

Conditional methods

Unconstrained optimization

$$\min_{x \in \mathbb{R}^n} f(x)$$

• Any point $x_0 \in \mathbb{R}^n$ is feasible and could be a solution.

Unconstrained optimization

$$\min_{x \in \mathbb{R}^n} f(x)$$

• Any point $x_0 \in \mathbb{R}^n$ is feasible and could be a solution.

Unconstrained optimization

Constrained optimization

$$\min_{x \in \mathbb{R}^n} f(x) \qquad \qquad \min_{x \in S} f(x)$$

- Any point $x_0 \in \mathbb{R}^n$ is feasible and could be a solution. Not all $x \in \mathbb{R}^n$ are feasible and could be a solution.

Unconstrained optimization

$$\min_{x \in \mathbb{R}^n} f(x)$$

• Any point $x_0 \in \mathbb{R}^n$ is feasible and could be a solution.

Constrained optimization

$$\min_{x \in S} f(x)$$

- Not all $x \in \mathbb{R}^n$ are feasible and could be a solution.
- The solution has to be inside the set S.

Conditional methods

Unconstrained optimization

$$\min_{x \in \mathbb{R}^n} f(x)$$

• Any point $x_0 \in \mathbb{R}^n$ is feasible and could be a solution.

Constrained optimization

$$\min_{x \in S} f(x)$$

- Not all $x \in \mathbb{R}^n$ are feasible and could be a solution.
- The solution has to be inside the set S.
- Example:

$$\frac{1}{2} ||Ax - b||_2^2 \to \min_{\|x\|_2^2 \le 1}$$

Unconstrained optimization

$$\min_{x \in \mathbb{R}^n} f(x)$$

• Any point $x_0 \in \mathbb{R}^n$ is feasible and could be a solution.

Constrained optimization

$$\min_{x \in S} f(x)$$

- Not all $x \in \mathbb{R}^n$ are feasible and could be a solution.
- The solution has to be inside the set S.
- Example:

$$\frac{1}{2} ||Ax - b||_2^2 \to \min_{\|x\|_2^2 \le 1}$$

Unconstrained optimization

Constrained optimization

$$\min_{x \in \mathbb{R}^n} f(x)$$

$$\min_{x \in S} f(x)$$

• Any point $x_0 \in \mathbb{R}^n$ is feasible and could be a solution.

- Not all $x \in \mathbb{R}^n$ are feasible and could be a solution.
- The solution has to be inside the set S.
- Example:

$$\frac{1}{2} \|Ax - b\|_2^2 \to \min_{\|x\|_2^2 \le 1}$$

Gradient Descent is a great way to solve unconstrained problem

$$x_{k+1} = x_k - \alpha_k \nabla f(x_k) \tag{GD}$$

Is it possible to tune GD to fit constrained problem?

Unconstrained optimization

Constrained optimization

$$\min_{x \in \mathbb{R}^n} f(x)$$

• Any point $x_0 \in \mathbb{R}^n$ is feasible and could be a solution.

- $\min_{x \in S} f(x)$
- Not all $x \in \mathbb{R}^n$ are feasible and could be a solution.
- The solution has to be inside the set S.
- Example:

$$\frac{1}{2}\|Ax - b\|_2^2 \to \min_{\|x\|_2^2 \le 1}$$

Gradient Descent is a great way to solve unconstrained problem

$$x_{k+1} = x_k - \alpha_k \nabla f(x_k) \tag{GD}$$

Is it possible to tune GD to fit constrained problem?

Yes. We need to use projections to ensure feasibility on every iteration.

Example: White-box Adversarial Attacks

Figure 1: Source

• Mathematically, a neural network is a function $f(\boldsymbol{w};\boldsymbol{x})$

⊕ O Ø

Example: White-box Adversarial Attacks

Figure 1: Source

- Mathematically, a neural network is a function $f(\boldsymbol{w};\boldsymbol{x})$
- \bullet Typically, input x is given and network weights w optimized

) O 0

Example: White-box Adversarial Attacks

Figure 1: Source

- Mathematically, a neural network is a function f(w;x)
- $\begin{tabular}{ll} {\bf Typically, input} x is given and network weights \\ w optimized \\ \end{tabular}$
- Could also freeze weights w and optimize x, adversarially!

$$\min_{\delta} \mathsf{size}(\delta) \quad \mathsf{s.t.} \quad \mathsf{pred}[f(w; x + \delta)] \neq y$$

or

$$\max_{\delta} l(w; x+\delta, y) \text{ s.t. } \operatorname{size}(\delta) \leq \epsilon, \ 0 \leq x+\delta \leq 1$$

Conditional methods

Figure 2: Suppose, we start from a point x_k .

Figure 3: And go in the direction of $-\nabla f(x_k)$.

Figure 4: Occasionally, we can end up outside the feasible set.

♥େଡ

Figure 5: Solve this little problem with projection!

Conditional methods

$$x_{k+1} = \operatorname{proj}_S\left(x_k - \alpha_k \nabla f(x_k)\right) \qquad \Leftrightarrow \qquad \begin{aligned} y_k &= x_k - \alpha_k \nabla f(x_k) \\ x_{k+1} &= \operatorname{proj}_S\left(y_k\right) \end{aligned}$$

Figure 6: Illustration of Projected Gradient Descent algorithm

0 0

The distance d from point $\mathbf{y} \in \mathbb{R}^n$ to closed set $S \subset \mathbb{R}^n$:

$$d(\mathbf{y},S,\|\cdot\|)=\inf\{\|x-y\|\mid x\in S\}$$

The distance d from point $\mathbf{y} \in \mathbb{R}^n$ to closed set $S \subset \mathbb{R}^n$:

$$d(\mathbf{y}, S, \|\cdot\|) = \inf\{\|x-y\| \mid x \in S\}$$

We will focus on Euclidean projection (other options are possible) of a point $\mathbf{y} \in \mathbb{R}^n$ on set $S \subseteq \mathbb{R}^n$ is a point $\operatorname{proj}_S(\mathbf{y}) \in S$:

$$\operatorname{proj}_{S}(\mathbf{y}) = \underset{\mathbf{x} \in S}{\operatorname{argmin}} \frac{1}{2} \|x - y\|_{2}^{2}$$

The distance d from point $\mathbf{y} \in \mathbb{R}^n$ to closed set $S \subset \mathbb{R}^n$:

$$d(\mathbf{y}, S, \|\cdot\|) = \inf\{\|x-y\| \mid x \in S\}$$

We will focus on Euclidean projection (other options are possible) of a point $\mathbf{y} \in \mathbb{R}^n$ on set $S \subseteq \mathbb{R}^n$ is a point $\operatorname{proj}_S(\mathbf{y}) \in S$:

$$\operatorname{proj}_S(\mathbf{y}) = \underset{\mathbf{x} \in S}{\operatorname{argmin}} \frac{1}{2} \|x - y\|_2^2$$

• Sufficient conditions of existence of a projection. If $S \subseteq \mathbb{R}^n$ - closed set, then the projection on set S exists for any point.

⊕ ი დ

The distance d from point $\mathbf{y} \in \mathbb{R}^n$ to closed set $S \subset \mathbb{R}^n$:

$$d(\mathbf{y},S,\|\cdot\|)=\inf\{\|x-y\|\mid x\in S\}$$

We will focus on Euclidean projection (other options are possible) of a point $\mathbf{y} \in \mathbb{R}^n$ on set $S \subseteq \mathbb{R}^n$ is a point $\operatorname{proj}_S(\mathbf{y}) \in S$:

$$\operatorname{proj}_S(\mathbf{y}) = \underset{\mathbf{x} \in S}{\operatorname{argmin}} \frac{1}{2} \|x - y\|_2^2$$

- Sufficient conditions of existence of a projection. If $S \subseteq \mathbb{R}^n$ closed set, then the projection on set S exists for any point.
- Sufficient conditions of uniqueness of a projection. If $S \subseteq \mathbb{R}^n$ closed convex set, then the projection on set S is unique for any point.

େ ପ 💎 ପ

The distance d from point $\mathbf{y} \in \mathbb{R}^n$ to closed set $S \subset \mathbb{R}^n$:

$$d(\mathbf{y}, S, \|\cdot\|) = \inf\{\|x-y\| \mid x \in S\}$$

We will focus on Euclidean projection (other options are possible) of a point $y \in \mathbb{R}^n$ on set $S \subseteq \mathbb{R}^n$ is a point $\operatorname{proj}_{S}(\mathbf{y}) \in S$:

$$\operatorname{proj}_S(\mathbf{y}) = \underset{\mathbf{x} \in S}{\operatorname{argmin}} \frac{1}{2} \|x - y\|_2^2$$

- Sufficient conditions of existence of a projection. If $S \subseteq \mathbb{R}^n$ closed set, then the projection on set S exists for any point.
- Sufficient conditions of uniqueness of a projection. If $S \subseteq \mathbb{R}^n$ closed convex set, then the projection on set S is unique for any point.
- If a set is open, and a point is beyond this set, then its projection on this set may not exist.

The distance d from point $\mathbf{y} \in \mathbb{R}^n$ to closed set $S \subset \mathbb{R}^n$:

$$d(\mathbf{y}, S, \|\cdot\|) = \inf\{\|x-y\| \mid x \in S\}$$

We will focus on Euclidean projection (other options are possible) of a point $\mathbf{y} \in \mathbb{R}^n$ on set $S \subseteq \mathbb{R}^n$ is a point $\operatorname{proj}_S(\mathbf{y}) \in S$:

$$\operatorname{proj}_S(\mathbf{y}) = \underset{\mathbf{x} \in S}{\operatorname{argmin}} \frac{1}{2} \|x - y\|_2^2$$

- Sufficient conditions of existence of a projection. If $S \subseteq \mathbb{R}^n$ closed set, then the projection on set S exists for any point.
- Sufficient conditions of uniqueness of a projection. If $S \subseteq \mathbb{R}^n$ closed convex set, then the projection on set S is unique for any point.
- If a set is open, and a point is beyond this set, then its projection on this set may not exist.
- If a point is in set, then its projection is the point itself.

♥ ೧ ❷

i Theorem

Let $S\subseteq\mathbb{R}^n$ be closed and convex, $\forall x\in S,y\in\mathbb{R}^n.$ Then

$$\langle y - \operatorname{proj}_S(y), \mathbf{x} - \operatorname{proj}_S(y) \rangle \le 0 \tag{1}$$

$$\|x - \mathrm{proj}_S(y)\|^2 + \|y - \mathrm{proj}_S(y)\|^2 \leq \|x - y\|^2 \tag{2}$$

1. $\operatorname{proj}_S(y)$ is minimizer of differentiable convex function $d(y,S,\|\cdot\|) = \|x-y\|^2$ over S. By first-order characterization of optimality.

Figure 7: Obtuse or straight angle should be for any point $x \in {\cal S}$

⊕ ∩ **ø**

i Theorem

Let $S\subseteq\mathbb{R}^n$ be closed and convex, $\forall x\in S,y\in\mathbb{R}^n.$ Then

$$\langle y - \mathrm{proj}_S(y), \mathbf{x} - \mathrm{proj}_S(y) \rangle \leq 0 \tag{1}$$

$$\|x - \mathrm{proj}_S(y)\|^2 + \|y - \mathrm{proj}_S(y)\|^2 \leq \|x - y\|^2 \tag{2}$$

1. $\operatorname{proj}_S(y)$ is minimizer of differentiable convex function $d(y,S,\|\cdot\|) = \|x-y\|^2$ over S. By first-order characterization of optimality.

$$\nabla d(\operatorname{proj}_S(y))^T(x-\operatorname{proj}_S(y)) \geq 0$$

Figure 7: Obtuse or straight angle should be for any point $x \in {\cal S}$

♥ ೧ 0

i Theorem

Let $S \subseteq \mathbb{R}^n$ be closed and convex, $\forall x \in S, y \in \mathbb{R}^n$. Then

$$\langle y - \mathrm{proj}_S(y), \mathbf{x} - \mathrm{proj}_S(y) \rangle \leq 0 \tag{1}$$

$$\|x - \mathrm{proj}_S(y)\|^2 + \|y - \mathrm{proj}_S(y)\|^2 \leq \|x - y\|^2 \tag{2}$$

1. $\operatorname{proj}_S(y)$ is minimizer of differentiable convex function $d(y,S,\|\cdot\|) = \|x-y\|^2$ over S. By first-order characterization of optimality.

$$\nabla d(\operatorname{proj}_S(y))^T(x-\operatorname{proj}_S(y)) \geq 0$$

$$2\left(\operatorname{proj}_S(y)-y\right)^T(x-\operatorname{proj}_S(y))\geq 0$$

Figure 7: Obtuse or straight angle should be for any point $x \in {\cal S}$

⊕ n a

i Theorem

Let $S\subseteq\mathbb{R}^n$ be closed and convex, $\forall x\in S,y\in\mathbb{R}^n.$ Then

$$\langle y - \mathrm{proj}_S(y), \mathbf{x} - \mathrm{proj}_S(y) \rangle \leq 0 \tag{1}$$

$$\|x - \mathrm{proj}_S(y)\|^2 + \|y - \mathrm{proj}_S(y)\|^2 \leq \|x - y\|^2 \tag{2}$$

1. $\operatorname{proj}_S(y)$ is minimizer of differentiable convex function $d(y,S,\|\cdot\|) = \|x-y\|^2$ over S. By first-order characterization of optimality.

$$\begin{split} \nabla d(\operatorname{proj}_S(y))^T(x - \operatorname{proj}_S(y)) &\geq 0 \\ 2\left(\operatorname{proj}_S(y) - y\right)^T(x - \operatorname{proj}_S(y)) &\geq 0 \\ \left(y - \operatorname{proj}_S(y)\right)^T(x - \operatorname{proj}_S(y)) &\leq 0 \end{split}$$

Figure 7: Obtuse or straight angle should be for any point $x \in {\cal S}$

♥೧0

i Theorem

Let $S\subseteq\mathbb{R}^n$ be closed and convex, $\forall x\in S,y\in\mathbb{R}^n.$ Then

$$\langle y - \operatorname{proj}_S(y), \mathbf{x} - \operatorname{proj}_S(y) \rangle \leq 0 \tag{1}$$

$$\|x - \mathrm{proj}_S(y)\|^2 + \|y - \mathrm{proj}_S(y)\|^2 \leq \|x - y\|^2 \tag{2}$$

1. $\operatorname{proj}_S(y)$ is minimizer of differentiable convex function $d(y,S,\|\cdot\|) = \|x-y\|^2$ over S. By first-order characterization of optimality.

$$\begin{split} & \nabla d(\operatorname{proj}_S(y))^T(x - \operatorname{proj}_S(y)) \geq 0 \\ & 2 \left(\operatorname{proj}_S(y) - y\right)^T(x - \operatorname{proj}_S(y)) \geq 0 \\ & \left(y - \operatorname{proj}_S(y)\right)^T(x - \operatorname{proj}_S(y)) \leq 0 \end{split}$$

