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Vectors and matrices

We will treat all vectors as column vectors by default. The space of real vectors of length n is denoted by R™, while
the space of real-valued m x n matrices is denoted by R™*". That's it: !

x=|" 2l =[x, z, .. z,] zeR"z,eR (1)

A full introduction to applied linear algebra can be found in Introduction to Applied Linear Algebra — Vectors, Matrices, and Least Squares - book
by Stephen Boyd & Lieven Vandenberghe, which is indicated in the source. Also, a useful refresher for linear algebra is in Appendix A of the book
Numerical Optimization by Jorge Nocedal Stephen J. Wright.
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Vectors and matrices

We will treat all vectors as column vectors by default. The space of real vectors of length n is denoted by R™, while
the space of real-valued m x n matrices is denoted by R™*". That's it: !

x=|" 2 =z; =z, .. z,] zeER"z,eR (1)

Similarly, if A € R™*™ we denote transposition as AT € R™*™:

aqq aio a1y, aqq (531 o Qo
a a a a a a,

A= |02t Oz Ozl g7 (G2 02z Gma| g o pman g e R
Am1 A2 Amn Arp  Qop e Opp

We will write > 0 and x # 0 to indicate componentwise relationships

A full introduction to applied linear algebra can be found in Introduction to Applied Linear Algebra — Vectors, Matrices, and Least Squares - book
by Stephen Boyd & Lieven Vandenberghe, which is indicated in the source. Also, a useful refresher for linear algebra is in Appendix A of the book
Numerical Optimization by Jorge Nocedal Stephen J. Wright.
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Figure 1: Equivivalent representations of a vector
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A matrix is symmetric if A = AT It is denoted as A € S™ (set of square symmetric matrices of dimension n). Note,
that only a square matrix could be symmetric by definition.
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A matrix is symmetric if A = AT It is denoted as A € S™ (set of square symmetric matrices of dimension n). Note,
that only a square matrix could be symmetric by definition.

A matrix A € S™ is called positive (negative) definite if for all z # 0 : 27 Az > (<)0. We denote this as A > (<)0.
The set of such matrices is denoted as S, (S™_)
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A matrix is symmetric if A = AT It is denoted as A € S™ (set of square symmetric matrices of dimension n). Note,
that only a square matrix could be symmetric by definition.

A matrix A € S™ is called positive (negative) definite if for all z # 0 : 27 Az > (<)0. We denote this as A > (<)0.
The set of such matrices is denoted as S, (S™_)

A matrix A € S" is called positive (negative) semidefinite if for all  : 27 Az > (<)0. We denote this as A > (<)0.
The set of such matrices is denoted as S (S™)

Question

Is it correct, that a positive definite matrix has all positive entries?
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A matrix is symmetric if A = AT It is denoted as A € S™ (set of square symmetric matrices of dimension n). Note,
that only a square matrix could be symmetric by definition.

A matrix A € S™ is called positive (negative) definite if for all z # 0 : 27 Az > (<)0. We denote this as A > (<)0.
The set of such matrices is denoted as S, (S™_)

A matrix A € S" is called positive (negative) semidefinite if for all  : 27 Az > (<)0. We denote this as A > (<)0.
The set of such matrices is denoted as S (S™)

Question

Is it correct, that a positive definite matrix has all positive entries?

Question

Is it correct, that if a matrix is symmetric it should be positive definite?
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A matrix is symmetric if A = AT It is denoted as A € S™ (set of square symmetric matrices of dimension n). Note,
that only a square matrix could be symmetric by definition.

A matrix A € S™ is called positive (negative) definite if for all z # 0 : 27 Az > (<)0. We denote this as A > (<)0.
The set of such matrices is denoted as S, (S™_)

A matrix A € S" is called positive (negative) semidefinite if for all  : 27 Az > (<)0. We denote this as A > (<)0.
The set of such matrices is denoted as S (S™)

Question

Is it correct, that a positive definite matrix has all positive entries?

