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Vectors and matrices
We will treat all vectors as column vectors by default. The space of real vectors of length 𝑛 is denoted by R𝑛, while
the space of real-valued 𝑚 × 𝑛 matrices is denoted by R𝑚×𝑛. That’s it: 1

𝑥 =
⎡
⎢⎢
⎣

𝑥1
𝑥2
⋮

𝑥𝑛

⎤
⎥⎥
⎦

𝑥𝑇 = [𝑥1 𝑥2 … 𝑥𝑛] 𝑥 ∈ R𝑛, 𝑥𝑖 ∈ R (1)

Similarly, if 𝐴 ∈ R𝑚×𝑛 we denote transposition as 𝐴𝑇 ∈ R𝑛×𝑚:

𝐴 =
⎡
⎢⎢
⎣

𝑎11 𝑎12 … 𝑎1𝑛
𝑎21 𝑎22 … 𝑎2𝑛

⋮ ⋮ ⋱ ⋮
𝑎𝑚1 𝑎𝑚2 … 𝑎𝑚𝑛

⎤
⎥⎥
⎦

𝐴𝑇 =
⎡
⎢⎢
⎣

𝑎11 𝑎21 … 𝑎𝑚1
𝑎12 𝑎22 … 𝑎𝑚2

⋮ ⋮ ⋱ ⋮
𝑎1𝑛 𝑎2𝑛 … 𝑎𝑚𝑛

⎤
⎥⎥
⎦

𝐴 ∈ R𝑚×𝑛, 𝑎𝑖𝑗 ∈ R

We will write 𝑥 ≥ 0 and 𝑥 ≠ 0 to indicate componentwise relationships

1A full introduction to applied linear algebra can be found in Introduction to Applied Linear Algebra – Vectors, Matrices, and Least Squares - book
by Stephen Boyd & Lieven Vandenberghe, which is indicated in the source. Also, a useful refresher for linear algebra is in Appendix A of the book
Numerical Optimization by Jorge Nocedal Stephen J. Wright.
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Figure 1: Equivivalent representations of a vector
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A matrix is symmetric if 𝐴 = 𝐴𝑇 . It is denoted as 𝐴 ∈ S𝑛 (set of square symmetric matrices of dimension 𝑛). Note,
that only a square matrix could be symmetric by definition.

A matrix 𝐴 ∈ S𝑛 is called positive (negative) definite if for all 𝑥 ≠ 0 ∶ 𝑥𝑇 𝐴𝑥 > (<)0. We denote this as 𝐴 ≻ (≺)0.
The set of such matrices is denoted as S𝑛

++(S𝑛
−−)

A matrix 𝐴 ∈ S𝑛 is called positive (negative) semidefinite if for all 𝑥 ∶ 𝑥𝑇 𝐴𝑥 ≥ (≤)0. We denote this as 𝐴 ⪰ (⪯)0.
The set of such matrices is denoted as S𝑛

+(S𝑛
−)

Question

Is it correct, that a positive definite matrix has all positive entries?

Question

Is it correct, that if a matrix is symmetric it should be positive definite?

Question

Is it correct, that if a matrix is positive definite it should be symmetric?
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Matrix product (matmul)

Let 𝐴 be a matrix of size 𝑚 × 𝑛, and 𝐵 be a matrix of size 𝑛 × 𝑝, and let the product 𝐴𝐵 be:

𝐶 = 𝐴𝐵

then 𝐶 is a 𝑚 × 𝑝 matrix, with element (𝑖, 𝑗) given by:

𝑐𝑖𝑗 =
𝑛

∑
𝑘=1

𝑎𝑖𝑘𝑏𝑘𝑗.

This operation in a naive form requires 𝒪(𝑛3) arithmetical operations, where 𝑛 is usually assumed as the largest
dimension of matrices.