2. Use cosine rule $2x^Ty=\|x\|^2+\|y\|^2-\|x-y\|^2$ with $x=x-\operatorname{proj}_S(y)$ and $y=y-\operatorname{proj}_S(y)$. By the first property of the theorem:

Figure 7: Obtuse or straight angle should be for any point $x \in {\cal S}$

 $f o \min_{x,y,z}$

i Theorem

Let $S\subseteq\mathbb{R}^n$ be closed and convex, $\forall x\in S,y\in\mathbb{R}^n.$ Then

$$\langle y - \operatorname{proj}_S(y), \mathbf{x} - \operatorname{proj}_S(y) \rangle \le 0 \tag{1}$$

 $\|x - \mathsf{proj}_S(y)\|^2 + \|y - \mathsf{proj}_S(y)\|^2 \le \|x - y\|^2 \tag{2}$

1. $\operatorname{proj}_S(y)$ is minimizer of differentiable convex function $d(y,S,\|\cdot\|)=\|x-y\|^2$ over S. By first-order characterization of optimality.

$$\begin{split} &\nabla d(\operatorname{proj}_S(y))^T(x - \operatorname{proj}_S(y)) \geq 0 \\ &2\left(\operatorname{proj}_S(y) - y\right)^T(x - \operatorname{proj}_S(y)) \geq 0 \\ &\left(y - \operatorname{proj}_S(y)\right)^T(x - \operatorname{proj}_S(y)) \leq 0 \end{split}$$

2. Use cosine rule $2x^Ty=\|x\|^2+\|y\|^2-\|x-y\|^2$ with $x=x-\operatorname{proj}_S(y)$ and $y=y-\operatorname{proj}_S(y)$. By the first property of the theorem:

$$0 \ge 2x^T y = \|x - \operatorname{proj}_{S}(y)\|^2 + \|y + \operatorname{proj}_{S}(y)\|^2 - \|x - y\|^2$$

Figure 7: Obtuse or straight angle should be for any point $x \in {\cal S}$

(1)

(2)

i Theorem

 $f \to \min_{x,y,z}$

Let $S \subseteq \mathbb{R}^n$ be closed and convex, $\forall x \in S, y \in \mathbb{R}^n$. Then

$$\begin{split} \langle y - \mathrm{proj}_S(y), \mathbf{x} - \mathrm{proj}_S(y) \rangle &\leq 0 \\ \|x - \mathrm{proj}_S(y)\|^2 + \|y - \mathrm{proj}_S(y)\|^2 &\leq \|x - y\|^2 \end{split}$$

1. $proj_{S}(y)$ is minimizer of differentiable convex function $d(y, S, \|\cdot\|) = \|x - y\|^2$ over S. By first-order characterization of optimality.

$$\nabla d(\mathrm{proj}_S(y))^T(x-\mathrm{proj}_S(y)) \geq 0$$

$$2\left(\mathrm{proj}_S(y)-y\right)^T(x-\mathrm{proj}_S(y)) \geq 0$$

2. Use cosine rule $2x^Ty=\|x\|^2+\|y\|^2-\|x-y\|^2$ with $x=x-\operatorname{proj}_{\mathcal{C}}(y)$

 $(y - \operatorname{proj}_{G}(y))^{T} (x - \operatorname{proj}_{G}(y)) < 0$

Use cosine rule
$$2x^Ty = \|x\|^2 + \|y\|^2 - \|x-y\|^2$$
 with $x = x - \operatorname{proj}(y) = y - \operatorname{proj}(y)$. By the first property of the theorem:
$$0 \geq 2x^Ty = \|x - \operatorname{proj}_S(y)\|^2 + \|y + \operatorname{proj}_S(y)\|^2 - \|x-y\|^2$$
 where $\|x - \operatorname{proj}_S(y)\|^2 + \|y + \operatorname{proj}_S(y)\|^2 \leq \|x-y\|^2$

Figure 7: Obtuse or straight angle should be for any point $x \in S$

 $\bullet \ \ \text{A function} \ f \ \text{is called non-expansive if} \ f \ \text{is} \ L\text{-Lipschitz with} \ L \leq 1^{-1}. \ \ \text{That is, for any two points} \ x,y \in \text{dom} f,$

$$\|f(x)-f(y)\|\leq L\|x-y\|, \text{ where } L\leq 1.$$

It means the distance between the mapped points is possibly smaller than that of the unmapped points.

 $^{^{1}\}mbox{Non-expansive becomes contractive if }L<1.$

• A function f is called non-expansive if f is L-Lipschitz with $L \leq 1$ 1 . That is, for any two points $x,y \in \text{dom} f$,

$$||f(x) - f(y)|| \le L||x - y||$$
, where $L \le 1$.

It means the distance between the mapped points is possibly smaller than that of the unmapped points.

Projection operator is non-expansive:

$$\|\text{proj}(x) - \text{proj}(y)\|_2 \le \|x - y\|_2.$$

 $^{^{1}}$ Non-expansive becomes contractive if L < 1.

• A function f is called non-expansive if f is L-Lipschitz with $L \leq 1$ 1 . That is, for any two points $x, y \in \text{dom} f$,

$$||f(x) - f(y)|| \le L||x - y||$$
, where $L \le 1$.

It means the distance between the mapped points is possibly smaller than that of the unmapped points.

Projection operator is non-expansive:

$$\|\mathrm{proj}(x) - \mathrm{proj}(y)\|_2 \leq \|x - y\|_2.$$

• Next: variational characterization implies non-expansiveness. i.e.,

$$\langle y - \operatorname{proj}(y), x - \operatorname{proj}(y) \rangle \leq 0 \quad \forall x \in S \qquad \Rightarrow \qquad \|\operatorname{proj}(x) - \operatorname{proj}(y)\|_2 \leq \|x - y\|_2.$$

 $^{^{1}}$ Non-expansive becomes contractive if L < 1.

Shorthand notation: let $\pi = \operatorname{proj}$ and $\pi(x)$ denotes $\operatorname{proj}(x)$.

Shorthand notation: let $\pi=\operatorname{proj}$ and $\pi(x)$ denotes $\operatorname{proj}(x)$.

Begins with the variational characterization \slash obtuse angle inequality

$$\langle y - \pi(y), x - \pi(y) \rangle \le 0 \quad \forall x \in S.$$

(3)

Shorthand notation: let $\pi = \operatorname{proj}$ and $\pi(x)$ denotes $\operatorname{proj}(x)$.

$$\langle y - \pi(y), x - \pi(y) \rangle < 0 \quad \forall x \in S.$$

Replace x by $\pi(x)$ in Equation 3

$$\langle y - \pi(y), \pi(x) - \pi(y) \rangle \le 0.$$
 (4)

(3)

Replace x by $\pi(x)$ in Equation 3

Shorthand notation: let $\pi = \operatorname{proj}$ and $\pi(x)$ denotes $\operatorname{proj}(x)$.

Begins with the variational characterization / obtuse angle inequality

$$\langle y - \pi(y), x - \pi(y) \rangle \leq 0 \quad \forall x \in S.$$

$$\langle y - \pi(y), x - \pi(y) \rangle \le 0$$

$$\langle y - \pi(y), x - \pi(y) \rangle \le 0$$

$$\langle g \mid \kappa(g), x \mid \kappa(g) \rangle \leq 0$$

$$(g \cap (g), w \cap (g)) \subseteq 0 \cap w \subseteq$$

Replace
$$y$$
 by x and x by $\pi(y)$ in Equation 3

$$\langle y - \pi(y), \pi(x) - \pi(y) \rangle \le 0. \tag{4}$$

(4)
$$\langle x - \pi(x), \pi(y) - \pi(x) \rangle \le 0.$$

$$\langle x - \pi(x), \pi(y) - \pi(x) \rangle \le 0.$$

$$f \to \min_{x,y,z}$$
 Projection

(3)

(5)

Shorthand notation: let $\pi = \text{proj}$ and $\pi(x)$ denotes proj(x).

Begins with the variational characterization / obtuse angle inequality

$$\langle y - \pi(y), x - \pi(y) \rangle < 0 \quad \forall x \in S.$$

$$\langle g-\kappa(g),x-\kappa(g)\rangle \leq 0$$

Replace
$$x$$
 by $\pi(x)$ in Equation 3 Replace y by x and x by $\pi(y)$ in Equation 3

$$\langle y - \pi(y), \pi(x) - \pi(y) \rangle \le 0.$$
 (4)

$$x$$
 and

and
$$x$$
 by $\kappa(g)$ i

$$(g - \kappa(g), \kappa(x) - \kappa(g)) \le 0.$$

(Equation 4)+(Equation 5) will cancel
$$\pi(y)-\pi(x)$$
, not good. So flip the sign of (Equation 5) gives

 $\langle \pi(x) - x, \pi(x) - \pi(y) \rangle < 0.$

$$\langle x - \pi(x), \pi(y) - \pi(x) \rangle \le 0.$$

(3)

(5)

Shorthand notation: let $\pi = \operatorname{proj}$ and $\pi(x)$ denotes $\operatorname{proj}(x)$. Begins with the variational characterization / obtuse angle inequality

$$\langle y - \pi(y), x - \pi(y) \rangle < 0 \quad \forall x \in S.$$

 $\langle y - x, \pi(y) - \pi(x) \rangle > \|\pi(x) - \pi(y)\|_2^2$ $\|(y-x)^{\top}(\pi(y)-\pi(x))\|_{2} > \|\pi(x)-\pi(y)\|_{2}^{2}$

Replace
$$x$$
 by $\pi(x)$ in Equation 3 Replace y by x and x by $\pi(y)$ in Equation 3

$$\langle y - \pi(y), \pi(x) - \pi(y) \rangle \le 0.$$
 (4)

$$\langle x - \pi(x), \pi(y) - \pi(x) \rangle \leq 0.$$

(Equation 4)+(Equation 5) will cancel
$$\pi(y)-\pi(x)$$
, not good. So flip the sign of (Equation 5) gives

$$\langle \pi(x) - x, \pi(x) - \pi(y) \rangle \le 0.$$

$$\langle y - \pi(y) + \pi(x) - x, \pi(x) - \pi(y) \rangle < 0$$

$$|x| - x, \pi(x) - \pi(y)| \le 0$$

$$\langle y - x, \pi(x) - \pi(y)| \le -\langle \pi(x) - \pi(y), \pi(x) - \pi(y)|$$

$$f \to \min_{x,y,z}$$
 Projection

(3)

(5)

(6)

Shorthand notation: let $\pi = \operatorname{proj}$ and $\pi(x)$ denotes $\operatorname{proj}(x)$.

Begins with the variational characterization / obtuse angle inequality

$$\langle y - \pi(y), x - \pi(y) \rangle < 0 \quad \forall x \in S.$$

Replace
$$x$$
 by $\pi(x)$ in Equation 3

$$\langle y - \pi(y), \pi(x) - \pi(y) \rangle \leq 0.$$

$$-\pi(u)\rangle$$

left-hand-side is upper bounded by

(Equation 4)+(Equation 5) will cancel
$$\pi(y)-\pi(x)$$
, not good. So flip the sign of (Equation 5) gives

(3)

(5)

(6)

$$\|y-x\|_2 \|\pi(y)-\pi(x)\|_2 \ge \|\pi(x)-\pi(y)\|_2^2$$
. Cancels $\|\pi(x)-\pi(y)\|_2$ finishes the proof.

 $f \to \min_{x,y,z}$

 $\langle y - \pi(y) + \pi(x) - x, \pi(x) - \pi(y) \rangle < 0$

 $\langle y - x, \pi(y) - \pi(x) \rangle > \|\pi(x) - \pi(y)\|_2^2$

 $\|(y-x)^{\top}(\pi(y)-\pi(x))\|_{2} > \|\pi(x)-\pi(y)\|_{2}^{2}$

 $\langle \pi(x) - x, \pi(x) - \pi(y) \rangle < 0.$

 $\langle y-x,\pi(x)-\pi(y)\rangle \leq -\langle \pi(x)-\pi(y),\pi(x)-\pi(y)\rangle \quad \|y-x\|_2\|\pi(y)-\pi(x)\|_2, \text{ we get }$

(4)

 $\langle x - \pi(x), \pi(y) - \pi(x) \rangle < 0.$

Replace y by x and x by $\pi(y)$ in Equation 3

Find $\pi_S(y)=\pi$, if $S=\{x\in\mathbb{R}^n\mid \|x-x_0\|\leq R\}$, $y\notin S$

Find $\pi_S(y)=\pi$, if $S=\{x\in\mathbb{R}^n\mid \|x-x_0\|\leq R\}$, $y\notin S$

Build a hypothesis from the figure: $\pi = x_0 + R \cdot \frac{y - x_0}{\|y - x_0\|}$

Find $\pi_S(y) = \pi$, if $S = \{x \in \mathbb{R}^n \mid ||x - x_0|| \le R\}$, $y \notin S$

Build a hypothesis from the figure: $\pi = x_0 + R \cdot \frac{y - x_0}{\|y - x_0\|}$ Check the inequality for a convex closed set: $(\pi - y)^T(x - \pi) \ge 0$

Find $\pi_S(y) = \pi$, if $S = \{x \in \mathbb{R}^n \mid ||x - x_0|| \le R\}$, $y \notin S$

Build a hypothesis from the figure: $\pi=x_0+R\cdot\frac{y-x_0}{\|y-x_0\|}$

Check the inequality for a convex closed set: $(\pi - y)^T(x - \pi) \ge 0$

$$\left(x_{0} - y + R\frac{y - x_{0}}{\|y - x_{0}\|}\right)^{T} \left(x - x_{0} - R\frac{y - x_{0}}{\|y - x_{0}\|}\right) =$$

$$\left(\frac{(y - x_{0})(R - \|y - x_{0}\|)}{\|y - x_{0}\|}\right)^{T} \left(\frac{(x - x_{0})\|y - x_{0}\| - R(y - x_{0})}{\|y - x_{0}\|}\right) =$$

$$\frac{R - \|y - x_{0}\|}{\|y - x_{0}\|^{2}} \left(y - x_{0}\right)^{T} \left((x - x_{0})\|y - x_{0}\| - R(y - x_{0})\right) =$$

$$\frac{R - \|y - x_{0}\|}{\|y - x_{0}\|} \left(\left(y - x_{0}\right)^{T} \left(x - x_{0}\right) - R\|y - x_{0}\|\right) =$$

$$\left(R - \|y - x_{0}\|\right) \left(\frac{(y - x_{0})^{T}(x - x_{0})}{\|y - x_{0}\|} - R\right)$$

Find $\pi_S(y) = \pi$, if $S = \{x \in \mathbb{R}^n \mid ||x - x_0|| < R\}, \ u \notin S$