Question

Is it correct, that if a matrix is symmetric it should be positive definite?

Question

Is it correct, that if a matrix is positive definite it should be symmetric?
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Matrix product (matmul)

Let A be a matrix of size m x n, and B be a matrix of size n x p, and let the product AB be:
C=AB

then C is a m X p matrix, with element (¢, j) given by:
n
Cij = Zaikbkj'
k=1

This operation in a naive form requires @(n?) arithmetical operations, where n is usually assumed as the largest
dimension of matrices.
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Matrix product (matmul)

Let A be a matrix of size m x n, and B be a matrix of size n x p, and let the product AB be:
C=AB

then C is a m X p matrix, with element (¢, j) given by:
n
Cij = Zaikbkj'
k=1

This operation in a naive form requires @(n?) arithmetical operations, where n is usually assumed as the largest
dimension of matrices.

i Question

Is it possible to multiply two matrices faster, than @(n®)? How about @(n?), O(n)?
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Matrix by vector product (matvec)

Let A be a matrix of shape m x n, and & be n x 1 vector, then the i-th component of the product:
z=Ax

is given by:
n
2 = E Aig Ty,
k=1

This operation in a naive form requires @(n?) arithmetical operations, where n is usually assumed as the largest
dimension of matrices.

Remember, that:

e C=AB CT=pBTAT
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Matrix by vector product (matvec)

Let A be a matrix of shape m x n, and & be n x 1 vector, then the i-th component of the product:
z=Ax

is given by:
n
2 = E Aig Ty,
k=1

This operation in a naive form requires @(n?) arithmetical operations, where n is usually assumed as the largest
dimension of matrices.

Remember, that:

e C=AB CT =RBTAT
e AB+ BA
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Matrix by vector product (matvec)

Let A be a matrix of shape m x n, and & be n x 1 vector, then the i-th component of the product:
z=Ax

is given by:
n
2 = E Aig Ty,
k=1

This operation in a naive form requires @(n?) arithmetical operations, where n is usually assumed as the largest
dimension of matrices.

Remember, that:

e C=AB CT =RBTAT
e AB+ BA

A _ 1 Ak
® ot = Z FA
k=0
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Matrix by vector product (matvec)

Let A be a matrix of shape m x n, and & be n x 1 vector, then the i-th component of the product:
z=Ax

is given by:

n
= E ATy

k=1

This operation in a naive form requires @(n?) arithmetical operations, where n is usually assumed as the largest
dimension of matrices.

Remember, that:

e C=AB CT =RBTAT
OAB#BA

Z klAk

o A+B 7& eAeB (but if A and B are commuting matrices, which means that AB = BA, A5 = ¢4¢B)
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Matrix by vector product (matvec)

Let A be a matrix of shape m x n, and & be n x 1 vector, then the i-th component of the product:
z=Ax

is given by:

n
Zi = E ATy
k=1

This operation in a naive form requires @(n?) arithmetical operations, where n is usually assumed as the largest
dimension of matrices.

Remember, that:

e C=AB CT =RBTAT
e AB+ BA

A _ 1 Ak
® ot = Z FA
k=0

B £ eAeB (but if A and B are commuting matrices, which means that AB = BA, eA+8 = ¢4¢eb)
(x, Ay) = (ATz,y)
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Norms
Norm is a qualitative measure of the smallness of a vector and is typically denoted as |z]|.

The norm should satisfy certain properties:

1. Jaa] = lalla], a € R
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Norms
Norm is a qualitative measure of the smallness of a vector and is typically denoted as |z]|.

The norm should satisfy certain properties:

1 Jal = lallz], o € B
2. |z +y| < x| + lly| (triangle inequality)
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Norms
Norm is a qualitative measure of the smallness of a vector and is typically denoted as |z]|.