Question

Is it possible to multiply two matrices faster, than 𝒪(𝑛3)? How about 𝒪(𝑛2), 𝒪(𝑛)?
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Matrix by vector product (matvec)
Let 𝐴 be a matrix of shape 𝑚 × 𝑛, and 𝑥 be 𝑛 × 1 vector, then the 𝑖-th component of the product:

𝑧 = 𝐴𝑥

is given by:

𝑧𝑖 =
𝑛

∑
𝑘=1

𝑎𝑖𝑘𝑥𝑘

This operation in a naive form requires 𝒪(𝑛2) arithmetical operations, where 𝑛 is usually assumed as the largest
dimension of matrices.
Remember, that:

• 𝐶 = 𝐴𝐵 𝐶𝑇 = 𝐵𝑇 𝐴𝑇

• 𝐴𝐵 ≠ 𝐵𝐴
• 𝑒𝐴 =

∞
∑
𝑘=0

1
𝑘! 𝐴𝑘

• 𝑒𝐴+𝐵 ≠ 𝑒𝐴𝑒𝐵 (but if 𝐴 and 𝐵 are commuting matrices, which means that 𝐴𝐵 = 𝐵𝐴, 𝑒𝐴+𝐵 = 𝑒𝐴𝑒𝐵)
• ⟨𝑥, 𝐴𝑦⟩ = ⟨𝐴𝑇 𝑥, 𝑦⟩
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Norms
Norm is a qualitative measure of the smallness of a vector and is typically denoted as ‖𝑥‖.
The norm should satisfy certain properties:
1. ‖𝛼𝑥‖ = |𝛼|‖𝑥‖, 𝛼 ∈ R

2. ‖𝑥 + 𝑦‖ ≤ ‖𝑥‖ + ‖𝑦‖ (triangle inequality)
3. If ‖𝑥‖ = 0 then 𝑥 = 0

The distance between two vectors is then defined as
𝑑(𝑥, 𝑦) = ‖𝑥 − 𝑦‖.

The most well-known and widely used norm is Euclidean norm:

‖𝑥‖2 = √
𝑛

∑
𝑖=1

|𝑥𝑖|2,

which corresponds to the distance in our real life. If the vectors have complex elements, we use their modulus.
Euclidean norm, or 2-norm, is a subclass of an important class of 𝑝-norms:

‖𝑥‖𝑝 = (
𝑛

∑
𝑖=1

|𝑥𝑖|𝑝)
1/𝑝

.
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Norm is a qualitative measure of the smallness of a vector and is typically denoted as ‖𝑥‖.
The norm should satisfy certain properties:
1. ‖𝛼𝑥‖ = |𝛼|‖𝑥‖, 𝛼 ∈ R
2. ‖𝑥 + 𝑦‖ ≤ ‖𝑥‖ + ‖𝑦‖ (triangle inequality)
3. If ‖𝑥‖ = 0 then 𝑥 = 0

The distance between two vectors is then defined as
𝑑(𝑥, 𝑦) = ‖𝑥 − 𝑦‖.

The most well-known and widely used norm is Euclidean norm:

‖𝑥‖2 = √
𝑛

∑
𝑖=1

|𝑥𝑖|2,

which corresponds to the distance in our real life. If the vectors have complex elements, we use their modulus.
Euclidean norm, or 2-norm, is a subclass of an important class of 𝑝-norms:

‖𝑥‖𝑝 = (
𝑛

∑
𝑖=1

|𝑥𝑖|𝑝)
1/𝑝

.
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𝑝-norm of a vector
There are two very important special cases. The infinity norm, or Chebyshev norm is defined as the element of the
maximal absolute value:

‖𝑥‖∞ = max
𝑖

|𝑥𝑖|

𝐿1 norm (or Manhattan distance) which is defined as the sum of modules of the elements of 𝑥:

‖𝑥‖1 = ∑
𝑖

|𝑥𝑖|

𝐿1 norm plays a very important role: it all relates to the compressed sensing methods that emerged in the mid-00s
as one of the most popular research topics. The code for the picture below is available here:. Check also this video.

Figure 2: Balls in different norms on a plane
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Matrix norms
In some sense there is no big difference between matrices and vectors (you can vectorize the matrix), and here comes
the simplest matrix norm Frobenius norm:

‖𝐴‖𝐹 = (
𝑚

∑
𝑖=1

𝑛
∑
𝑗=1

|𝑎𝑖𝑗|2)
1/2

Spectral norm, ‖𝐴‖2 is one of the most used matrix norms (along with the Frobenius norm).