Build a hypothesis from the figure: $\pi = x_0 + R \cdot \frac{y - x_0}{\|y - x_0\|}$ Check the inequality for a convex closed set: $(\pi-y)^T(x-\pi) \geq 0$

$$\left(x_0-y+R\frac{y-x_0}{\|y-x_0\|}\right)^T\left(x-x_0-R\frac{y-x_0}{\|y-x_0\|}\right)=$$

The first factor is negative for point selection
$$y$$
. The second factor is also negative, which follows from the Cauchy-Bunyakovsky inequality:

$$\begin{split} \frac{R - \left\| y - x_0 \right\|}{\left\| y - x_0 \right\|^2} \left(y - x_0 \right)^T \left(\left(x - x_0 \right) \left\| y - x_0 \right\| - R \left(y - x_0 \right) \right) = \\ \frac{R - \left\| y - x_0 \right\|}{\left\| y - x_0 \right\|} \left(\left(y - x_0 \right)^T \left(x - x_0 \right) - R \left\| y - x_0 \right\| \right) = \\ \left(R - \left\| y - x_0 \right\| \right) \left(\frac{\left(y - x_0 \right)^T \left(x - x_0 \right)}{\left\| y - x_0 \right\|} - R \right) \end{split}$$

 $\left(\frac{(y-x_0)(R-\|y-x_0\|)}{\|y-x_0\|}\right)^T \left(\frac{(x-x_0)\|y-x_0\|-R(y-x_0)}{\|y-x_0\|}\right) = \frac{1}{\|y-x_0\|} \left(\frac{(x-x_0)\|y-x_0\|-R(y-x_0)}{\|y-x_0\|}\right)$

Find $\pi_S(y) = \pi$, if $S = \{x \in \mathbb{R}^n \mid ||x - x_0|| \le R\}, y \notin S$

Build a hypothesis from the figure:
$$\pi=x_0+R\cdot \frac{y-x_0}{\|y-x_0\|}$$
 Check the inequality for a convex closed set: $(\pi-y)^T(x-\pi)\geq 0$

$$\left(x_{0} - y + R \frac{y - x_{0}}{\|y - x_{0}\|}\right)^{T} \left(x - x_{0} - R \frac{y - x_{0}}{\|y - x_{0}\|}\right) =$$

The second factor is also negative, which follows from the Cauchy-Bunyakovsky

The first factor is negative for point selection y.

$$\frac{\left(\frac{(y-x_0)(R-\|y-x_0\|)}{\|y-x_0\|}\right)^T\left(\frac{(x-x_0)\|y-x_0\|-R(y-x_0)}{\|y-x_0\|}\right) = \frac{(y-x_0)^T(x-x_0) \leq \|y-x_0\|\|x-x_0\|}{\frac{R-\|y-x_0\|}{\|y-x_0\|^2}\left(y-x_0\right)^T\left((x-x_0)\|y-x_0\|-R\left(y-x_0\right)\right) = \frac{(y-x_0)^T(x-x_0) \leq \|y-x_0\|\|x-x_0\|}{\|y-x_0\|} \\ \frac{R-\|y-x_0\|^2}{\|y-x_0\|^2}\left(y-x_0\right)^T\left((x-x_0)\|y-x_0\|-R\left(y-x_0\right)\right) = \frac{(y-x_0)^T(x-x_0) \leq \|y-x_0\|\|x-x_0\|}{\|y-x_0\|}$$

$$(R - \|y - x_0\|) \left(\frac{(y - x_0)^T (x - x_0)}{\|y - x_0\|} - R \right)$$

Example: projection on the halfspace

Find $\pi_S(y)=\pi$, if $S=\{x\in\mathbb{R}^n\mid c^Tx=b\}$, $y\notin S$. Build a hypothesis from the figure: $\pi=y+\alpha c$. Coefficient α is chosen so that $\pi\in S$: $c^T\pi=b$, so:

Example: projection on the halfspace

Find $\pi_S(y) = \pi$, if $S = \{x \in \mathbb{R}^n \mid c^T x = b\}$, $y \notin S$. Build a hypothesis from the figure: $\pi = y + \alpha c$. Coefficient α is chosen so that $\pi \in S$: $c^T \pi = b$, so:

Figure 9: Hyperplane

⊕ ი (

Example: projection on the halfspace

Find $\pi_S(y) = \pi$, if $S = \{x \in \mathbb{R}^n \mid c^T x = b\}$, $y \notin S$. Build a hypothesis from the figure: $\pi = y + \alpha c$. Coefficient α is chosen so that $\pi \in S$: $c^T \pi = b$. so:

Figure 9: Hyperplane

$$c^{T}(y + \alpha c) = b$$

$$c^{T}y + \alpha c^{T}c = b$$

$$c^{T}y = b - \alpha c^{T}c$$

Check the inequality for a convex closed set:

$$\begin{split} (\pi-y)^T(x-\pi) & \geq 0 \\ (y+\alpha c-y)^T(x-y-\alpha c) &= \\ \alpha c^T(x-y-\alpha c) &= \\ \alpha (c^Tx) - \alpha (c^Ty) - \alpha^2 (c^Tc) &= \\ \alpha b - \alpha (b-\alpha c^Tc) - \alpha^2 c^Tc &= \\ \alpha b - \alpha b + \alpha^2 c^Tc - \alpha^2 c^Tc &= 0 \geq 0 \end{split}$$

Projected Gradient Descent (PGD)

Idea

$$x_{k+1} = \operatorname{proj}_S\left(x_k - \alpha_k \nabla f(x_k)\right) \qquad \Leftrightarrow \qquad \begin{aligned} y_k &= x_k - \alpha_k \nabla f(x_k) \\ x_{k+1} &= \operatorname{proj}_S\left(y_k\right) \end{aligned}$$

Figure 10: Illustration of Projected Gradient Descent algorithm

Convergence tools �� �� ��

i Theorem

Let $f: \mathbb{R}^n \to \mathbb{R}$ be an L-smooth convex function. Then, for any $x,y \in \mathbb{R}^n$, the following inequality holds:

$$\begin{split} f(x) + \langle \nabla f(x), y - x \rangle + \frac{1}{2L} \| \nabla f(x) - \nabla f(y) \|_2^2 & \leq f(y) \text{ or, equivalently,} \\ \| \nabla f(y) - \nabla f(x) \|_2^2 = \| \nabla f(x) - \nabla f(y) \|_2^2 & \leq 2L \left(f(x) - f(y) - \langle \nabla f(y), x - y \rangle \right) \end{split}$$

Proof

1. To prove this, we'll consider another function $\varphi(y) = f(y) - \langle \nabla f(x), y \rangle$. It is obviously a convex function (as a sum of convex functions). And it is easy to verify, that it is an L-smooth function by definition, since $\nabla \varphi(y) = \nabla f(y) - \nabla f(x)$ and $\|\nabla \varphi(y_1) - \nabla \varphi(y_2)\| = \|\nabla f(y_1) - \nabla f(y_2)\| \le L\|y_1 - y_2\|$.

Convergence tools �� �� ��

i Theorem

Let $f: \mathbb{R}^n \to \mathbb{R}$ be an L-smooth convex function. Then, for any $x,y \in \mathbb{R}^n$, the following inequality holds:

$$\begin{split} f(x) + \langle \nabla f(x), y - x \rangle + \frac{1}{2L} \| \nabla f(x) - \nabla f(y) \|_2^2 & \leq f(y) \text{ or, equivalently,} \\ \| \nabla f(y) - \nabla f(x) \|_2^2 = & \| \nabla f(x) - \nabla f(y) \|_2^2 \leq 2L \left(f(x) - f(y) - \langle \nabla f(y), x - y \rangle \right) \end{split}$$

Proof

- 1. To prove this, we'll consider another function $\varphi(y) = f(y) \langle \nabla f(x), y \rangle$. It is obviously a convex function (as a sum of convex functions). And it is easy to verify, that it is an L-smooth function by definition, since $\nabla \varphi(y) = \nabla f(y) \nabla f(x)$ and $\|\nabla \varphi(y_1) \nabla \varphi(y_2)\| = \|\nabla f(y_1) \nabla f(y_2)\| \le L\|y_1 y_2\|$.
- 2. Now let's consider the smoothness parabolic property for the $\varphi(y)$ function:

Convergence tools �� �� ��

i Theorem

Let $f: \mathbb{R}^n \to \mathbb{R}$ be an L-smooth convex function. Then, for any $x,y \in \mathbb{R}^n$, the following inequality holds:

$$\begin{split} f(x) + \langle \nabla f(x), y - x \rangle + \frac{1}{2L} \| \nabla f(x) - \nabla f(y) \|_2^2 & \leq f(y) \text{ or, equivalently,} \\ \| \nabla f(y) - \nabla f(x) \|_2^2 = & \| \nabla f(x) - \nabla f(y) \|_2^2 \leq 2L \left(f(x) - f(y) - \langle \nabla f(y), x - y \rangle \right) \end{split}$$

Proof

- 1. To prove this, we'll consider another function $\varphi(y) = f(y) \langle \nabla f(x), y \rangle$. It is obviously a convex function (as a sum of convex functions). And it is easy to verify, that it is an L-smooth function by definition, since $\nabla \varphi(y) = \nabla f(y) \nabla f(x)$ and $\|\nabla \varphi(y_1) \nabla \varphi(y_2)\| = \|\nabla f(y_1) \nabla f(y_2)\| \le L\|y_1 y_2\|$.
- 2. Now let's consider the smoothness parabolic property for the $\varphi(y)$ function:

$$\varphi(y) \le \varphi(x) + \langle \nabla \varphi(x), y - x \rangle + \frac{L}{2} \|y - x\|_2^2$$

⊕ n €

i Theorem

Let $f: \mathbb{R}^n \to \mathbb{R}$ be an L-smooth convex function. Then, for any $x,y \in \mathbb{R}^n$, the following inequality holds:

$$\begin{split} f(x) + \langle \nabla f(x), y - x \rangle + \frac{1}{2L} \|\nabla f(x) - \nabla f(y)\|_2^2 & \leq f(y) \text{ or, equivalently,} \\ \|\nabla f(y) - \nabla f(x)\|_2^2 = & \|\nabla f(x) - \nabla f(y)\|_2^2 \leq 2L \left(f(x) - f(y) - \langle \nabla f(y), x - y \rangle \right) \end{split}$$

Proof

- 1. To prove this, we'll consider another function $\varphi(y) = f(y) \langle \nabla f(x), y \rangle$. It is obviously a convex function (as a sum of convex functions). And it is easy to verify, that it is an L-smooth function by definition, since $\nabla \varphi(y) = \nabla f(y) \nabla f(x)$ and $\|\nabla \varphi(y_1) \nabla \varphi(y_2)\| = \|\nabla f(y_1) \nabla f(y_2)\| \le L\|y_1 y_2\|$.
- 2. Now let's consider the smoothness parabolic property for the $\varphi(y)$ function:

$$\begin{split} \varphi(y) & \leq \varphi(x) + \langle \nabla \varphi(x), y - x \rangle + \frac{L}{2} \|y - x\|_2^2 \\ & \stackrel{x := y, y := y - \frac{1}{L} \nabla \varphi(y)}{\varphi\left(y - \frac{1}{L} \nabla \varphi(y)\right)} \leq \varphi(y) + \left\langle \nabla \varphi(y), -\frac{1}{L} \nabla \varphi(y) \right\rangle + \frac{1}{2L} \|\nabla \varphi(y)\|_2^2 \end{split}$$

⊕ n ø

i Theorem

Let $f: \mathbb{R}^n \to \mathbb{R}$ be an L-smooth convex function. Then, for any $x,y \in \mathbb{R}^n$, the following inequality holds:

$$f(x) + \langle \nabla f(x), y - x \rangle + \frac{1}{2L} \|\nabla f(x) - \nabla f(y)\|_2^2 \leq f(y) \text{ or, equivalently,}$$

$$\|\nabla f(y) - \nabla f(x)\|_2^2 = \|\nabla f(x) - \nabla f(y)\|_2^2 \leq 2L\left(f(x) - f(y) - \langle \nabla f(y), x - y \rangle\right)$$

Proof

- 1. To prove this, we'll consider another function $\varphi(y) = f(y) \langle \nabla f(x), y \rangle$. It is obviously a convex function (as a sum of convex functions). And it is easy to verify, that it is an L-smooth function by definition, since $\nabla \varphi(y) = \nabla f(y) - \nabla f(x)$ and $\|\nabla \varphi(y_1) - \nabla \varphi(y_2)\| = \|\nabla f(y_1) - \nabla f(y_2)\| \le L\|y_1 - y_2\|$.
 - 2. Now let's consider the smoothness parabolic property for the $\varphi(y)$ function:

$$\varphi(y) \leq \varphi(x) + \langle \nabla \varphi(x), y - x \rangle + \frac{L}{2} \|y - x\|_2^2$$

$$x := y, y := y - \frac{1}{L} \nabla \varphi(y) \quad \varphi\left(y - \frac{1}{L} \nabla \varphi(y)\right) \leq \varphi(y) + \left\langle \nabla \varphi(y), -\frac{1}{L} \nabla \varphi(y) \right\rangle + \frac{1}{2L} \|\nabla \varphi(y)\|_2^2$$

$$\varphi\left(y - \frac{1}{L} \nabla \varphi(y)\right) \leq \varphi(y) - \frac{1}{2L} \|\nabla \varphi(y)\|_2^2$$
 Projected Gradient Descent (PGD)

3. From the first order optimality conditions for the convex function $\nabla \varphi(y) = \nabla f(y) - \nabla f(x) = 0$. We can conclude, that for any x, the minimum of the function $\varphi(y)$ is at the point y=x. Therefore:

$$\varphi(x) \leq \varphi\left(y - \frac{1}{L}\nabla\varphi(y)\right) \leq \varphi(y) - \frac{1}{2L}\|\nabla\varphi(y)\|_2^2$$

3. From the first order optimality conditions for the convex function $\nabla \varphi(y) = \nabla f(y) - \nabla f(x) = 0$. We can conclude, that for any x, the minimum of the function $\varphi(y)$ is at the point y=x. Therefore:

$$\varphi(x) \leq \varphi\left(y - \frac{1}{L}\nabla\varphi(y)\right) \leq \varphi(y) - \frac{1}{2L}\|\nabla\varphi(y)\|_2^2$$

3. From the first order optimality conditions for the convex function $\nabla \varphi(y) = \nabla f(y) - \nabla f(x) = 0$. We can conclude, that for any x, the minimum of the function $\varphi(y)$ is at the point y=x. Therefore:

$$\varphi(x) \leq \varphi\left(y - \frac{1}{L}\nabla\varphi(y)\right) \leq \varphi(y) - \frac{1}{2L}\|\nabla\varphi(y)\|_2^2$$

$$f(x) - \langle \nabla f(x), x \rangle \leq f(y) - \langle \nabla f(x), y \rangle - \frac{1}{2I} \|\nabla f(y) - \nabla f(x)\|_2^2$$