The norm should satisfy certain properties:

L foz| = |af|z], « € R
2. |z +y| < x| + lly| (triangle inequality)
3. If |z = 0 then z =0
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Norms
Norm is a qualitative measure of the smallness of a vector and is typically denoted as |z]|.

The norm should satisfy certain properties:

L foz| = |af|z], « € R
2. |z +y| < x| + lly| (triangle inequality)
3. If |z = 0 then z =0
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Norms
Norm is a qualitative measure of the smallness of a vector and is typically denoted as |z]|.

The norm should satisfy certain properties:

L foz| = |af|z], « € R
2. |z +y| < x| + lly| (triangle inequality)
3. If |z = 0 then z =0

The distance between two vectors is then defined as
d(z,y) = |z —y].

The most well-known and widely used norm is Euclidean norm:

n
ey = /D lail?,
i=1

which corresponds to the distance in our real life. If the vectors have complex elements, we use their modulus.
Euclidean norm, or 2-norm, is a subclass of an important class of p-norms:

n 1/p
lzl, = (Y leil?)
i=1
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p-norm of a vector
There are two very important special cases. The infinity norm, or Chebyshev norm is defined as the element of the
maximal absolute value:

ol = max o,

‘f - 51'1;1; Basic linear algebra background 0 O
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p-norm of a vector
There are two very important special cases. The infinity norm, or Chebyshev norm is defined as the element of the

maximal absolute value:
ol = maxa|

L, norm (or Manhattan distance) which is defined as the sum of modules of the elements of x:

ey = lai]
i

‘f - fn.}‘; Basic linear algebra background


https://colab.research.google.com/github/MerkulovDaniil/optim/blob/master/assets/Notebooks/Balls_p_norm.ipynb
https://fmin.xyz/docs/theory/balls_norm.mp4
https://fmin.xyz
https://hse25.fmin.xyz
https://github.com/MerkulovDaniil/hse25
https://t.me/fminxyz

p-norm of a vector
There are two very important special cases. The infinity norm, or Chebyshev norm is defined as the element of the

maximal absolute value:
il = max]z,

L, norm (or Manhattan distance) which is defined as the sum of modules of the elements of z:

ey = lai]
i

L, norm plays a very important role: it all relates to the compressed sensing methods that emerged in the mid-00s
as one of the most popular research topics. The code for the picture below is available here:. Check also this video.

Unit disk in the p-th norm

p=1 p=2 p = 100500

0.5 0.5

0.0+ . 0.0

“05 -05

-0.5 0.0 0.5 -1

) Figure 2: Balls in different norms on a plane
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Matrix norms

In some sense there is no big difference between matrices and vectors (you can vectorize the matrix), and here comes
the simplest matrix norm Frobenius norm:

N 1/2

Il = >

‘aijP
i=1 j=1
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Matrix norms

In some sense there is no big difference between matrices and vectors (you can vectorize the matrix), and here comes
the simplest matrix norm Frobenius norm:

1/2

3

n

1Al = Z \ a;,|?
i=1 j=

Spectral norm, | A, is one of the most used matrix norms (along with the Frobenius norm).

HAsz
:C#O ”mHQ

Al =

)

It can not be computed directly from the entries using a simple formula, like the Frobenius norm, however, there are
efficient algorithms to compute it. It is directly related to the singular value decomposition (SVD) of the matrix. It
holds

HAHQ =0 (A) = ma.x(ATA)

where o, (A) is the largest singular value of the matrix A.
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Scalar product

The standard scalar (inner) product between vectors = and y from R"™ is given by

n
(@, y) =aTy = wy, =yTx=(y)
=1

Here x; and y; are the scalar i-th components of corresponding vectors.
o
1 Example

Prove, that you can switch the position of a matrix inside a scalar product with transposition: (z, Ay) = (ATz, y)
and (z,yB) = (zB",y)
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Matrix scalar product