‖𝐴‖2 = sup
𝑥≠0

‖𝐴𝑥‖2
‖𝑥‖2

,

It can not be computed directly from the entries using a simple formula, like the Frobenius norm, however, there are
efficient algorithms to compute it. It is directly related to the singular value decomposition (SVD) of the matrix. It
holds

‖𝐴‖2 = 𝜎1(𝐴) = √𝜆max(𝐴𝑇 𝐴)

where 𝜎1(𝐴) is the largest singular value of the matrix 𝐴.
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Scalar product

The standard scalar (inner) product between vectors 𝑥 and 𝑦 from R𝑛 is given by

⟨𝑥, 𝑦⟩ = 𝑥𝑇 𝑦 =
𝑛

∑
𝑖=1

𝑥𝑖𝑦𝑖 = 𝑦𝑇 𝑥 = ⟨𝑦, 𝑥⟩

Here 𝑥𝑖 and 𝑦𝑖 are the scalar 𝑖-th components of corresponding vectors.

Example

Prove, that you can switch the position of a matrix inside a scalar product with transposition: ⟨𝑥, 𝐴𝑦⟩ = ⟨𝐴𝑇 𝑥, 𝑦⟩
and ⟨𝑥, 𝑦𝐵⟩ = ⟨𝑥𝐵𝑇 , 𝑦⟩
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Matrix scalar product

The standard scalar (inner) product between matrices 𝑋 and 𝑌 from R𝑚×𝑛 is given by

⟨𝑋, 𝑌 ⟩ = tr(𝑋𝑇 𝑌 ) =
𝑚

∑
𝑖=1

𝑛
∑
𝑗=1

𝑋𝑖𝑗𝑌𝑖𝑗 = tr(𝑌 𝑇 𝑋) = ⟨𝑌 , 𝑋⟩

Question

Is there any connection between the Frobenious norm ‖ ⋅ ‖𝐹 and scalar product between matrices ⟨⋅, ⋅⟩?
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Eigenvectors and eigenvalues

A scalar value 𝜆 is an eigenvalue of the 𝑛 × 𝑛 matrix 𝐴 if there is a nonzero vector 𝑞 such that

𝐴𝑞 = 𝜆𝑞.

he vector 𝑞 is called an eigenvector of 𝐴. The matrix 𝐴 is nonsingular if none of its eigenvalues are zero. The
eigenvalues of symmetric matrices are all real numbers, while nonsymmetric matrices may have imaginary eigenvalues.
If the matrix is positive definite as well as symmetric, its eigenvalues are all positive real numbers.
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Eigenvectors and eigenvalues

Theorem

𝐴 ⪰ (≻)0 ⇔ all eigenvalues of 𝐴 are ≥ (>)0
Proof
1. → Suppose some eigenvalue 𝜆 is negative and let 𝑥 denote its corresponding eigenvector. Then

𝐴𝑥 = 𝜆𝑥 → 𝑥𝑇 𝐴𝑥 = 𝜆𝑥𝑇 𝑥 < 0

which contradicts the condition of 𝐴 ⪰ 0.

2. ← For any symmetric matrix, we can pick a set of eigenvectors 𝑣1, … , 𝑣𝑛 that form an
orthogonal basis of R𝑛. Pick any 𝑥 ∈ R𝑛.

𝑥𝑇 𝐴𝑥 = (𝛼1𝑣1 + … + 𝛼𝑛𝑣𝑛)𝑇 𝐴(𝛼1𝑣1 + … + 𝛼𝑛𝑣𝑛)
= ∑ 𝛼2

𝑖 𝑣𝑇
𝑖 𝐴𝑣𝑖 = ∑ 𝛼2

𝑖 𝜆𝑖𝑣𝑇
𝑖 𝑣𝑖 ≥ 0

here we have used the fact that 𝑣𝑇
𝑖 𝑣𝑗 = 0, for 𝑖 ≠ 𝑗.
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Eigendecomposition (spectral decomposition)