3. From the first order optimality conditions for the convex function $\nabla \varphi(y) = \nabla f(y) - \nabla f(x) = 0$. We can conclude, that for any x, the minimum of the function $\varphi(y)$ is at the point y=x. Therefore:

$$\varphi(x) \leq \varphi\left(y - \frac{1}{L}\nabla\varphi(y)\right) \leq \varphi(y) - \frac{1}{2L}\|\nabla\varphi(y)\|_2^2$$

$$\begin{split} f(x) - \langle \nabla f(x), x \rangle &\leq f(y) - \langle \nabla f(x), y \rangle - \frac{1}{2L} \| \nabla f(y) - \nabla f(x) \|_2^2 \\ f(x) + \langle \nabla f(x), y - x \rangle + \frac{1}{2L} \| \nabla f(x) - \nabla f(y) \|_2^2 &\leq f(y) \end{split}$$

3. From the first order optimality conditions for the convex function $\nabla \varphi(y) = \nabla f(y) - \nabla f(x) = 0$. We can conclude, that for any x, the minimum of the function $\varphi(y)$ is at the point y=x. Therefore:

$$\varphi(x) \leq \varphi\left(y - \frac{1}{L}\nabla\varphi(y)\right) \leq \varphi(y) - \frac{1}{2L}\|\nabla\varphi(y)\|_2^2$$

$$\begin{split} &f(x) - \langle \nabla f(x), x \rangle \leq f(y) - \langle \nabla f(x), y \rangle - \frac{1}{2L} \| \nabla f(y) - \nabla f(x) \|_2^2 \\ &f(x) + \langle \nabla f(x), y - x \rangle + \frac{1}{2L} \| \nabla f(x) - \nabla f(y) \|_2^2 \leq f(y) \\ &\| \nabla f(y) - \nabla f(x) \|_2^2 \leq 2L \left(f(y) - f(x) - \langle \nabla f(x), y - x \rangle \right) \end{split}$$

Convergence tools **♦ ♦ ♦**

3. From the first order optimality conditions for the convex function $\nabla \varphi(y) = \nabla f(y) - \nabla f(x) = 0$. We can conclude, that for any x, the minimum of the function $\varphi(y)$ is at the point y=x. Therefore:

$$\varphi(x) \leq \varphi\left(y - \frac{1}{L}\nabla\varphi(y)\right) \leq \varphi(y) - \frac{1}{2L}\|\nabla\varphi(y)\|_2^2$$

4. Now, substitute $\varphi(y) = f(y) - \langle \nabla f(x), y \rangle$:

$$\begin{split} f(x) - \langle \nabla f(x), x \rangle &\leq f(y) - \langle \nabla f(x), y \rangle - \frac{1}{2L} \| \nabla f(y) - \nabla f(x) \|_2^2 \\ f(x) + \langle \nabla f(x), y - x \rangle + \frac{1}{2L} \| \nabla f(x) - \nabla f(y) \|_2^2 &\leq f(y) \\ \| \nabla f(y) - \nabla f(x) \|_2^2 &\leq 2L \left(f(y) - f(x) - \langle \nabla f(x), y - x \rangle \right) \end{split}$$
 switch x and y
$$\| \nabla f(x) - \nabla f(y) \|_2^2 &\leq 2L \left(f(x) - f(y) - \langle \nabla f(y), x - y \rangle \right) \end{split}$$

Projected Gradient Descent (PGD)

Convergence tools **♦ ♦ ♦**

3. From the first order optimality conditions for the convex function $\nabla \varphi(y) = \nabla f(y) - \nabla f(x) = 0$. We can conclude, that for any x, the minimum of the function $\varphi(y)$ is at the point y=x. Therefore:

$$\varphi(x) \leq \varphi\left(y - \frac{1}{L}\nabla\varphi(y)\right) \leq \varphi(y) - \frac{1}{2L}\|\nabla\varphi(y)\|_2^2$$

4. Now, substitute $\varphi(y) = f(y) - \langle \nabla f(x), y \rangle$:

$$\begin{split} f(x) - \langle \nabla f(x), x \rangle &\leq f(y) - \langle \nabla f(x), y \rangle - \frac{1}{2L} \| \nabla f(y) - \nabla f(x) \|_2^2 \\ f(x) + \langle \nabla f(x), y - x \rangle + \frac{1}{2L} \| \nabla f(x) - \nabla f(y) \|_2^2 &\leq f(y) \\ \| \nabla f(y) - \nabla f(x) \|_2^2 &\leq 2L \left(f(y) - f(x) - \langle \nabla f(x), y - x \rangle \right) \end{split}$$
 switch x and y
$$\| \nabla f(x) - \nabla f(y) \|_2^2 &\leq 2L \left(f(x) - f(y) - \langle \nabla f(y), x - y \rangle \right) \end{split}$$

Projected Gradient Descent (PGD)

3. From the first order optimality conditions for the convex function $\nabla \varphi(y) = \nabla f(y) - \nabla f(x) = 0$. We can conclude, that for any x, the minimum of the function $\varphi(y)$ is at the point y=x. Therefore:

$$\varphi(x) \leq \varphi\left(y - \frac{1}{L}\nabla\varphi(y)\right) \leq \varphi(y) - \frac{1}{2L}\|\nabla\varphi(y)\|_2^2$$

4. Now, substitute $\varphi(y) = f(y) - \langle \nabla f(x), y \rangle$:

$$\begin{split} f(x) - \langle \nabla f(x), x \rangle &\leq f(y) - \langle \nabla f(x), y \rangle - \frac{1}{2L} \| \nabla f(y) - \nabla f(x) \|_2^2 \\ f(x) + \langle \nabla f(x), y - x \rangle + \frac{1}{2L} \| \nabla f(x) - \nabla f(y) \|_2^2 &\leq f(y) \\ \| \nabla f(y) - \nabla f(x) \|_2^2 &\leq 2L \left(f(y) - f(x) - \langle \nabla f(x), y - x \rangle \right) \\ \text{switch x and y} \quad \| \nabla f(x) - \nabla f(y) \|_2^2 &\leq 2L \left(f(x) - f(y) - \langle \nabla f(y), x - y \rangle \right) \end{split}$$

The lemma has been proved. From the first view it does not make a lot of geometrical sense, but we will use it as a convenient tool to bound the difference between gradients.

i Theorem

Let $f: \mathbb{R}^n \to \mathbb{R}$ be continuously differentiable on \mathbb{R}^n . Then, the function f is μ -strongly convex if and only if for any $x, y \in \mathbb{R}^d$ the following holds:

$$\begin{split} \text{Strongly convex case } \mu > 0 \quad & \langle \nabla f(x) - \nabla f(y), x - y \rangle \geq \mu \|x - y\|^2 \\ \text{Convex case } \mu = 0 \quad & \langle \nabla f(x) - \nabla f(y), x - y \rangle \geq 0 \end{split}$$

Proof

1. We will only give the proof for the strongly convex case, the convex one follows from it with setting $\mu = 0$. We start from necessity. For the strongly convex function

$$\begin{split} f(y) &\geq f(x) + \langle \nabla f(x), y - x \rangle + \frac{\mu}{2} \|x - y\|_2^2 \\ f(x) &\geq f(y) + \langle \nabla f(y), x - y \rangle + \frac{\mu}{2} \|x - y\|_2^2 \\ \text{sum } &\langle \nabla f(x) - \nabla f(y), x - y \rangle \geq \mu \|x - y\|^2 \end{split}$$

Projected Gradient Descent (PGD)

2. For the sufficiency we assume, that $\langle \nabla f(x) - \nabla f(y), x-y \rangle \geq \mu \|x-y\|^2$. Using Newton-Leibniz theorem $f(x) = f(y) + \int_0^1 \langle \nabla f(y + t(x - y)), x - y \rangle dt$:

2. For the sufficiency we assume, that $\langle \nabla f(x) - \nabla f(y), x-y \rangle \geq \mu \|x-y\|^2$. Using Newton-Leibniz theorem $f(x) = f(y) + \int_0^1 \langle \nabla f(y + t(x - y)), x - y \rangle dt$:

$$f(x) - f(y) - \langle \nabla f(y), x - y \rangle = \int_0^1 \langle \nabla f(y + t(x - y)), x - y \rangle dt - \langle \nabla f(y), x - y \rangle$$

2. For the sufficiency we assume, that $\langle \nabla f(x) - \nabla f(y), x - y \rangle \ge \mu \|x - y\|^2$. Using Newton-Leibniz theorem $f(x) = f(y) + \int_0^1 \langle \nabla f(y + t(x - y)), x - y \rangle dt$:

$$\begin{split} f(x) - f(y) - \langle \nabla f(y), x - y \rangle &= \int_0^1 \langle \nabla f(y + t(x - y)), x - y \rangle dt - \langle \nabla f(y), x - y \rangle \\ &\langle \nabla f(y), x - y \rangle = \int_0^1 \langle \nabla f(y), x - y \rangle dt \\ &= \int_0^1 \langle \nabla f(y + t(x - y)) - \nabla f(y), (x - y) \rangle dt \end{split}$$

 $f \to \min_{x,y,z}$ Projected Gradient Descent (PGD)

2. For the sufficiency we assume, that $\langle \nabla f(x) - \nabla f(y), x - y \rangle \ge \mu \|x - y\|^2$. Using Newton-Leibniz theorem $f(x) = f(y) + \int_0^1 \langle \nabla f(y + t(x - y)), x - y \rangle dt$:

$$\begin{split} f(x) - f(y) - \langle \nabla f(y), x - y \rangle &= \int_0^1 \langle \nabla f(y + t(x - y)), x - y \rangle dt - \langle \nabla f(y), x - y \rangle \\ \langle \nabla f(y), x - y \rangle &= \int_0^1 \langle \nabla f(y), x - y \rangle dt \\ &= \int_0^1 \langle \nabla f(y + t(x - y)) - \nabla f(y), (x - y) \rangle dt \\ &= \int_0^1 t^{-1} \langle \nabla f(y + t(x - y)) - \nabla f(y), t(x - y) \rangle dt \end{split}$$

 $f \to \min_{x,y,z}$ Projected Gradient Descent (PGD)

2. For the sufficiency we assume, that $\langle \nabla f(x) - \nabla f(y), x - y \rangle \ge \mu \|x - y\|^2$. Using Newton-Leibniz theorem $f(x) = f(y) + \int_0^1 \langle \nabla f(y + t(x - y)), x - y \rangle dt$:

$$\begin{split} f(x) - f(y) - \langle \nabla f(y), x - y \rangle &= \int_0^1 \langle \nabla f(y + t(x - y)), x - y \rangle dt - \langle \nabla f(y), x - y \rangle \\ \langle \nabla f(y), x - y \rangle &= \int_0^1 \langle \nabla f(y), x - y \rangle dt \\ &= \int_0^1 \langle \nabla f(y + t(x - y)) - \nabla f(y), (x - y) \rangle dt \\ &= \int_0^1 t^{-1} \langle \nabla f(y + t(x - y)) - \nabla f(y), t(x - y) \rangle dt \\ &\geq \int_0^1 t^{-1} \mu \|t(x - y)\|^2 dt \end{split}$$

2. For the sufficiency we assume, that $\langle \nabla f(x) - \nabla f(y), x - y \rangle \ge \mu \|x - y\|^2$. Using Newton-Leibniz theorem $f(x) = f(y) + \int_0^1 \langle \nabla f(y + t(x - y)), x - y \rangle dt$:

$$\begin{split} f(x) - f(y) - \langle \nabla f(y), x - y \rangle &= \int_0^1 \langle \nabla f(y + t(x - y)), x - y \rangle dt - \langle \nabla f(y), x - y \rangle \\ \langle \nabla f(y), x - y \rangle &= \int_0^1 \langle \nabla f(y), x - y \rangle dt \\ &= \int_0^1 \langle \nabla f(y + t(x - y)) - \nabla f(y), (x - y) \rangle dt \\ y + t(x - y) - y = t(x - y) \\ &= \int_0^1 t^{-1} \langle \nabla f(y + t(x - y)) - \nabla f(y), t(x - y) \rangle dt \\ &\geq \int_0^1 t^{-1} \mu \|t(x - y)\|^2 dt = \mu \|x - y\|^2 \int_0^1 t dt \end{split}$$

2. For the sufficiency we assume, that $\langle \nabla f(x) - \nabla f(y), x - y \rangle \ge \mu \|x - y\|^2$. Using Newton-Leibniz theorem $f(x) = f(y) + \int_0^1 \langle \nabla f(y + t(x - y)), x - y \rangle dt$:

2. For the sufficiency we assume, that $\langle \nabla f(x) - \nabla f(y), x - y \rangle \ge \mu \|x - y\|^2$. Using Newton-Leibniz theorem $f(x) = f(y) + \int_0^1 \langle \nabla f(y + t(x - y)), x - y \rangle dt$:

2. For the sufficiency we assume, that $\langle \nabla f(x) - \nabla f(y), x - y \rangle \ge \mu \|x - y\|^2$. Using Newton-Leibniz theorem $f(x) = f(y) + \int_0^1 \langle \nabla f(y + t(x - y)), x - y \rangle dt$:

$$\begin{split} f(x) - f(y) - \langle \nabla f(y), x - y \rangle &= \int_0^1 \langle \nabla f(y + t(x - y)), x - y \rangle dt - \langle \nabla f(y), x - y \rangle \\ &\langle \nabla f(y), x - y \rangle = \int_0^1 \langle \nabla f(y), x - y \rangle dt \\ &= \int_0^1 \langle \nabla f(y + t(x - y)) - \nabla f(y), (x - y) \rangle dt \\ &y + t(x - y) - y = t(x - y) \\ &= \int_0^1 t^{-1} \langle \nabla f(y + t(x - y)) - \nabla f(y), t(x - y) \rangle dt \\ &\geq \int_0^1 t^{-1} \mu \|t(x - y)\|^2 dt = \mu \|x - y\|^2 \int_0^1 t dt = \frac{\mu}{2} \|x - y\|_2^2 \end{split}$$

Thus, we have a strong convexity criterion satisfied

$$f(x) \geq f(y) + \langle \nabla f(y), x - y \rangle + \frac{\mu}{2} \|x - y\|_2^2$$

2. For the sufficiency we assume, that $\langle \nabla f(x) - \nabla f(y), x - y \rangle \ge \mu \|x - y\|^2$. Using Newton-Leibniz theorem $f(x) = f(y) + \int_0^1 \langle \nabla f(y + t(x - y)), x - y \rangle dt$:

Thus, we have a strong convexity criterion satisfied

$$f(x) \ge f(y) + \langle \nabla f(y), x - y \rangle + \frac{\mu}{2} ||x - y||_2^2$$
 or, equivivalently:

2. For the sufficiency we assume, that $\langle \nabla f(x) - \nabla f(y), x - y \rangle \ge \mu \|x - y\|^2$. Using Newton-Leibniz theorem $f(x) = f(y) + \int_0^1 \langle \nabla f(y + t(x - y)), x - y \rangle dt$:

$$\begin{split} f(x) - f(y) - \langle \nabla f(y), x - y \rangle &= \int_0^1 \langle \nabla f(y + t(x - y)), x - y \rangle dt - \langle \nabla f(y), x - y \rangle \\ \langle \nabla f(y), x - y \rangle &= \int_0^1 \langle \nabla f(y + t(x - y)) - \nabla f(y), (x - y) \rangle dt \\ &= \int_0^1 \langle \nabla f(y + t(x - y)) - \nabla f(y), (x - y) \rangle dt \\ &= \int_0^1 t^{-1} \langle \nabla f(y + t(x - y)) - \nabla f(y), t(x - y) \rangle dt \\ &\geq \int_0^1 t^{-1} \mu \|t(x - y)\|^2 dt = \mu \|x - y\|^2 \int_0^1 t dt = \frac{\mu}{2} \|x - y\|_2^2 \end{split}$$

Thus, we have a strong convexity criterion satisfied

$$f(x) \geq f(y) + \langle \nabla f(y), x - y \rangle + \frac{\mu}{2} \|x - y\|_2^2$$
 or, equivivalently:

switch x and y
$$-\langle \nabla f(x), x-y\rangle \leq -\left(f(x)-f(y)+\frac{\mu}{2}\|x-y\|_2^2\right)$$

i Theorem

Let $f:\mathbb{R}^n \to \mathbb{R}$ be convex and differentiable. Let $S\subseteq \mathbb{R}^n$ d be a closed convex set, and assume that there is a minimizer x^* of f over S; furthermore, suppose that f is smooth over S with parameter L. The Projected Gradient Descent algorithm with stepsize $\frac{1}{L}$ achieves the following convergence after iteration k>0:

$$f(x_k) - f^* \leq \frac{L\|x_0 - x^*\|_2^2}{2k}$$

i Theorem

Let $f:\mathbb{R}^n \to \mathbb{R}$ be convex and differentiable. Let $S\subseteq \mathbb{R}^n$ d be a closed convex set, and assume that there is a minimizer x^* of f over S; furthermore, suppose that f is smooth over S with parameter L. The Projected Gradient Descent algorithm with stepsize $\frac{1}{L}$ achieves the following convergence after iteration k>0:

$$f(x_k) - f^* \leq \frac{L\|x_0 - x^*\|_2^2}{2k}$$

1. Let's prove sufficient decrease lemma, assuming, that $y_k = x_k - \frac{1}{L}\nabla f(x_k)$ and cosine rule $2x^T y = \|x\|^2 + \|y\|^2 - \|x - y\|^2$:

i Theorem

Let $f:\mathbb{R}^n \to \mathbb{R}$ be convex and differentiable. Let $S\subseteq \mathbb{R}^n$ d be a closed convex set, and assume that there is a minimizer x^* of f over S; furthermore, suppose that f is smooth over S with parameter L. The Projected Gradient Descent algorithm with stepsize $\frac{1}{L}$ achieves the following convergence after iteration k>0:

$$f(x_k) - f^* \leq \frac{L\|x_0 - x^*\|_2^2}{2k}$$

1. Let's prove sufficient decrease lemma, assuming, that $y_k = x_k - \frac{1}{L}\nabla f(x_k)$ and cosine rule $2x^T y = \|x\|^2 + \|y\|^2 - \|x - y\|^2$:

$$\text{Smoothness:} \quad f(x_{k+1}) \leq f(x_k) + \langle \nabla f(x_k), x_{k+1} - x_k \rangle + \frac{L}{2} \|x_{k+1} - x_k\|^2$$

i Theorem

Let $f:\mathbb{R}^n \to \mathbb{R}$ be convex and differentiable. Let $S\subseteq \mathbb{R}^n$ d be a closed convex set, and assume that there is a minimizer x^* of f over S; furthermore, suppose that f is smooth over S with parameter L. The Projected Gradient Descent algorithm with stepsize $\frac{1}{L}$ achieves the following convergence after iteration k>0:

$$f(x_k) - f^* \leq \frac{L\|x_0 - x^*\|_2^2}{2k}$$

1. Let's prove sufficient decrease lemma, assuming, that $y_k = x_k - \frac{1}{L}\nabla f(x_k)$ and cosine rule $2x^Ty = \|x\|^2 + \|y\|^2 - \|x - y\|^2$:

Smoothness:
$$f(x_{k+1}) \leq f(x_k) + \langle \nabla f(x_k), x_{k+1} - x_k \rangle + \frac{L}{2} \|x_{k+1} - x_k\|^2$$

Method:
$$= f(x_k) - L\langle y_k - x_k, x_{k+1} - x_k \rangle + \frac{L}{2} \|x_{k+1} - x_k\|^2$$

(7)

Projected Gradient Descent (PGD)

i Theorem

Let $f:\mathbb{R}^n \to \mathbb{R}$ be convex and differentiable. Let $S\subseteq \mathbb{R}^n$ d be a closed convex set, and assume that there is a minimizer x^* of f over S; furthermore, suppose that f is smooth over S with parameter L. The Projected Gradient Descent algorithm with stepsize $\frac{1}{L}$ achieves the following convergence after iteration k>0:

$$f(x_k) - f^* \leq \frac{L\|x_0 - x^*\|_2^2}{2k}$$

1. Let's prove sufficient decrease lemma, assuming, that $y_k = x_k - \frac{1}{L}\nabla f(x_k)$ and cosine rule $2x^Ty = \|x\|^2 + \|y\|^2 - \|x - y\|^2$:

$$\text{Smoothness:} \quad f(x_{k+1}) \leq f(x_k) + \langle \nabla f(x_k), x_{k+1} - x_k \rangle + \frac{L}{2} \|x_{k+1} - x_k\|^2$$

Method:
$$= f(x_k) - L\langle y_k - x_k, x_{k+1} - x_k \rangle + \frac{L}{2} \|x_{k+1} - x_k\|^2$$

Cosine rule:
$$= f(x_k) - \frac{L}{2} \left(\|y_k - x_k\|^2 + \|x_{k+1} - x_k\|^2 - \|y_k - x_{k+1}\|^2 \right) + \frac{L}{2} \|x_{k+1} - x_k\|^2$$

Convergence rate for smooth and convex case \heartsuit \heartsuit

i Theorem

Let $f:\mathbb{R}^n\to\mathbb{R}$ be convex and differentiable. Let $S\subseteq\mathbb{R}^n$ d be a closed convex set, and assume that there is a minimizer x^* of f over S; furthermore, suppose that f is smooth over S with parameter L. The Projected Gradient Descent algorithm with stepsize $\frac{1}{L}$ achieves the following convergence after iteration k > 0:

$$f(x_k) - f^* \leq \frac{L\|x_0 - x^*\|_2^2}{2k}$$

1. Let's prove sufficient decrease lemma, assuming, that $y_k = x_k - \frac{1}{L}\nabla f(x_k)$ and cosine rule $2x^Ty = ||x||^2 + ||y||^2 - ||x - y||^2$:

Smoothness:
$$f(x, x) \le f(x, x) + |\nabla f(x, x)| + |\nabla f(x, x, x)|^2$$

 $\text{Smoothness:} \quad f(x_{k+1}) \leq f(x_k) + \langle \nabla f(x_k), x_{k+1} - x_k \rangle + \frac{L}{2} \|x_{k+1} - x_k\|^2$

$$\begin{aligned} & \text{Method:} & = f(x_k) - L \langle y_k - x_k, x_{k+1} - x_k \rangle + \frac{L}{2} \|x_{k+1} - x_k\|^2 \\ & \text{Cosine rule:} & = f(x_k) - \frac{L}{2} \left(\|y_k - x_k\|^2 + \|x_{k+1} - x_k\|^2 - \|y_k - x_{k+1}\|^2 \right) + \frac{L}{2} \|x_{k+1} - x_k\|^2 \end{aligned}$$

$$= f(x_k) - \frac{1}{2L} \|\nabla f(x_k)\|^2 + \frac{L}{2} \|y_k - x_{k+1}\|^2$$

Cosine rule:

(7)

2. Now we do not immediately have progress at each step. Let's use again cosine rule:

$$\begin{split} \left\langle \frac{1}{L} \nabla f(x_k), x_k - x^* \right\rangle &= \frac{1}{2} \left(\frac{1}{L^2} \| \nabla f(x_k) \|^2 + \| x_k - x^* \|^2 - \| x_k - x^* - \frac{1}{L} \nabla f(x_k) \|^2 \right) \\ \left\langle \nabla f(x_k), x_k - x^* \right\rangle &= \frac{L}{2} \left(\frac{1}{L^2} \| \nabla f(x_k) \|^2 + \| x_k - x^* \|^2 - \| y_k - x^* \|^2 \right) \end{split}$$

2. Now we do not immediately have progress at each step. Let's use again cosine rule:

$$\begin{split} \left\langle \frac{1}{L} \nabla f(x_k), x_k - x^* \right\rangle &= \frac{1}{2} \left(\frac{1}{L^2} \| \nabla f(x_k) \|^2 + \| x_k - x^* \|^2 - \| x_k - x^* - \frac{1}{L} \nabla f(x_k) \|^2 \right) \\ \left\langle \nabla f(x_k), x_k - x^* \right\rangle &= \frac{L}{2} \left(\frac{1}{L^2} \| \nabla f(x_k) \|^2 + \| x_k - x^* \|^2 - \| y_k - x^* \|^2 \right) \end{split}$$

3. We will use now projection property: $||x - \operatorname{proj}_S(y)||^2 + ||y - \operatorname{proj}_S(y)||^2 \le ||x - y||^2$ with $x = x^*, y = y_k$:

$$\begin{split} \|x^* - \mathrm{proj}_S(y_k)\|^2 + \|y_k - \mathrm{proj}_S(y_k)\|^2 &\leq \|x^* - y_k\|^2 \\ \|y_k - x^*\|^2 &\geq \|x^* - x_{k+1}\|^2 + \|y_k - x_{k+1}\|^2 \end{split}$$

2. Now we do not immediately have progress at each step. Let's use again cosine rule:

$$\begin{split} \left\langle \frac{1}{L} \nabla f(x_k), x_k - x^* \right\rangle &= \frac{1}{2} \left(\frac{1}{L^2} \| \nabla f(x_k) \|^2 + \| x_k - x^* \|^2 - \| x_k - x^* - \frac{1}{L} \nabla f(x_k) \|^2 \right) \\ \left\langle \nabla f(x_k), x_k - x^* \right\rangle &= \frac{L}{2} \left(\frac{1}{L^2} \| \nabla f(x_k) \|^2 + \| x_k - x^* \|^2 - \| y_k - x^* \|^2 \right) \end{split}$$

3. We will use now projection property: $\|x-\operatorname{proj}_S(y)\|^2 + \|y-\operatorname{proj}_S(y)\|^2 \leq \|x-y\|^2 \text{ with } x=x^*, y=y_k: x \in \mathbb{R}^n$

$$\begin{split} \|x^* - \mathrm{proj}_S(y_k)\|^2 + \|y_k - \mathrm{proj}_S(y_k)\|^2 &\leq \|x^* - y_k\|^2 \\ \|y_k - x^*\|^2 &\geq \|x^* - x_{k+1}\|^2 + \|y_k - x_{k+1}\|^2 \end{split}$$

4. Now, using convexity and previous part:

Projected Gradient Descent (PGD)

2. Now we do not immediately have progress at each step. Let's use again cosine rule:

$$\begin{split} \left\langle \frac{1}{L} \nabla f(x_k), x_k - x^* \right\rangle &= \frac{1}{2} \left(\frac{1}{L^2} \| \nabla f(x_k) \|^2 + \| x_k - x^* \|^2 - \| x_k - x^* - \frac{1}{L} \nabla f(x_k) \|^2 \right) \\ \left\langle \nabla f(x_k), x_k - x^* \right\rangle &= \frac{L}{2} \left(\frac{1}{L^2} \| \nabla f(x_k) \|^2 + \| x_k - x^* \|^2 - \| y_k - x^* \|^2 \right) \end{split}$$

3. We will use now projection property: $||x - \operatorname{proj}_S(y)||^2 + ||y - \operatorname{proj}_S(y)||^2 \le ||x - y||^2$ with $x = x^*, y = y_k$:

$$\begin{split} \|x^* - \mathrm{proj}_S(y_k)\|^2 + \|y_k - \mathrm{proj}_S(y_k)\|^2 &\leq \|x^* - y_k\|^2 \\ \|y_k - x^*\|^2 &\geq \|x^* - x_{k+1}\|^2 + \|y_k - x_{k+1}\|^2 \end{split}$$

4. Now, using convexity and previous part:

Convexity:
$$f(x_k) - f^* \le \langle \nabla f(x_k), x_k - x^* \rangle$$

2. Now we do not immediately have progress at each step. Let's use again cosine rule:

$$\begin{split} \left\langle \frac{1}{L} \nabla f(x_k), x_k - x^* \right\rangle &= \frac{1}{2} \left(\frac{1}{L^2} \| \nabla f(x_k) \|^2 + \| x_k - x^* \|^2 - \| x_k - x^* - \frac{1}{L} \nabla f(x_k) \|^2 \right) \\ \left\langle \nabla f(x_k), x_k - x^* \right\rangle &= \frac{L}{2} \left(\frac{1}{L^2} \| \nabla f(x_k) \|^2 + \| x_k - x^* \|^2 - \| y_k - x^* \|^2 \right) \end{split}$$

3. We will use now projection property: $\|x - \operatorname{proj}_{S}(y)\|^{2} + \|y - \operatorname{proj}_{S}(y)\|^{2} \leq \|x - y\|^{2}$ with $x = x^{*}, y = y_{k}$:

$$\begin{split} \|x^* - \mathrm{proj}_S(y_k)\|^2 + \|y_k - \mathrm{proj}_S(y_k)\|^2 &\leq \|x^* - y_k\|^2 \\ \|y_k - x^*\|^2 &\geq \|x^* - x_{k+1}\|^2 + \|y_k - x_{k+1}\|^2 \end{split}$$

4. Now, using convexity and previous part:

$$\begin{split} \text{Convexity:} & f(x_k) - f^* \leq \langle \nabla f(x_k), x_k - x^* \rangle \\ & \leq \frac{L}{2} \left(\frac{1}{L^2} \| \nabla f(x_k) \|^2 + \| x_k - x^* \|^2 - \| x_{k+1} - x^* \|^2 - \| y_k - x_{k+1} \|^2 \right) \end{split}$$

2. Now we do not immediately have progress at each step. Let's use again cosine rule:

$$\begin{split} \left\langle \frac{1}{L} \nabla f(x_k), x_k - x^* \right\rangle &= \frac{1}{2} \left(\frac{1}{L^2} \| \nabla f(x_k) \|^2 + \| x_k - x^* \|^2 - \| x_k - x^* - \frac{1}{L} \nabla f(x_k) \|^2 \right) \\ \left\langle \nabla f(x_k), x_k - x^* \right\rangle &= \frac{L}{2} \left(\frac{1}{L^2} \| \nabla f(x_k) \|^2 + \| x_k - x^* \|^2 - \| y_k - x^* \|^2 \right) \end{split}$$

