
1Tx=1,x=

Function Gap vs Iterations

1/2x"Ax, n =200
0

Domain Gap vs Iterations

3 N — i
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=== Frank-Wolfe
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Quadratic function. Simplex

1
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Quadratic function. Simplex constraints

1
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Function Gap vs Iterations

min

1/2x"Ax, n = 300

1"x=1,x=0
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Quadratic function. Simplex constraints

1

min -2 Az,
zeR™ 2
2>0,1T2z=1
AeR™™  X(A) € [1;100].
Method  Update time, ms  LMO/Projection
PGD 0.0068 0.0752
FW 0.0067 0.0068
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Tz

Numerical experiments
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PGD vs Frank-Wolfe

The key difference between PGD and FW is that PGD requires projection, while FW needs only linear minimization

oracle (LMO).

In a recent book authors presented the following comparison table with complexities of linear minimizations and

projections on some convex sets up to an additive error ¢ in the Euclidean norm.

Set Linear minimization Projection
n-dimensional £,-ball, p # 1,2, 00 O(n) az)
Nuclear norm ball of n x m matrices Olv In(m +n) ‘{;?) O(mn min{m, n})

Flow polytope on a graph with m vertices and n Ol (nlogm)(n +m logm)
edges (capacity bound on edges)

Birkhoff polytope (n x n doubly stochastic O(n?)

matrices)

6(5%) or O(n* logn)

A)

3

IV

When € is missing, there is no additive error. The O hides polylogarithmic factors in the dimensions and polynomial
factors in constants related to thedistancetothe optimum. For the nuclear norm ball, i.e., the spectrahedron, v
denotes the number of non-zero entries and o denotes the top singular value of the projected matrix.

— min . .
‘f 2,9,z Numerical experiments
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