Rmxn

The standard scalar (inner) product between matrices X and Y from is given by

(X,Y) =tr(XTY) = Z ZX”Y” =tr(YTX) = (Y, X)
=1 j=

i Question

Is there any connection between the Frobenious norm || - || and scalar product between matrices (-,

‘f - 5\'1;!; Basic linear algebra background
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Eigenvectors and eigenvalues

A scalar value \ is an eigenvalue of the n x n matrix A if there is a nonzero vector ¢ such that

Ag = )\q.

he vector ¢ is called an eigenvector of A. The matrix A is nonsingular if none of its eigenvalues are zero. The
eigenvalues of symmetric matrices are all real numbers, while nonsymmetric matrices may have imaginary eigenvalues.
If the matrix is positive definite as well as symmetric, its eigenvalues are all positive real numbers.
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Eigenvectors and eigenvalues

i Theorem

A > (>)0 < all eigenvalues of A are > (>)0

Proof
1. — Suppose some eigenvalue \ is negative and let = denote its corresponding eigenvector. Then

Ar =Xz = 2T Az = aTe <0

which contradicts the condition of A = 0.

‘f - fny"; Basic linear algebra background DO
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Eigenvectors and eigenvalues

i Theorem

A > (>)0 < all eigenvalues of A are > (>)0

Proof
1. — Suppose some eigenvalue \ is negative and let = denote its corresponding eigenvector. Then

Ar =Xz = 2T Az = aTe <0

which contradicts the condition of A = 0.
2. < For any symmetric matrix, we can pick a set of eigenvectors vy, ..., v,, that form an
orthogonal basis of R"™. Pick any x € R™.

2T Az = (aqv; + ... +a,v,) T A(avy + ... + a,v,)
= Za?vavi = Zaf)\iviTvi >0

here we have used the fact that vlij =0, fori #j.
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Eigendecomposition (spectral decomposition)

Suppose A € S, i.e., A is a real symmetric n X n matrix. Then A can be factorized as

ne

A= QAQT,

2A good cheat sheet with matrix decomposition is available at the NLA course website.

‘f - Wy‘rﬁ Basic linear algebra background
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Eigendecomposition (spectral decomposition)

Suppose A € S,,, i.e., A is a real symmetric n X n matrix. Then A can be factorized as

A= QAQT,

where Q € R™™ is orthogonal, i.e., satisfies QTQ = I, and A = diag(\,, ..., A,,). The (real) numbers ); are the
eigenvalues of A and are the roots of the characteristic polynomial det(A — AI'). The columns of @ form an
orthonormal set of eigenvectors of A. The factorization is called the spectral decomposition or (symmetric) eigenvalue
decomposition of A. 2

2A good cheat sheet with matrix decomposition is available at the NLA course website.
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Eigendecomposition (spectral decomposition)

Suppose A € S,,, i.e., A is a real symmetric n X n matrix. Then A can be factorized as

A= QAQT,

where Q € R™™ is orthogonal, i.e., satisfies QTQ = I, and A = diag(\,, ..., A,,). The (real) numbers ); are the
eigenvalues of A and are the roots of the characteristic polynomial det(A — AI'). The columns of @ form an
orthonormal set of eigenvectors of A. The factorization is called the spectral decomposition or (symmetric) eigenvalue
decomposition of A. 2

We usually order the eigenvalues as Ay > Ay > ... > A\, We use the notation \;(A) to refer to the i-th largest
eigenvalue of A € S. We usually write the Iargest or maX|mum eigenvalue as A\, (A) = A), and the least or
minimum eigenvalue as A\, (A) = A, (4).

max(

min

2A good cheat sheet with matrix decomposition is available at the NLA course website.
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Eigenvalues
The largest and smallest eigenvalues satisfy

Amin(4) =i
mln() :i#O:L‘Tl’7

‘f - Wy‘rﬁ Basic linear algebra background

TA
L O AT

16


https://fmin.xyz
https://hse25.fmin.xyz
https://github.com/MerkulovDaniil/hse25
https://t.me/fminxyz