3. We will use now projection property: $\|x-\operatorname{proj}_S(y)\|^2 + \|y-\operatorname{proj}_S(y)\|^2 \leq \|x-y\|^2 \text{ with } x=x^*, y=y_k: x \in \mathbb{R}^n$

$$\begin{split} \|x^* - \mathrm{proj}_S(y_k)\|^2 + \|y_k - \mathrm{proj}_S(y_k)\|^2 &\leq \|x^* - y_k\|^2 \\ \|y_k - x^*\|^2 &\geq \|x^* - x_{k+1}\|^2 + \|y_k - x_{k+1}\|^2 \end{split}$$

4. Now, using convexity and previous part:

$$\begin{split} \text{Convexity:} & f(x_k) - f^* \leq \langle \nabla f(x_k), x_k - x^* \rangle \\ & \leq \frac{L}{2} \left(\frac{1}{L^2} \| \nabla f(x_k) \|^2 + \| x_k - x^* \|^2 - \| x_{k+1} - x^* \|^2 - \| y_k - x_{k+1} \|^2 \right) \end{split}$$

 $\text{Sum for } i = 0, k - 1 \quad \sum_{i = 0}^{k - 1} \left[f(x_i) - f^* \right] \leq \sum_{i = 0}^{k - 1} \frac{1}{2L} \|\nabla f(x_i)\|^2 + \frac{L}{2} \|x_0 - x^*\|^2 - \frac{L}{2} \sum_{i = 0}^{i - 1} \|y_i - x_{i + 1}\|^2$

$$\sum_{i=0}^{k-1} \left[f(x_i) - f^* \right] \leq \sum_{i=0}^{k-1} \left[f(x_i) - f(x_{i+1}) + \frac{L}{2} \|y_i - x_{i+1}\|^2 \right] + \frac{L}{2} \|x_0 - x^*\|^2 - \frac{L}{2} \sum_{i=0}^{i-1} \|y_i - x_{i+1}\|^2$$

$$\begin{split} \sum_{i=0}^{k-1} \left[f(x_i) - f^* \right] & \leq \sum_{i=0}^{k-1} \left[f(x_i) - f(x_{i+1}) + \frac{L}{2} \|y_i - x_{i+1}\|^2 \right] + \frac{L}{2} \|x_0 - x^*\|^2 - \frac{L}{2} \sum_{i=0}^{i-1} \|y_i - x_{i+1}\|^2 \\ & \leq f(x_0) - f(x_k) + \frac{L}{2} \sum_{i=0}^{i-1} \|y_i - x_{i+1}\|^2 + \frac{L}{2} \|x_0 - x^*\|^2 - \frac{L}{2} \sum_{i=0}^{i-1} \|y_i - x_{i+1}\|^2 \end{split}$$

$$\begin{split} \sum_{i=0}^{k-1} \left[f(x_i) - f^* \right] & \leq \sum_{i=0}^{k-1} \left[f(x_i) - f(x_{i+1}) + \frac{L}{2} \|y_i - x_{i+1}\|^2 \right] + \frac{L}{2} \|x_0 - x^*\|^2 - \frac{L}{2} \sum_{i=0}^{i-1} \|y_i - x_{i+1}\|^2 \\ & \leq f(x_0) - f(x_k) + \frac{L}{2} \sum_{i=0}^{i-1} \|y_i - x_{i+1}\|^2 + \frac{L}{2} \|x_0 - x^*\|^2 - \frac{L}{2} \sum_{i=0}^{i-1} \|y_i - x_{i+1}\|^2 \\ & \leq f(x_0) - f(x_k) + \frac{L}{2} \|x_0 - x^*\|^2 \end{split}$$

$$\begin{split} \sum_{i=0}^{k-1} \left[f(x_i) - f^* \right] & \leq \sum_{i=0}^{k-1} \left[f(x_i) - f(x_{i+1}) + \frac{L}{2} \|y_i - x_{i+1}\|^2 \right] + \frac{L}{2} \|x_0 - x^*\|^2 - \frac{L}{2} \sum_{i=0}^{i-1} \|y_i - x_{i+1}\|^2 \\ & \leq f(x_0) - f(x_k) + \frac{L}{2} \sum_{i=0}^{i-1} \|y_i - x_{i+1}\|^2 + \frac{L}{2} \|x_0 - x^*\|^2 - \frac{L}{2} \sum_{i=0}^{i-1} \|y_i - x_{i+1}\|^2 \\ & \leq f(x_0) - f(x_k) + \frac{L}{2} \|x_0 - x^*\|^2 \\ & \sum_{i=0}^{k-1} f(x_i) - kf^* \leq f(x_0) - f(x_k) + \frac{L}{2} \|x_0 - x^*\|^2 \end{split}$$

$$\begin{split} \sum_{i=0}^{k-1} \left[f(x_i) - f^* \right] & \leq \sum_{i=0}^{k-1} \left[f(x_i) - f(x_{i+1}) + \frac{L}{2} \|y_i - x_{i+1}\|^2 \right] + \frac{L}{2} \|x_0 - x^*\|^2 - \frac{L}{2} \sum_{i=0}^{i-1} \|y_i - x_{i+1}\|^2 \\ & \leq f(x_0) - f(x_k) + \frac{L}{2} \sum_{i=0}^{i-1} \|y_i - x_{i+1}\|^2 + \frac{L}{2} \|x_0 - x^*\|^2 - \frac{L}{2} \sum_{i=0}^{i-1} \|y_i - x_{i+1}\|^2 \\ & \leq f(x_0) - f(x_k) + \frac{L}{2} \|x_0 - x^*\|^2 \\ & \sum_{i=0}^{k-1} f(x_i) - kf^* \leq f(x_0) - f(x_k) + \frac{L}{2} \|x_0 - x^*\|^2 \\ & \sum_{i=0}^{k} \left[f(x_i) - f^* \right] \leq \frac{L}{2} \|x_0 - x^*\|^2 \end{split}$$

6. From the sufficient decrease inequality

$$f(x_{k+1}) \leq f(x_k) - \frac{1}{2L} \|\nabla f(x_k)\|^2 + \frac{L}{2} \|y_k - x_{k+1}\|^2,$$

6. From the sufficient decrease inequality

$$f(x_{k+1}) \leq f(x_k) - \frac{1}{2L} \|\nabla f(x_k)\|^2 + \frac{L}{2} \|y_k - x_{k+1}\|^2,$$

6. From the sufficient decrease inequality

$$f(x_{k+1}) \leq f(x_k) - \frac{1}{2L} \|\nabla f(x_k)\|^2 + \frac{L}{2} \|y_k - x_{k+1}\|^2,$$

we use the fact that $x_{k+1} = \operatorname{proj}_S(y_k)$. By definition of projection,

$$\|y_k - x_{k+1}\| \leq \|y_k - x_k\|,$$

6. From the sufficient decrease inequality

$$f(x_{k+1}) \leq f(x_k) - \frac{1}{2L} \|\nabla f(x_k)\|^2 + \frac{L}{2} \|y_k - x_{k+1}\|^2,$$

we use the fact that $x_{k+1} = \operatorname{proj}_{S}(y_{k})$. By definition of projection,

$$\|y_k - x_{k+1}\| \le \|y_k - x_k\|,$$

and recall that $y_k = x_k - \frac{1}{L} \nabla f(x_k)$ implies $||y_k - x_k|| = \frac{1}{L} ||\nabla f(x_k)||$. Hence

$$\frac{L}{2} \, \|y_k - x_{k+1}\|^2 \leq \frac{L}{2} \, \|y_k - x_k\|^2 = \frac{L}{2} \, \frac{1}{L^2} \, \|\nabla f(x_k)\|^2 = \frac{1}{2L} \, \|\nabla f(x_k)\|^2.$$

6. From the sufficient decrease inequality

$$f(x_{k+1}) \leq f(x_k) - \frac{1}{2L} \|\nabla f(x_k)\|^2 + \frac{L}{2} \|y_k - x_{k+1}\|^2,$$

we use the fact that $x_{k+1} = \operatorname{proj}_S(y_k)$. By definition of projection,

$$\|y_k - x_{k+1}\| \le \|y_k - x_k\|,$$

and recall that $y_k = x_k - \frac{1}{L} \nabla f(x_k)$ implies $||y_k - x_k|| = \frac{1}{L} ||\nabla f(x_k)||$. Hence

$$\frac{L}{2} \, \|y_k - x_{k+1}\|^2 \leq \frac{L}{2} \, \|y_k - x_k\|^2 = \frac{L}{2} \, \frac{1}{L^2} \, \|\nabla f(x_k)\|^2 = \frac{1}{2L} \, \|\nabla f(x_k)\|^2.$$

Substitute back into (*):

$$f(x_{k+1}) \le f(x_k) - \frac{1}{2I} \|\nabla f(x_k)\|^2 + \frac{1}{2I} \|\nabla f(x_k)\|^2 = f(x_k).$$

6. From the sufficient decrease inequality

$$f(x_{k+1}) \leq f(x_k) - \frac{1}{2L} \|\nabla f(x_k)\|^2 + \frac{L}{2} \|y_k - x_{k+1}\|^2,$$

we use the fact that $x_{k+1} = \operatorname{proj}_S(y_k)$. By definition of projection,

$$||y_k - x_{k+1}|| \le ||y_k - x_k||,$$

and recall that $y_k = x_k - \frac{1}{L} \nabla f(x_k)$ implies $||y_k - x_k|| = \frac{1}{L} ||\nabla f(x_k)||$. Hence

$$\frac{L}{2} \, \|y_k - x_{k+1}\|^2 \leq \frac{L}{2} \, \|y_k - x_k\|^2 = \frac{L}{2} \, \frac{1}{L^2} \, \|\nabla f(x_k)\|^2 = \frac{1}{2L} \, \|\nabla f(x_k)\|^2.$$

Substitute back into (*):

$$f(x_{k+1}) \le f(x_k) - \frac{1}{2I} \|\nabla f(x_k)\|^2 + \frac{1}{2I} \|\nabla f(x_k)\|^2 = f(x_k).$$

Hence

$$f(x_{k+1}) \le f(x_k)$$
 for each k ,

so $\{f(x_k)\}$ is a monotonically nonincreasing sequence.

7. Final convergence bound From step 5, we have already established

$$\sum_{i=0}^{k-1} \big[f(x_i) - f^* \big] \leq \frac{L}{2} \|x_0 - x^*\|_2^2.$$

7. Final convergence bound From step 5, we have already established

$$\sum_{i=0}^{k-1} \big[f(x_i) - f^* \big] \leq \frac{L}{2} \|x_0 - x^*\|_2^2.$$

7. Final convergence bound From step 5, we have already established

$$\sum_{i=0}^{k-1} [f(x_i) - f^*] \leq \frac{L}{2} \|x_0 - x^*\|_2^2.$$

Since $f(x_i)$ decreases in i, in particular $f(x_k) \leq f(x_i)$ for all $i \leq k$. Therefore

$$k\left[f(x_k) - f^*\right] \leq \sum_{i=0}^{k-1} [f(x_i) - f^*] \leq \frac{L}{2} \|x_0 - x^*\|_2^2,$$

7. Final convergence bound From step 5, we have already established

$$\sum_{i=0}^{k-1} [f(x_i) - f^*] \leq \frac{L}{2} \|x_0 - x^*\|_2^2.$$

Since $f(x_i)$ decreases in i, in particular $f(x_k) \leq f(x_i)$ for all $i \leq k$. Therefore

$$k\left[f(x_k) - f^*\right] \leq \sum_{i=0}^{k-1} [f(x_i) - f^*] \leq \frac{L}{2} \|x_0 - x^*\|_2^2,$$

which immediately gives

$$f(x_k) - f^* \le \frac{L\|x_0 - x^*\|_2^2}{2k}.$$

This completes the proof of the $\mathcal{O}(\frac{1}{k})$ convergence rate for convex and L-smooth f under projection constraints.

i Theorem

Let $f:\mathbb{R}^n\to\mathbb{R}$ be μ -strongly convex. Let $S\subset\mathbb{R}^n$ d be a closed convex set, and assume that there is a minimizer x^* of f over S; furthermore, suppose that f is smooth over S with parameter L. The Projected Gradient Descent algorithm with stepsize $\alpha \leq \frac{1}{L}$ achieves the following convergence after iteration k > 0:

$$\|x_k - x^*\|_2^2 \leq \left(1 - \alpha \mu\right)^k \|x_0 - x^*\|_2^2$$

Proof

1. We first prove the stationary point property: $\operatorname{proj}_{S}(x^* - \alpha \nabla f(x^*)) = x^*$.

This follows from the projection criterion and the first-order optimality condition for x^* . Let $y = x^* - \alpha \nabla f(x^*)$. We need to show $\langle y - x^*, x - x^* \rangle < 0$ for all $x \in S$.

$$\langle (x^* - \alpha \nabla f(x^*)) - x^*, x - x^* \rangle = -\alpha \langle \nabla f(x^*), x - x^* \rangle < 0$$

The inequality holds because $\alpha > 0$ and $\langle \nabla f(x^*), x - x^* \rangle \geq 0$ is the optimality condition for x^* .