Suppose 𝐴 ∈ 𝑆𝑛, i.e., 𝐴 is a real symmetric 𝑛 × 𝑛 matrix. Then 𝐴 can be factorized as

𝐴 = 𝑄Λ𝑄𝑇 ,

where 𝑄 ∈ R𝑛×𝑛 is orthogonal, i.e., satisfies 𝑄𝑇 𝑄 = 𝐼 , and Λ = diag(𝜆1, … , 𝜆𝑛). The (real) numbers 𝜆𝑖 are the
eigenvalues of 𝐴 and are the roots of the characteristic polynomial det(𝐴 − 𝜆𝐼). The columns of 𝑄 form an
orthonormal set of eigenvectors of 𝐴. The factorization is called the spectral decomposition or (symmetric) eigenvalue
decomposition of 𝐴. 2

We usually order the eigenvalues as 𝜆1 ≥ 𝜆2 ≥ … ≥ 𝜆𝑛. We use the notation 𝜆𝑖(𝐴) to refer to the 𝑖-th largest
eigenvalue of 𝐴 ∈ 𝑆. We usually write the largest or maximum eigenvalue as 𝜆1(𝐴) = 𝜆max(𝐴), and the least or
minimum eigenvalue as 𝜆𝑛(𝐴) = 𝜆min(𝐴).

2A good cheat sheet with matrix decomposition is available at the NLA course website.
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Eigenvalues
The largest and smallest eigenvalues satisfy

𝜆min(𝐴) = inf
𝑥≠0

𝑥𝑇 𝐴𝑥
𝑥𝑇 𝑥 , 𝜆max(𝐴) = sup

𝑥≠0

𝑥𝑇 𝐴𝑥
𝑥𝑇 𝑥

and consequently ∀𝑥 ∈ R𝑛 (Rayleigh quotient):

𝜆min(𝐴)𝑥𝑇 𝑥 ≤ 𝑥𝑇 𝐴𝑥 ≤ 𝜆max(𝐴)𝑥𝑇 𝑥
The condition number of a nonsingular matrix is defined as

𝜅(𝐴) = ‖𝐴‖‖𝐴−1‖
If we use spectral matrix norm, we can get:

𝜅(𝐴) = 𝜎max(𝐴)
𝜎min(𝐴)

If, moreover, 𝐴 ∈ S𝑛
++: 𝜅(𝐴) = 𝜆max(𝐴)

𝜆min(𝐴)
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Singular value decomposition
Suppose 𝐴 ∈ R𝑚×𝑛 with rank 𝐴 = 𝑟. Then 𝐴 can be factored as

𝐴 = 𝑈Σ𝑉 𝑇

where 𝑈 ∈ R𝑚×𝑟 satisfies 𝑈𝑇 𝑈 = 𝐼 , 𝑉 ∈ R𝑛×𝑟 satisfies 𝑉 𝑇 𝑉 = 𝐼 , and Σ is a diagonal matrix with
Σ = diag(𝜎1, ..., 𝜎𝑟), such that

𝜎1 ≥ 𝜎2 ≥ … ≥ 𝜎𝑟 > 0.

This factorization is called the singular value decomposition (SVD) of 𝐴. The columns of 𝑈 are called left singular
vectors of 𝐴, the columns of 𝑉 are right singular vectors, and the numbers 𝜎𝑖 are the singular values. The singular
value decomposition can be written as

𝐴 =
𝑟

∑
𝑖=1

𝜎𝑖𝑢𝑖𝑣𝑇
𝑖 ,

where 𝑢𝑖 ∈ R𝑚 are the left singular vectors, and 𝑣𝑖 ∈ R𝑛 are the right singular vectors.
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Singular value decomposition

Question

Suppose, matrix 𝐴 ∈ S𝑛
++. What can we say about the connection between its eigenvalues and singular values?