Eigenvalues
The largest and smallest eigenvalues satisfy

2T Ax 2T Ax
A (A) = inf A (A) =
min (4) nf max (A) Szilg g

and consequently Vo € R™ (Rayleigh quotient):

An(A)zTe < 2T Az < X\, (A)zTz

max(

‘f - fny"; Basic linear algebra background
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Eigenvalues
The largest and smallest eigenvalues satisfy

2T Ax 2T Ax
A (A) = inf A (A) =
min (4) nf max (A) ii% g

and consequently Vo € R™ (Rayleigh quotient):

An(A)zTe < 2T Az < X\, (A)zTz

max(

The condition number of a nonsingular matrix is defined as

K(A) = |AJA7Y

‘f - 5\'1;!; Basic linear algebra background
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Eigenvalues
The largest and smallest eigenvalues satisfy

A

TA TA
min(A):infxTx7 - xTx
z#0 xlx z#0 T°T

and consequently Vo € R™ (Rayleigh quotient):

An(A)zTe < 2T Az < X\, (A)zTz

The condition number of a nonsingular matrix is defined as

K(A) = |A]|A7Y
If we use spectral matrix norm, we can get:
Tmax (4)
A max
Kl( ) O min (A
n )\max(A)
If, moreover, A € ST : k(A) = A (A)
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Condition number

B /— min

x=1.5
/7i{/ \\;S\d
7%
, £
o_
-2 4

Y

>3 o

SRS . . M

-4 -2 0 2 4

Basic linear algebra background

T
)
_



https://fmin.xyz
https://hse25.fmin.xyz
https://github.com/MerkulovDaniil/hse25
https://t.me/fminxyz

Singular value decomposition

Suppose A € R™*™ with rank A =r. Then A can be factored as

A=UxVT

‘f - ?qyu} Basic linear algebra background
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Singular value decomposition
Suppose A € R™*™ with rank A =r. Then A can be factored as
A=UxVT

where U € R™*" satisfies UTU = I, V € R™ " satisfies VTV = I, and ¥ is a diagonal matrix with
Y = diag(oq, ..., 0,.), such that

‘f - Wy‘rﬁ Basic linear algebra background
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Singular value decomposition

Suppose A € R™*™ with rank A =r. Then A can be factored as

A=UxVT

where U € R™*" satisfies UTU = I, V € R™ " satisfies VTV = I, and ¥ is a diagonal matrix with
Y = diag(oq, ..., 0,.), such that

0, 209> ...20,.>0.

‘f - §ny1r; Basic linear algebra background
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Singular value decomposition
Suppose A € R™*™ with rank A =r. Then A can be factored as
A=UxVT

where U € R™*" satisfies UTU = I, V € R™ " satisfies VTV = I, and ¥ is a diagonal matrix with
Y = diag(oq, ..., 0,.), such that

0, 209> ...20,.>0.

This factorization is called the singular value decomposition (SVD) of A. The columns of U are called left singular
vectors of A, the columns of V' are right singular vectors, and the numbers o; are the singular values. The singular
value decomposition can be written as

T
— T
A= E TiU;V; s
i=1

where u; € R™ are the left singular vectors, and v; € R™ are the right singular vectors.
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Singular value decomposition

i Question

Suppose, matrix A € S”, . What can we say about the connection between its eigenvalues and singular values?
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Singular value decomposition

i Question

Suppose, matrix A € S”, . What can we say about the connection between its eigenvalues and singular values?

i Question

How do the singular values of a matrix relate to its eigenvalues, especially for a symmetric matrix?
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Skeleton decomposition
Simple, yet very interesting decomposition is Skeleton decomposition, which can
be written in two forms:

A=UVT A=CA 'R
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Skeleton decomposition

Simple, yet very interesting decomposition is Skeleton decomposition, which can
be written in two forms:

A=UVT A=CA 'R

The latter expression refers to the fun fact: you can randomly choose 7 linearly
independent columns of a matrix and any r linearly independent rows of a matrix
and store only them with the ability to reconstruct the whole matrix exactly.