Convergence rate for smooth strongly convex case 🗘 🗘

 $1. \ \,$ Considering the distance to the solution and using the stationary point property:

$$\|x_{k+1} - x^*\|_2^2 = \|\mathrm{proj}_S(x_k - \alpha \nabla f(x_k)) - x^*\|_2^2$$

$$\begin{split} \|x_{k+1} - x^*\|_2^2 &= \|\text{proj}_S(x_k - \alpha \nabla f(x_k)) - x^*\|_2^2 \\ \text{stationary point property} &= \|\text{proj}_S(x_k - \alpha \nabla f(x_k)) - \text{proj}_S(x^* - \alpha \nabla f(x^*))\|_2^2 \end{split}$$

$$\begin{split} \|x_{k+1} - x^*\|_2^2 &= \|\mathrm{proj}_S(x_k - \alpha \nabla f(x_k)) - x^*\|_2^2 \\ \text{stationary point property} &= \|\mathrm{proj}_S(x_k - \alpha \nabla f(x_k)) - \mathrm{proj}_S(x^* - \alpha \nabla f(x^*))\|_2^2 \\ \text{nonexpansiveness} &\leq \|x_k - \alpha \nabla f(x_k) - (x^* - \alpha \nabla f(x^*))\|_2^2 \end{split}$$

$$\begin{split} \|x_{k+1} - x^*\|_2^2 &= \|\operatorname{proj}_S(x_k - \alpha \nabla f(x_k)) - x^*\|_2^2 \\ \text{stationary point property} &= \|\operatorname{proj}_S(x_k - \alpha \nabla f(x_k)) - \operatorname{proj}_S(x^* - \alpha \nabla f(x^*))\|_2^2 \\ &\quad \operatorname{nonexpansiveness} \leq \|x_k - \alpha \nabla f(x_k) - (x^* - \alpha \nabla f(x^*))\|_2^2 \\ &= \|x_k - x^*\|^2 - 2\alpha \langle \nabla f(x_k) - \nabla f(x^*), x_k - x^* \rangle + \alpha^2 \|\nabla f(x_k) - \nabla f(x^*)\|_2^2 \end{split}$$

1. Considering the distance to the solution and using the stationary point property:

$$\begin{split} \|x_{k+1} - x^*\|_2^2 &= \|\operatorname{proj}_S(x_k - \alpha \nabla f(x_k)) - x^*\|_2^2 \\ \text{stationary point property} &= \|\operatorname{proj}_S(x_k - \alpha \nabla f(x_k)) - \operatorname{proj}_S(x^* - \alpha \nabla f(x^*))\|_2^2 \\ \text{nonexpansiveness} &\leq \|x_k - \alpha \nabla f(x_k) - (x^* - \alpha \nabla f(x^*))\|_2^2 \\ &= \|x_k - x^*\|^2 - 2\alpha \langle \nabla f(x_k) - \nabla f(x^*), x_k - x^* \rangle + \alpha^2 \|\nabla f(x_k) - \nabla f(x^*)\|_2^2 \end{split}$$

2. Now we use smoothness from the convergence tools and strong convexity:

1. Considering the distance to the solution and using the stationary point property:

$$\begin{split} \|x_{k+1} - x^*\|_2^2 &= \|\operatorname{proj}_S(x_k - \alpha \nabla f(x_k)) - x^*\|_2^2 \\ \text{stationary point property} &= \|\operatorname{proj}_S(x_k - \alpha \nabla f(x_k)) - \operatorname{proj}_S(x^* - \alpha \nabla f(x^*))\|_2^2 \\ & \text{nonexpansiveness} \leq \|x_k - \alpha \nabla f(x_k) - (x^* - \alpha \nabla f(x^*))\|_2^2 \\ &= \|x_k - x^*\|^2 - 2\alpha \langle \nabla f(x_k) - \nabla f(x^*), x_k - x^* \rangle + \alpha^2 \|\nabla f(x_k) - \nabla f(x^*)\|_2^2 \end{split}$$

2. Now we use smoothness from the convergence tools and strong convexity:

smoothness
$$\|\nabla f(x_k) - \nabla f(x^*)\|_2^2 \leq 2L\left(f(x_k) - f(x^*) - \left\langle \nabla f(x^*), x_k - x^* \right\rangle\right)$$

1. Considering the distance to the solution and using the stationary point property:

$$\begin{split} \|x_{k+1} - x^*\|_2^2 &= \|\operatorname{proj}_S(x_k - \alpha \nabla f(x_k)) - x^*\|_2^2 \\ \text{stationary point property} &= \|\operatorname{proj}_S(x_k - \alpha \nabla f(x_k)) - \operatorname{proj}_S(x^* - \alpha \nabla f(x^*))\|_2^2 \\ &\quad \operatorname{nonexpansiveness} \leq \|x_k - \alpha \nabla f(x_k) - (x^* - \alpha \nabla f(x^*))\|_2^2 \\ &= \|x_k - x^*\|^2 - 2\alpha \langle \nabla f(x_k) - \nabla f(x^*), x_k - x^* \rangle + \alpha^2 \|\nabla f(x_k) - \nabla f(x^*)\|_2^2 \end{split}$$

2. Now we use smoothness from the convergence tools and strong convexity:

$$\begin{aligned} &\text{smoothness} \quad \|\nabla f(x_k) - \nabla f(x^*)\|_2^2 \leq 2L\left(f(x_k) - f(x^*) - \langle \nabla f(x^*), x_k - x^* \rangle\right) \\ &\text{strong convexity} \quad - \langle \nabla f(x_k) - \nabla f(x^*), x_k - x^* \rangle \leq - \left(f(x_k) - f(x^*) + \frac{\mu}{2}\|x_k - x^*\|_2^2\right) - \langle \nabla f(x^*), x_k - x^* \rangle \end{aligned}$$

3. Substitute it:

3. Substitute it:

$$\begin{split} \|x_{k+1} - x^*\|_2^2 & \leq \|x_k - x^*\|^2 - 2\alpha \left(f(x_k) - f(x^*) + \frac{\mu}{2} \|x_k - x^*\|_2^2 \right) - 2\alpha \langle \nabla f(x^*), x_k - x^* \rangle + \\ & + \alpha^2 2L \left(f(x_k) - f(x^*) - \langle \nabla f(x^*), x_k - x^* \rangle \right) \end{split}$$

3. Substitute it:

$$\begin{split} \|x_{k+1} - x^*\|_2^2 & \leq \|x_k - x^*\|^2 - 2\alpha \left(f(x_k) - f(x^*) + \frac{\mu}{2} \|x_k - x^*\|_2^2 \right) - 2\alpha \langle \nabla f(x^*), x_k - x^* \rangle + \\ & + \alpha^2 2L \left(f(x_k) - f(x^*) - \langle \nabla f(x^*), x_k - x^* \rangle \right) \\ & \leq (1 - \alpha \mu) \|x_k - x^*\|^2 + 2\alpha (\alpha L - 1) \left(f(x_k) - f(x^*) - \langle \nabla f(x^*), x_k - x^* \rangle \right) \end{split}$$

3. Substitute it:

$$\begin{split} \|x_{k+1} - x^*\|_2^2 & \leq \|x_k - x^*\|^2 - 2\alpha \left(f(x_k) - f(x^*) + \frac{\mu}{2} \|x_k - x^*\|_2^2 \right) - 2\alpha \langle \nabla f(x^*), x_k - x^* \rangle + \\ & + \alpha^2 2L \left(f(x_k) - f(x^*) - \langle \nabla f(x^*), x_k - x^* \rangle \right) \\ & \leq (1 - \alpha \mu) \|x_k - x^*\|^2 + 2\alpha (\alpha L - 1) \left(f(x_k) - f(x^*) - \langle \nabla f(x^*), x_k - x^* \rangle \right) \end{split}$$

4. Due to convexity of $f: f(x_k) - f(x^*) - \langle \nabla f(x^*), x_k - x^* \rangle \ge 0$. Therefore, if we use $\alpha \le \frac{1}{L}$:

$$\|x_{k+1} - x^*\|_2^2 \leq (1 - \alpha \mu) \|x_k - x^*\|^2,$$

which is exactly linear convergence of the method with up to $1-\frac{\mu}{L}$ convergence rate.

 $f \to \min_{x,y,z}$ Projected Gradient Descent (PGD)

Frank-Wolfe Method

Figure 11: Marguerite Straus Frank (1927-2024)

Figure 12: Philip Wolfe (1927-2016)

Figure 13: Illustration of Frank-Wolfe (conditional gradient) algorithm

Figure 14: Illustration of Frank-Wolfe (conditional gradient) algorithm

⊕ ೧ **ø**

Figure 15: Illustration of Frank-Wolfe (conditional gradient) algorithm

♥ ೧ Ø

Figure 16: Illustration of Frank-Wolfe (conditional gradient) algorithm

♥ ೧ Ø

Figure 17: Illustration of Frank-Wolfe (conditional gradient) algorithm

♥ ೧ 0

Figure 18: Illustration of Frank-Wolfe (conditional gradient) algorithm

♥ ೧ Ø

Figure 19: Illustration of Frank-Wolfe (conditional gradient) algorithm

♥ ೧ Ø

$$\begin{split} y_k &= \arg\min_{x \in S} f^I_{x_k}(x) = \arg\min_{x \in S} \langle \nabla f(x_k), x \rangle \\ x_{k+1} &= \gamma_k x_k + (1 - \gamma_k) y_k \end{split}$$

Figure 20: Illustration of Frank-Wolfe (conditional gradient) algorithm

Convergence rate for smooth and convex case \heartsuit \heartsuit

i Theorem

Let $f:\mathbb{R}^n \to \mathbb{R}$ be convex and differentiable. Let $S\subseteq \mathbb{R}^n$ be a closed convex set, and assume that there is a minimizer x^* of f over S; furthermore, suppose that f is smooth over S with parameter L. The Frank-Wolfe algorithm with step size $\gamma_k = \frac{k-1}{k+1}$ achieves the following convergence after iteration k>0:

$$f(x_k) - f^* \leq \frac{2LR^2}{k+1}$$

where $R = \max_{x,y \in S} \|x-y\|$ is the diameter of the set S.

Frank-Wolfe Method

i Theorem

Let $f:\mathbb{R}^n \to \mathbb{R}$ be convex and differentiable. Let $S\subseteq \mathbb{R}^n$ be a closed convex set, and assume that there is a minimizer x^* of f over S; furthermore, suppose that f is smooth over S with parameter L. The Frank-Wolfe algorithm with step size $\gamma_k = \frac{k-1}{k+1}$ achieves the following convergence after iteration k>0:

$$f(x_k) - f^* \leq \frac{2LR^2}{k+1}$$

where $R = \max_{x,y \in S} \|x - y\|$ is the diameter of the set S.

1. By L-smoothness of f, we have:

$$\begin{split} f\left(x_{k+1}\right) - f\left(x_{k}\right) &\leq \left\langle \nabla f\left(x_{k}\right), x_{k+1} - x_{k}\right\rangle + \frac{L}{2}\left\|x_{k+1} - x_{k}\right\|^{2} \\ &= \left(1 - \gamma_{k}\right) \left\langle \nabla f\left(x_{k}\right), y_{k} - x_{k}\right\rangle + \frac{L(1 - \gamma_{k})^{2}}{2}\left\|y_{k} - x_{k}\right\|^{2} \end{split}$$

2. By convexity of f, for any $x \in S$, including x^* :

$$\langle \nabla f(x_k), x - x_k \rangle \leq f(x) - f(x_k)$$

In particular, for $x = x^*$:

$$\langle \nabla f(x_k), x^* - x_k \rangle \leq f(x^*) - f(x_k)$$

2. By convexity of f, for any $x \in S$, including x^* :

$$\langle \nabla f(x_k), x - x_k \rangle \leq f(x) - f(x_k)$$

In particular, for $x = x^*$:

$$\langle \nabla f(x_k), x^* - x_k \rangle \leq f(x^*) - f(x_k)$$

3. By definition of y_k , we have $\langle \nabla f(x_k), y_k \rangle \leq \langle \nabla f(x_k), x^* \rangle$, thus:

$$\langle \nabla f(x_k), y_k - x_k \rangle \leq \langle \nabla f(x_k), x^* - x_k \rangle \leq f(x^*) - f(x_k)$$

2. By convexity of f, for any $x \in S$, including x^* :

$$\langle \nabla f(x_k), x - x_k \rangle \leq f(x) - f(x_k)$$

In particular, for $x = x^*$:

$$\langle \nabla f(x_k), x^* - x_k \rangle \leq f(x^*) - f(x_k)$$

3. By definition of y_k , we have $\langle \nabla f(x_k), y_k \rangle \leq \langle \nabla f(x_k), x^* \rangle$, thus:

$$\langle \nabla f(x_k), y_k - x_k \rangle \leq \langle \nabla f(x_k), x^* - x_k \rangle \leq f(x^*) - f(x_k)$$

4. Combining the above inequalities:

$$\begin{split} f\left(x_{k+1}\right) - f\left(x_{k}\right) &\leq \left(1 - \gamma_{k}\right) \left\langle \nabla f\left(x_{k}\right), y_{k} - x_{k}\right\rangle + \frac{L(1 - \gamma_{k})^{2}}{2} \left\|y_{k} - x_{k}\right\|^{2} \\ &\leq \left(1 - \gamma_{k}\right) \left(f(x^{*}) - f(x_{k})\right) + \frac{L(1 - \gamma_{k})^{2}}{2} R^{2} \end{split}$$

2. By convexity of f, for any $x \in S$, including x^* :

$$\langle \nabla f(x_k), x - x_k \rangle \leq f(x) - f(x_k)$$

In particular, for $x = x^*$:

$$\langle \nabla f(x_k), x^* - x_k \rangle \leq f(x^*) - f(x_k)$$

3. By definition of y_k , we have $\langle \nabla f(x_k), y_k \rangle \leq \langle \nabla f(x_k), x^* \rangle$, thus:

$$\langle \nabla f(x_k), y_k - x_k \rangle \le \langle \nabla f(x_k), x^* - x_k \rangle \le f(x^*) - f(x_k)$$

4. Combining the above inequalities:

$$\begin{split} f\left(x_{k+1}\right) - f\left(x_{k}\right) &\leq \left(1 - \gamma_{k}\right) \left\langle \nabla f\left(x_{k}\right), y_{k} - x_{k}\right\rangle + \frac{L(1 - \gamma_{k})^{2}}{2} \left\|y_{k} - x_{k}\right\|^{2} \\ &\leq \left(1 - \gamma_{k}\right) \left(f(x^{*}) - f(x_{k})\right) + \frac{L(1 - \gamma_{k})^{2}}{2} R^{2} \end{split}$$

5. Rearranging terms:

$$f\left(x_{k+1}\right) - f(x^*) \leq \gamma_k \left(f(x_k) - f(x^*)\right) + (1 - \gamma_k)^2 \frac{LR^2}{2}$$

6. Denoting
$$\delta_k = \frac{f(x_k) - f(x^*)}{LR^2}$$
, we get:

$$\delta_{k+1} \le \gamma_k \delta_k + \frac{(1-\gamma_k)^2}{2} = \frac{k-1}{k+1} \delta_k + \frac{2}{(k+1)^2}$$

6. Denoting
$$\delta_k = \frac{f(x_k) - f(x^*)}{I \cdot D^2}$$
, we get:

$$\delta_{k+1} \le \gamma_k \delta_k + \frac{(1 - \gamma_k)^2}{2} = \frac{k - 1}{k + 1} \delta_k + \frac{2}{(k + 1)^2}$$

7. We will prove that $\delta_k \leq \frac{2}{k+1}$ by induction.

which gives us the desired result:

$$f(x_k) - f^* \le \frac{2LR^2}{k+1}$$

6. Denoting $\delta_k = \frac{f(x_k) - f(x^*)}{I \cdot D^2}$, we get:

$$\delta_{k+1} \le \gamma_k \delta_k + \frac{(1 - \gamma_k)^2}{2} = \frac{k - 1}{k + 1} \delta_k + \frac{2}{(k + 1)^2}$$

- 7. We will prove that $\delta_k \leq \frac{2}{k+1}$ by induction.
 - Base: $\delta_2 \le \frac{1}{2} < \frac{2}{2}$

which gives us the desired result:

$$f(x_k) - f^* \le \frac{2LR^2}{k+1}$$

6. Denoting $\delta_k = \frac{f(x_k) - f(x^*)}{I \cdot D^2}$, we get:

$$\delta_{k+1} \leq \gamma_k \delta_k + \frac{(1-\gamma_k)^2}{2} = \frac{k-1}{k+1} \delta_k + \frac{2}{(k+1)^2}$$

- 7. We will prove that $\delta_k \leq \frac{2}{k+1}$ by induction.
 - Base: $\delta_2 \le \frac{1}{2} < \frac{2}{3}$
 - Assume $\delta_k \leq \frac{2}{k+1}$

which gives us the desired result:

$$f(x_k) - f^* \le \frac{2LR^2}{k+1}$$

6. Denoting $\delta_k = \frac{f(x_k) - f(x^*)}{I R^2}$, we get:

$$\delta_{k+1} \le \gamma_k \delta_k + \frac{(1-\gamma_k)^2}{2} = \frac{k-1}{k+1} \delta_k + \frac{2}{(k+1)^2}$$

- 7. We will prove that $\delta_k \leq \frac{2}{k+1}$ by induction.
 - Base: $\delta_2 \le \frac{1}{2} < \frac{2}{3}$
 - Assume $\delta_k \leq \frac{2}{k+1}$
 - Then $\delta_{k+1} \leq \frac{k-1}{k+1} \cdot \frac{2}{k+1} + \frac{2}{(k+1)^2} = \frac{2k}{k^2+2k+1} < \frac{2}{k+2}$

which gives us the desired result:

$$f(x_k) - f^* \le \frac{2LR^2}{k+1}$$

Lower bound for Frank-Wolfe method ²

i Theorem

Consider any algorithm that accesses the feasible set $S \subseteq \mathbb{R}^n$ only via a linear minimization oracle (LMO). Let the diameter of the set S be R. There exists an L-smooth strongly convex function $f: \mathbb{R}^n \to \mathbb{R}$ such that this algorithm requires at least

$$\min\left(\frac{n}{2}, \frac{LR^2}{16\varepsilon}\right)$$

iterations (i.e., calls to the LMO) to construct a point $\hat{x} \in S$ with $f(\hat{x}) - \min_{x \in S} f(x) \le \varepsilon$. The lower bound applies both for convex and strongly convex functions.