Question

How do the singular values of a matrix relate to its eigenvalues, especially for a symmetric matrix?
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Skeleton decomposition

Simple, yet very interesting decomposition is Skeleton decomposition, which can
be written in two forms:

𝐴 = 𝑈𝑉 𝑇 𝐴 = ̂𝐶 ̂𝐴−1𝑅̂

The latter expression refers to the fun fact: you can randomly choose 𝑟 linearly
independent columns of a matrix and any 𝑟 linearly independent rows of a matrix
and store only them with the ability to reconstruct the whole matrix exactly.
Use cases for Skeleton decomposition are:

• Model reduction, data compression, and speedup of computations in
numerical analysis: given rank-𝑟 matrix with 𝑟 ≪ 𝑛, 𝑚 one needs to store
𝒪((𝑛 + 𝑚)𝑟) ≪ 𝑛𝑚 elements.

• Feature extraction in machine learning, where it is also known as matrix
factorization

• All applications where SVD applies, since Skeleton decomposition can be
transformed into truncated SVD form.

Figure 3: Illustration of Skeleton
decomposition
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Canonical tensor decomposition
One can consider the generalization of Skeleton decomposition to the higher order data structure, like tensors, which
implies representing the tensor as a sum of 𝑟 primitive tensors.

Tensor 𝑻𝐼× 𝐽×𝐾

𝑎1

𝑏1
𝑐1

𝑎𝑟

𝑏𝑟
𝑐𝑟

𝐴𝐼× 𝑟 𝐵𝐽× 𝑟 𝐶𝐾× 𝑟

Figure 4: Illustration of Canonical Polyadic decomposition

Example

Note, that there are many tensor decompositions: Canonical, Tucker, Tensor Train (TT), Tensor Ring (TR), and
others. In the tensor case, we do not have a straightforward definition of rank for all types of decompositions.
For example, for TT decomposition rank is not a scalar, but a vector.
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Determinant and trace
The determinant and trace can be expressed in terms of the eigenvalues

det𝐴 =
𝑛

∏
𝑖=1

𝜆𝑖, tr𝐴 =
𝑛

∑
𝑖=1

𝜆𝑖

The determinant has several appealing (and revealing) properties. For instance,
• det𝐴 = 0 if and only if 𝐴 is singular;

• det𝐴𝐵 = (det𝐴)(det𝐵);
• det𝐴−1 = 1

det 𝐴 .
Don’t forget about the cyclic property of a trace for arbitrary matrices 𝐴, 𝐵, 𝐶, 𝐷 (assuming, that all dimensions are
consistent):

tr(𝐴𝐵𝐶𝐷) = tr(𝐷𝐴𝐵𝐶) = tr(𝐶𝐷𝐴𝐵) = tr(𝐵𝐶𝐷𝐴)

Question

How does the determinant of a matrix relate to its invertibility?
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Convergence rates
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Convergence rate

Figure 5: Difference between the convergence speed
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Linear convergence

To compare the performance of algorithms, we must define the terminology for different types of convergence. Let 𝑟𝑘
be a sequence of non-negative real numbers that converges to zero. Typically, we have an iterative method producing
a sequence of iterates 𝑥𝑘 approaching the optimal solution 𝑥∗, and 𝑟𝑘 = ‖𝑥𝑘 − 𝑥∗‖2.
The linear convergence of 𝑟𝑘 is defined as follows:
A sequence {𝑟𝑘}∞

𝑘=𝑚 converges linearly with a parameter 0 < 𝑞 < 1 if there exists a constant 𝐶 > 0 such that:

𝑟𝑘 ≤ 𝐶𝑞𝑘, for all 𝑘 ≥ 𝑚.

If such a 𝑞 exists, the sequence is said to have linear convergence. The exact lower bound of all 𝑞 satisfying the
inequality is called the rate of linear convergence of the sequence.

Question

Suppose, you have two sequences with linear convergence rates 𝑞1 = 0.1 and 𝑞2 = 0.7, which one is faster?

Convergence rates 25

https://fmin.xyz
https://hse25.fmin.xyz
https://github.com/MerkulovDaniil/hse25
https://t.me/fminxyz


Linear convergence

Example

Let us have the following sequence:

𝑟𝑘 = 1
2𝑘

One can immediately conclude, that we have a linear convergence with parameters 𝑞 = 1
2 and 𝐶 = 0.