‘/ - fn.}‘; Basic linear algebra background
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Skeleton decomposition

Simple, yet very interesting decomposition is Skeleton decomposition, which can
be written in two forms:

A=UVT A=CA'R
The latter expression refers to the fun fact: you can randomly choose 7 linearly Ann
independent columns of a matrix and any r linearly independent rows of a matrix
and store only them with the ability to reconstruct the whole matrix exactly.
Use cases for Skeleton decomposition are:
® Model reduction, data compression, and speedup of computations in

numerical analysis: given rank-r matrix with » << n, m one needs to store
O((n+ m)r) <« nm elements.

— T
= Une - VL,

A = Coner At Rrn

Figure 3: lllustration of Skeleton
decomposition
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Skeleton decomposition

Simple, yet very interesting decomposition is Skeleton decomposition, which can
be written in two forms:

A=UVT A=CA 'R

The latter expression refers to the fun fact: you can randomly choose 7 linearly
independent columns of a matrix and any r linearly independent rows of a matrix
and store only them with the ability to reconstruct the whole matrix exactly.
Use cases for Skeleton decomposition are:
® Model reduction, data compression, and speedup of computations in
numerical analysis: given rank-r matrix with » << n, m one needs to store
O((n+ m)r) <« nm elements. P Codh i
® Feature extraction in machine learning, where it is also known as matrix
factorization

- T
Amxn = Uper - Visn

Figure 3: lllustration of Skeleton
decomposition
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Skeleton decomposition

Simple, yet very interesting decomposition is Skeleton decomposition, which can
be written in two forms:

A=UVT A=CA 'R

The latter expression refers to the fun fact: you can randomly choose 7 linearly Ann
independent columns of a matrix and any r linearly independent rows of a matrix
and store only them with the ability to reconstruct the whole matrix exactly.
Use cases for Skeleton decomposition are:
® Model reduction, data compression, and speedup of computations in
numerical analysis: given rank-r matrix with » << n, m one needs to store
O((n+ m)r) <« nm elements.
® Feature extraction in machine learning, where it is also known as matrix
factorization
® All applications where SVD applies, since Skeleton decomposition can be
transformed into truncated SVD form.

- T
= Unxr - Visn

A = Coner At Rrn

Figure 3: lllustration of Skeleton
decomposition
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Canonical tensor decomposition

One can consider the generalization of Skeleton decomposition to the higher order data structure, like tensors, which

implies representing the tensor as a sum of r primitive tensors.

bV

Tensor Tiyxk
AIxr . B]xr - Cer
Figure 4: lllustration of Canonical Polyadic decomposition
o
1 Example

Note, that there are many tensor decompositions: Canonical, Tucker, Tensor Train (TT), Tensor Ring (TR), and

others. In the tensor case, we do not have a straightforward definition of rank for all types of decompositions.

For example, for TT decomposition rank is not a scalar, but a vector.
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Determinant and trace

The determinant and trace can be expressed in terms of the eigenvalues

detA = ﬁ A trd = z”: A
i=1 i=1

The determinant has several appealing (and revealing) properties. For instance,

® detA = 0 if and only if A is singular;
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Determinant and trace

The determinant and trace can be expressed in terms of the eigenvalues

detA = ﬁ A trd = z”: A
i=1 i=1

The determinant has several appealing (and revealing) properties. For instance,

® detA = 0 if and only if A is singular;
® detAB = (detA)(detB);
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Determinant and trace

The determinant and trace can be expressed in terms of the eigenvalues

detA = ﬁ A trd = z”: A
i=1 i=1

The determinant has several appealing (and revealing) properties. For instance,

® detA = 0 if and only if A is singular;
® detAB = (detA)(detB);

o detd ™t = L.
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Determinant and trace