Lower bound for Frank-Wolfe method ²

i Theorem

Consider any algorithm that accesses the feasible set $S \subseteq \mathbb{R}^n$ only via a linear minimization oracle (LMO). Let the diameter of the set S be R. There exists an L-smooth strongly convex function $f: \mathbb{R}^n \to \mathbb{R}$ such that this algorithm requires at least

$$\min\left(\frac{n}{2}, \frac{LR^2}{16\varepsilon}\right)$$

iterations (i.e., calls to the LMO) to construct a point $\hat{x} \in S$ with $f(\hat{x}) - \min_{x \in S} f(x) \leq \varepsilon$. The lower bound applies both for convex and strongly convex functions.

Sketch of the proof. Consider the following optimization problem:

$$\min_{x \in S} f(x) = \min_{x \in S} \frac{1}{2} ||x||_2^2$$

Frank-Wolfe Method

$$S = \left\{ x \in \mathbb{R}^n \mid x \ge 0, \ \sum_{i=1}^n x_i = 1 \right\}$$

Note. that:

- *f* is 1-smooth:
- the diameter of S is R=2:
- f is strongly convex.

² The Complexity of Large-scale Convex Programming under a Linear Optimization Oracle

1. The optimal solution is

$$x^* = \frac{1}{n} \mathbf{1} = \frac{1}{n} \sum_{i=1}^n e_i, \quad \text{and} \quad f(x^*) = \frac{1}{2n},$$

where $e_i = (0,\dots,0,\underbrace{1}_{\text{position }i},0,\dots,0)^\top$ is the i-th standard basis vector.

Lower bound for Frank-Wolfe method ³ *

1. The optimal solution is

$$x^* = \frac{1}{n}\mathbf{1} = \frac{1}{n}\sum_{i=1}^n e_i, \quad \text{and} \quad f(x^*) = \frac{1}{2n},$$

where $e_i = (0,\dots,0,\underbrace{1}_{\text{position }i},0,\dots,0)^{ op}$ is the i-th standard basis vector.

2. A linear minimization oracle (LMO) over S returns a vertex e_i . After k iterations, the method will have discovered at most k different basis vectors e_{i_1}, \dots, e_{i_k} . The best convex combination one can form is

$$\hat{x} = \frac{1}{k} \sum_{i=1}^{k} e_{i_j}.$$

1. The optimal solution is

$$x^* = \frac{1}{n}\mathbf{1} = \frac{1}{n}\sum_{i=1}^n e_i, \quad \text{and} \quad f(x^*) = \frac{1}{2n},$$

where $e_i = (0,\dots,0,\underbrace{1}_{\text{position }i},0,\dots,0)^{\top}$ is the i-th standard basis vector.

2. A linear minimization oracle (LMO) over S returns a vertex e_i . After k iterations, the method will have discovered at most k different basis vectors e_{i_1}, \dots, e_{i_k} . The best convex combination one can form is

$$\hat{x} = \frac{1}{k} \sum_{i=1}^{k} e_{i_j}.$$

3. Evaluating the function at \hat{x} , we obtain:

$$f(\hat{x}) - f(x^*) \ge \frac{1}{2} \left(\frac{1}{\min\{k, n\}} - \frac{1}{n} \right).$$

Lower bound for Frank-Wolfe method ³

1. The optimal solution is

$$x^* = \frac{1}{n} \mathbf{1} = \frac{1}{n} \sum_{i=1}^n e_i, \quad \text{and} \quad f(x^*) = \frac{1}{2n},$$

where $e_i = (0, \dots, 0, \underbrace{1}_{\text{position } i}, 0, \dots, 0)^{\top}$ is the i-th standard basis vector.

2. A linear minimization oracle (LMO) over S returns a vertex e_i . After k iterations, the method will have discovered at most k different basis vectors e_{i_1}, \dots, e_{i_k} . The best convex combination one can form is

$$\hat{x} = \frac{1}{k} \sum_{i=1}^{k} e_{i_j}.$$

Evaluating the function at \hat{x} , we obtain:

$$f(\hat{x}) - f(x^*) \ge \frac{1}{2} \left(\frac{1}{\min\{k, n\}} - \frac{1}{n} \right).$$

4. To ensure that $f(\hat{x}) - f(x^*) \le \varepsilon$, it is necessary that (full proof is in the paper):

$$k \ge \min\left\{\frac{n}{2}, \frac{1}{4\varepsilon}\right\} = \min\left\{\frac{n}{2}, \frac{LR^2}{16\varepsilon}\right\}.$$

³ The Complexity of Large-scale Convex Programming under a Linear Optimization Oracle

• Method does not require projections, in some special cases allows to compute iterations in closed form

- Method does not require projections, in some special cases allows to compute iterations in closed form
- Global convergence rate is $O\left(\frac{1}{k}\right)$ for smooth and convex functions. Strong convexity does not improve the rate. This is the lower bound for LMO

- Method does not require projections, in some special cases allows to compute iterations in closed form
- Global convergence rate is $O(\frac{1}{k})$ for smooth and convex functions. Strong convexity does not improve the rate. This is the lower bound for LMO
- In comparison with projected gradient descent, the rate is worse, but iteration could be cheaper and more sparse

⊕ ი

- Method does not require projections, in some special cases allows to compute iterations in closed form
- Global convergence rate is $O(\frac{1}{L})$ for smooth and convex functions. Strong convexity does not improve the rate. This is the lower bound for LMO
- In comparison with projected gradient descent, the rate is worse, but iteration could be cheaper and more sparse
- Recently, it was shown that for strongly convex sets, the rate can be improved to $O(\frac{1}{12})$ (\mathbb{Z} paper)

- Method does not require projections, in some special cases allows to compute iterations in closed form
- Global convergence rate is $O(\frac{1}{L})$ for smooth and convex functions. Strong convexity does not improve the rate. This is the lower bound for LMO
- In comparison with projected gradient descent, the rate is worse, but iteration could be cheaper and more sparse
- Recently, it was shown that for strongly convex sets, the rate can be improved to $O(\frac{1}{12})$ (\mathbb{Z} paper)
- If we allow away steps, the convergence becomes linear (p paper) in strongly convex case

- Method does not require projections, in some special cases allows to compute iterations in closed form
- Global convergence rate is $O\left(\frac{1}{k}\right)$ for smooth and convex functions. Strong convexity does not improve the rate. This is the lower bound for LMO
- In comparison with projected gradient descent, the rate is worse, but iteration could be cheaper and more sparse
- Recently, it was shown that for strongly convex sets, the rate can be improved to $O\left(\frac{1}{L^2}\right)$ (paper)
- If we allow away steps, the convergence becomes linear (paper) in strongly convex case
- Recent work showed the extension to non-smooth case (paper) with convergence rate $O\left(\frac{1}{\sqrt{k}}\right)$

Numerical experiments

2d example. Projected gradient descent

2d example. Projected gradient descent

2d example. Projected gradient descent

Quadratic function. Box constraints

$$\min_{\substack{x \in \mathbb{R}^n \\ -1 \le x \le 1}} \frac{1}{2} x^{\top} A x - b^{\top} x,$$

$$A \in \mathbb{R}^{n \times n}, \quad \lambda(A) \in [\mu; L].$$

The projection is simple:

$$\pi_S(x) = \mathsf{clip}(x, -\mathbf{1}, \mathbf{1}).$$

or

$$\pi_S(x) = \max\left(-\mathbf{1}, \min(\mathbf{1}, x)\right).$$

The linear minimization oracle (LMO) for a given gradient g is given by $y = \underset{z \in S}{\operatorname{argmin}} \langle g, z \rangle$.

Since the feasible set is separable across coordinates, the solution is computed coordinate—wise as

$$y_i = \begin{cases} -1, & \text{if } g_i > 0, \\ 1, & \text{if } g_i \leq 0. \end{cases}$$

Constrained convex quadratic problem: n=80, μ =0, L=10

1e-3

Projected Gradient Descent

Time (seconds)

Time (seconds)

Frank-Wolfe

1e-3

Quadratic function. Box constraints

$$\min_{\substack{x \in \mathbb{R}^n \\ -1 \le x \le 1}} \frac{1}{2} x^{\top} A x - b^{\top} x,$$

$$A \in \mathbb{R}^{n \times n}, \quad \lambda(A) \in [\mu; L].$$

The projection is simple:

$$\pi_S(x) = \mathsf{clip}(x, -\mathbf{1}, \mathbf{1}).$$

or

$$\pi_S(x) = \max\left(-\mathbf{1}, \min(\mathbf{1}, x)\right).$$

The linear minimization oracle (LMO) for a given gradient g is given by $y = \operatorname*{argmin}_{z \in S} \langle g, z \rangle.$ Since the feasible set is separable across

coordinates, the solution is computed

 $y_i = \begin{cases} -1, & \text{if } g_i > 0, \\ 1, & \text{if } g_i \leq 0. \end{cases}$

Constrained strongly Convex quadratic problem: n=80, $\mu=1$, L=10

16-3

Projected Gradient Descent

0.00 0.25 0.50 0.75

0.00 0.25 0.50 0.75 1.00

Time (seconds)

coordinate-wise as

Time (seconds)

Frank-Wolfe

1.00

1e-3

Quadratic function. Simplex constraints (Lucky problem with diagonal matrix)

$$\min_{\substack{x \in \mathbb{R}^n \\ x \ge 0, \mathbf{1}^T x = 1}} \frac{1}{2} x^T A x,$$

$$A \in \mathbb{R}^{n \times n}, \quad \lambda(A) \in [0; 100].$$

Update time, ms

PGD	0.0069	0.0167		
FW	0.0070	0.0066		
The projection onto the unit simplex $\pi_S(x)$				

can be done in $\mathcal{O}(n \log n)$ or expected $\mathcal{O}(n)$ time. 4 The LMO for a given gradient q is given by $y = \operatorname{argmin} \langle q, z \rangle$. The solution corresponds to

$$z \in S$$
 a vertex of the simplex:

Method

 $y = e_i$ where $j = \operatorname{argmin} g_i$.

min $1/2x^{T}Ax$, n = 200

Quadratic function. Simplex constraints

$$\min_{\substack{x \in \mathbb{R}^n \\ x \ge 0, \mathbf{1}^T x = 1}} \frac{1}{2} x^T A x,$$

 10^{-6}

$$A \in \mathbb{R}^{n \times n}, \quad \lambda\left(A\right) \in [0; 100].$$

$\min_{1^T x = 1, x \ge 0} 1/2x^T Ax, n = 200$

 10^{-4}

Projected Gradient Descent

1e-3

Time (seconds)

--- Frank-Wolfe

Time (seconds)

1e-3

Quadratic function. Simplex constraints

$$\min_{\substack{x \in \mathbb{R}^n \\ x \ge 0, \mathbf{1}^T x = 1}} \frac{1}{2} x^T A x,$$

$$A \in \mathbb{R}^{n \times n}, \quad \lambda(A) \in [0; 100].$$

Quadratic function. Simplex constraints

$$\min_{\substack{x \in \mathbb{R}^n \\ x \ge 0, \mathbf{1}^T x = 1}} \frac{1}{2} x^T A x,$$

$$A \in \mathbb{R}^{n \times n}, \quad \lambda\left(A\right) \in [1; 100].$$

Method	Update time, ms	LMO/Projection
PGD	0.0068	0.0752
FW	0.0067	0.0068

PGD vs Frank-Wolfe

The key difference between PGD and FW is that PGD requires projection, while FW needs only linear minimization oracle (LMO).

In a recent book authors presented the following comparison table with complexities of linear minimizations and projections on some convex sets up to an additive error ϵ in the Euclidean norm.

Set	Linear minimization	Projection
$n\text{-dimensional }\ell_p\text{-ball, }p\neq 1,2,\infty$	$\mathcal{O}(n)$	$ ilde{\mathcal{O}}\!\!\left(rac{n}{\epsilon^2} ight)$
Nuclear norm ball of $n \times m$ matrices	$\mathcal{O}\!\!\left(\nu\ln(m+n)rac{\sqrt{\sigma_1}}{\sqrt{\epsilon}} ight)$	$\mathcal{O}\!(mn\min\{m,n\})$
Flow polytope on a graph with m vertices and n edges (capacity bound on edges)	$\mathcal{O}\left((n\log m)(n+m\log m)\right)$	$\tilde{\mathcal{O}}\!\!\left(\frac{n}{\epsilon^2}\right)$ or $\mathcal{O}(n^4\log n)$
Birkhoff polytope ($n \times n$ doubly stochastic matrices)	$\mathcal{O}(n^3)$	$ ilde{\mathcal{O}}\!\!\left(rac{n^2}{\epsilon^2} ight)$

When ϵ is missing, there is no additive error. The $\tilde{\mathcal{O}}$ hides polylogarithmic factors in the dimensions and polynomial factors in constants related to the distance to the optimum. For the nuclear norm ball, i.e., the spectrahedron, ν denotes the number of non-zero entries and σ_1 denotes the top singular value of the projected matrix.