Question

Determine the convergence of the following sequence

𝑟𝑘 = 3
2𝑘
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Sublinear convergence

If the sequence 𝑟𝑘 converges to zero, but does not have linear convergence, the convergence is said to be sublinear.
Sometimes we can consider the following class of sublinear convergence:

‖𝑥𝑘+1 − 𝑥∗‖2 ≤ 𝐶𝑘𝑞,

where 𝑞 < 0 and 0 < 𝐶 < ∞. Informally, sublinear convergence means the sequence converges slower than any
geometric progression.
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Superlinear convergence
A sequence {𝑟𝑘}∞

𝑘=𝑚 is said to have superlinear convergence if it converges to zero faster than any linearly
convergent sequence. Verify, that a sequence {𝑟𝑘}∞

𝑘=𝑚 is superlinear if it converges linearly with the rate 𝑞 = 0.
For 𝑝 > 1, a sequence has superlinear convergence of order 𝑝 if there exists 𝐶 > 0 and 0 < 𝑞 < 1 such that:

𝑟𝑘 ≤ 𝐶𝑞𝑝𝑘 , for all 𝑘 ≥ 𝑚.

When 𝑝 = 2, this is called quadratic convergence.

Illustrative Example

Suppose 𝑥∗ = 1.23456789 (the true solution), and the iterative sequence starts with an error 𝑟𝑘 = 10−3,
corresponding to 3 correct significant digits (1.234).

1. After the first iteration:
𝑟𝑘+1 ≈ 𝑟2

𝑘 = (10−3)2 = 10−6.
Now the error is 10−6, and we have 6 correct digits (1.23456).

2. After the second iteration:
𝑟𝑘+2 ≈ 𝑟2

𝑘+1 = (10−6)2 = 10−12.
Now the error is 10−12, and we have 12 correct digits (1.234567890123).
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Convergence rates practical observations:

• ‖𝑥𝑘+1 − 𝑥∗‖2 ≤ 1
𝑘 1𝑝

‖𝑥0 − 𝑥∗‖2 implies sublinear convergence rate

• ‖𝑥𝑘+1 − 𝑥∗‖2 ≤ 𝑞‖𝑥𝑘 − 𝑥∗‖2 implies linear convergence rate, where 𝑞 < 1
• ‖𝑥𝑘+1 − 𝑥∗‖2 ≤ 𝑞‖𝑥𝑘 − 𝑥∗‖2

2 implies quadratic convergence rate, where 𝑞‖𝑥0 − 𝑥∗‖ < 1
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Root test

Theorem

Let (𝑟𝑘)∞
𝑘=𝑚 be a sequence of non-negative numbers converging to zero, and let 𝛼 ∶= lim sup𝑘→∞ 𝑟1/𝑘

𝑘 . (Note
that 𝛼 ≥ 0.)
(a) If 0 ≤ 𝛼 < 1, then (𝑟𝑘)∞

𝑘=𝑚 converges linearly with constant 𝛼.

(b) In particular, if 𝛼 = 0, then (𝑟𝑘)∞
𝑘=𝑚 converges superlinearly.

(c) If 𝛼 = 1, then (𝑟𝑘)∞
𝑘=𝑚 converges sublinearly.

(d) The case 𝛼 > 1 is impossible.

Proof.

1. let us show that if (𝑟𝑘)∞
𝑘=𝑚 converges linearly with constant 0 ≤ 𝛽 < 1, then necessarily 𝛼 ≤ 𝛽. Indeed,

by the definition of the constant of linear convergence, for any 𝜀 > 0 satisfying 𝛽 + 𝜀 < 1, there exists
𝐶 > 0 such that 𝑟𝑘 ≤ 𝐶(𝛽 + 𝜀)𝑘 for all 𝑘 ≥ 𝑚. From this, 𝑟1/𝑘

𝑘 ≤ 𝐶1/𝑘(𝛽 + 𝜀) for all 𝑘 ≥ 𝑚. Passing to
the limit as 𝑘 → ∞ and using 𝐶1/𝑘 → 1, we obtain 𝛼 ≤ 𝛽 + 𝜀. Given the arbitrariness of 𝜀, it follows
that 𝛼 ≤ 𝛽.