The determinant and trace can be expressed in terms of the eigenvalues

detA = ﬁ A trd = z”: A
i=1 i=1

The determinant has several appealing (and revealing) properties. For instance,

® detA = 0 if and only if A is singular;
® detAB = (detA)(detB);

o detd ™t = L.
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Determinant and trace

The determinant and trace can be expressed in terms of the eigenvalues

detA = ﬁ A trd = z”: A
i=1 i=1

The determinant has several appealing (and revealing) properties. For instance,

® detA = 0 if and only if A is singular;
® detAB = (detA)(detB);

o detd ™t = L.

Don't forget about the cyclic property of a trace for arbitrary matrices A, B, C', D (assuming, that all dimensions are
consistent):

tr(ABCD) = tr(DABC) = tr(CDAB) = tr(BCDA)
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Determinant and trace

The determinant and trace can be expressed in terms of the eigenvalues

detA = ﬁ A trd = z”: A
i=1 i=1

The determinant has several appealing (and revealing) properties. For instance,

® detA = 0 if and only if A is singular;
® detAB = (detA)(detB);

o detd ™t = L.

Don't forget about the cyclic property of a trace for arbitrary matrices A, B, C', D (assuming, that all dimensions are
consistent):

tr(ABCD) = tr(DABC) = tr(CDAB) = tr(BCDA)

i Question

How does the determinant of a matrix relate to its invertibility?
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‘f — min
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Convergence rates

Convergence rates
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Convergence rate

100 .
10—2 .
10—4 .
10—6 .

10—8 .

Error rate upper bound

10—10 .

—— Sublinear, a = -7
—— Superlinear, q = 0.9
—— Linear,q = 0.5

—— Quadratic, g = 0.9

10712

— min
‘f 2,9,z Convergence rates

10 20 30 40 50
Number of iteration, k

Figure 5: Difference between the convergence speed
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Linear convergence

To compare the performance of algorithms, we must define the terminology for different types of convergence. Let 7,
be a sequence of non-negative real numbers that converges to zero. Typically, we have an iterative method producing

a sequence of iterates x,, approaching the optimal solution z*, and 1, = ||z, — 2*5.

The linear convergence of r, is defined as follows:

A sequence {r;}72,, converges linearly with a parameter 0 < ¢ < 1 if there exists a constant C' > 0 such that:
r, < CqF, forall k> m.

If such a ¢ exists, the sequence is said to have linear convergence. The exact lower bound of all g satisfying the
inequality is called the rate of linear convergence of the sequence.

Question

Suppose, you have two sequences with linear convergence rates ¢; = 0.1 and ¢, = 0.7, which one is faster?

‘f% EHA}‘; Convergence rates 0O
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Linear convergence

i Example

Let us have the following sequence:
T = 2?

1
One can immediately conclude, that we have a linear convergence with parameters ¢ = = and C' = 0.

i Question

Determine the convergence of the following sequence

Tk:27]€

— min
‘f 2,9,z Convergence rates
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Sublinear convergence

If the sequence 7, converges to zero, but does not have linear convergence, the convergence is said to be sublinear.
Sometimes we can consider the following class of sublinear convergence:

kar+1 — [y, < Ok,

where ¢ < 0 and 0 < C < . Informally, sublinear convergence means the sequence converges slower than any

geometric progression.

— min
‘f 2,9,z Convergence rates
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Superlinear convergence

A sequence {r,}?° s said to have superlinear convergence if it converges to zero faster than any linearly
convergent sequence. Verify, that a sequence {r;}7°,  is superlinear if it converges linearly with the rate ¢ =0

For p > 1, a sequence has superlinear convergence of order p if there exists C' > 0 and 0 < ¢ < 1 such that:

re < quk, for all k > m.

When p = 2, this is called quadratic convergence.