2. Thus, in the case 𝛼 = 1, the sequence (𝑟𝑘)∞
𝑘=𝑚 cannot have linear convergence according to the above

result (proven by contradiction). Since, nevertheless, (𝑟𝑘)∞
𝑘=𝑚 converges to zero, it must converge

sublinearly.
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Root test

Theorem

1. Now consider the case 0 ≤ 𝛼 < 1. Let 𝜀 > 0 be an arbitrary number such that 𝛼 + 𝜀 < 1. According to
the properties of the limsup, there exists 𝑁 ≥ 𝑚 such that 𝑟1/𝑘

𝑘 ≤ 𝛼 + 𝜀 for all 𝑘 ≥ 𝑁 . Hence,
𝑟𝑘 ≤ (𝛼 + 𝜀)𝑘 for all 𝑘 ≥ 𝑁 . Therefore, (𝑟𝑘)∞

𝑘=𝑚 converges linearly with parameter 𝛼 + 𝜀 (it does not
matter that the inequality is only valid from the number 𝑁). Due to the arbitrariness of 𝜀, this means that
the constant of linear convergence of (𝑟𝑘)∞

𝑘=𝑚 does not exceed 𝛼. Since, as shown above, the constant of
linear convergence cannot be less than 𝛼, this means that the constant of linear convergence of (𝑟𝑘)∞

𝑘=𝑚 is
exactly 𝛼.

2. Finally, let’s show that the case 𝛼 > 1 is impossible. Indeed, suppose 𝛼 > 1. Then from the definition of
limsup, it follows that for any 𝑁 ≥ 𝑚, there exists 𝑘 ≥ 𝑁 such that 𝑟1/𝑘

𝑘 ≥ 1, and, in particular, 𝑟𝑘 ≥ 1.
But this means that 𝑟𝑘 has a subsequence that is bounded away from zero. Hence, (𝑟𝑘)∞

𝑘=𝑚 cannot
converge to zero, which contradicts the condition.
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Ratio test

Let {𝑟𝑘}∞
𝑘=𝑚 be a sequence of strictly positive numbers converging to zero. Let

𝑞 = lim
𝑘→∞

𝑟𝑘+1
𝑟𝑘

• If there exists 𝑞 and 0 ≤ 𝑞 < 1, then {𝑟𝑘}∞
𝑘=𝑚 has linear convergence with constant 𝑞.

• In particular, if 𝑞 = 0, then {𝑟𝑘}∞
𝑘=𝑚 has superlinear convergence.

• If 𝑞 does not exist, but 𝑞 = lim
𝑘→∞

sup𝑘
𝑟𝑘+1
𝑟𝑘

< 1, then {𝑟𝑘}∞
𝑘=𝑚 has linear convergence with a constant not

exceeding 𝑞.
• If lim

𝑘→∞
inf𝑘

𝑟𝑘+1
𝑟𝑘

= 1, then {𝑟𝑘}∞
𝑘=𝑚 has sublinear convergence.

• The case lim
𝑘→∞

inf𝑘
𝑟𝑘+1
𝑟𝑘

> 1 is impossible.

• In all other cases (i.e., when lim
𝑘→∞

inf𝑘
𝑟𝑘+1
𝑟𝑘

< 1 ≤ lim
𝑘→∞

sup𝑘
𝑟𝑘+1
𝑟𝑘

) we cannot claim anything concrete about
the convergence rate {𝑟𝑘}∞

𝑘=𝑚.
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𝑘=𝑚 has linear convergence with a constant not

exceeding 𝑞.

• If lim
𝑘→∞

inf𝑘
𝑟𝑘+1
𝑟𝑘

= 1, then {𝑟𝑘}∞
𝑘=𝑚 has sublinear convergence.

• The case lim
𝑘→∞

inf𝑘
𝑟𝑘+1
𝑟𝑘

> 1 is impossible.

• In all other cases (i.e., when lim
𝑘→∞

inf𝑘
𝑟𝑘+1
𝑟𝑘

< 1 ≤ lim
𝑘→∞

sup𝑘
𝑟𝑘+1
𝑟𝑘

) we cannot claim anything concrete about
the convergence rate {𝑟𝑘}∞

𝑘=𝑚.
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Ratio test lemma
Theorem

Let (𝑟𝑘)∞
𝑘=𝑚 be a sequence of strictly positive numbers. (The strict positivity is necessary to ensure that the

ratios 𝑟𝑘+1
𝑟𝑘

, which appear below, are well-defined.) Then

lim inf
𝑘→∞

𝑟𝑘+1
𝑟𝑘

≤ lim inf
𝑘→∞

𝑟1/𝑘
𝑘 ≤ lim sup

𝑘→∞
𝑟1/𝑘

𝑘 ≤ lim sup
𝑘→∞

𝑟𝑘+1
𝑟𝑘

.

Proof.
1. The middle inequality follows from the fact that the liminf of any sequence is always less than or equal to

its limsup. Let’s prove the last inequality; the first one is proved analogously.

2. Denote 𝐿 ∶= lim sup𝑘→∞
𝑟𝑘+1
𝑟𝑘

. If 𝐿 = +∞, then the inequality is obviously true, so let’s assume 𝐿 is
finite. Note that 𝐿 ≥ 0, since the ratio 𝑟𝑘+1

𝑟𝑘
is positive for all 𝑘 ≥ 𝑚. Let 𝜀 > 0 be an arbitrary number.

According to the properties of limsup, there exists 𝑁 ≥ 𝑚 such that 𝑟𝑘+1
𝑟𝑘

≤ 𝐿 + 𝜀 for all 𝑘 ≥ 𝑁 . From
here, 𝑟𝑘+1 ≤ (𝐿 + 𝜀)𝑟𝑘 for all 𝑘 ≥ 𝑁 . Applying induction, we get 𝑟𝑘 ≤ (𝐿 + 𝜀)𝑘−𝑁𝑟𝑁 for all 𝑘 ≥ 𝑁 . Let
𝐶 ∶= (𝐿 + 𝜀)−𝑁𝑟𝑁 . Then 𝑟𝑘 ≤ 𝐶(𝐿 + 𝜀)𝑘 for all 𝑘 ≥ 𝑁 , from which 𝑟1/𝑘

𝑘 ≤ 𝐶1/𝑘(𝐿 + 𝜀). Taking the
limsup as 𝑘 → ∞ and using 𝐶1/𝑘 → 1, we get lim sup𝑘→∞ 𝑟1/𝑘

𝑘 ≤ 𝐿 + 𝜀. Given the arbitrariness of 𝜀, it
follows that lim sup𝑘→∞ 𝑟1/𝑘

𝑘 ≤ 𝐿.
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Summary
Определения
1. Положительно определённая матрица.
2. Евклидова норма вектора.
3. Неравенство треугольника для нормы.
4. 𝑝-норма вектора.
5. Как выглядит единичный шар в 𝑝 - норме на

плоскости для 𝑝 = 1, 2, ∞?
6. Норма Фробениуса для матрицы.
7. Спектральная норма матрицы.
8. Скалярное произведение двух векторов.
9. Скалярное произведение двух матриц,

согласованное с нормой Фробениуса.
10. Собственные значения матрицы. Спектр матрицы.
11. Связь спектра матрицы и её определенности.
12. Спектральное разложение матрицы.
13. Сингулярное разложение матрицы.
14. Связь определителя и собственных чисел для

квадратной матрицы.
15. Связь следа и собственных чисел для квадратной

матрицы.

16. Линейная сходимость последовательности.
17. Сублинейная сходимость последовательности.
18. Сверхлинейная сходимость последовательности.
19. Квадратичная сходимость последовательности.
20. Тест корней для определения скорости сходимости

последовательности.
21. Тест отношений для определения скорости

сходимости последовательности.
Теоремы
1. Критерий положительной определенности

матрицы через знаки собственных значений
матрицы.

2. Тест корней
3. Тест отношений
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