— min
‘f 2,9,z Convergence rates
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Superlinear convergence

A sequence {r,}?° s said to have superlinear convergence if it converges to zero faster than any linearly
convergent sequence. Verify, that a sequence {r;}7°,  is superlinear if it converges linearly with the rate ¢ = 0.

For p > 1, a sequence has superlinear convergence of order p if there exists C' > 0 and 0 < ¢ < 1 such that:

re < quk, for all k > m.

When p = 2, this is called quadratic convergence.

1 lllustrative Example

Suppose x* = 1.23456789 (the true solution), and the iterative sequence starts with an error r,, = 1073,
corresponding to 3 correct significant digits (1.234).
1. After the first iteration:

Tepr A 7e = (107%)2 =107°.

Now the error is 107%, and we have 6 correct digits (1.23456).

— min
‘f 2,9,z Convergence rates
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Superlinear convergence

A sequence {r,}?° s said to have superlinear convergence if it converges to zero faster than any linearly
convergent sequence. Verify, that a sequence {r;}7°,  is superlinear if it converges linearly with the rate ¢ = 0.

For p > 1, a sequence has superlinear convergence of order p if there exists C' > 0 and 0 < ¢ < 1 such that

re < quk, for all k > m.

When p = 2, this is called quadratic convergence.

1 lllustrative Example

Suppose x* = 1.23456789 (the true solution), and the iterative sequence starts with an error r,, = 1073
corresponding to 3 correct significant digits (1.234).

1. After the first iteration:

Tepr A 7e = (107%)2 =107°.

Now the error is 107%, and we have 6 correct digits (1.23456).
2. After the second iteration:

Thpo A Thq = (1076)2 = 10712,

Now the error is 107'2, and we have 12 correct digits (1.234567890123).

— min
‘f 2,9,z Convergence rates
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Convergence rates practical observations:

o |z — ]y < k%”azo — x*||, implies sublinear convergence rate
P

— min
‘f 2,9,z Convergence rates
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Convergence rates practical observations:

o |z — ]y < k%”azo — x*||, implies sublinear convergence rate
P

® |z, — x|y < glz, — x*|, implies linear convergence rate, where ¢ < 1
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Convergence rates practical observations:

o |z — ]y < k%”azo — x*||, implies sublinear convergence rate
P

® |z, — x|y < glz, — x*|, implies linear convergence rate, where ¢ < 1
® |zpiy — 2|5 < gllz), — 2|3 implies quadratic convergence rate, where gz, —2*| < 1

— min
‘f 2,9,z Convergence rates
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Root test

i Theorem
be a sequence of non-negative numbers converging to zero, and let o := limsup, , 7

Let (1),

that o > 0.)
(a) f 0 < a <1, then (1), converges linearly with constant .

Proof.

— min
‘f 2,9,z Convergence rates
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Root test

i Theorem

. . . 1
Let (r)%2,, be a sequence of non-negative numbers converging to zero, and let o := limsup, , _ rk/k. (Note
that o > 0.)

a) If 0 < a <1, then (r,)52,  converges linearly with constant .
k/k=m

b) In particular, if « = 0, then (r,,)%2.  converges superlinearly.
k/k=m

Proof.

‘f%m‘; Convergence rates 0O
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Root test

i Theorem

Let (r)32,, be a sequence of non-negative numbers converging to zero, and let o := limsup, , 7
that a > O.)

(a) f 0 < a <1, then (1), converges linearly with constant c.
(b) In particular, if =0, then (r,)52,,, converges superlinearly.
(c) If @ =1, then (r})52,, converges subllnearly

Proof.

— min
‘f 2,9,z Convergence rates

U/
k

. (Note
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Root test
i Theorem

Let (r)32,, be a sequence of non-negative numbers converging to zero, and let o := limsup, , 7}
that a > O.)

(a) f 0 < a <1, then (1), converges linearly with constant c.

(b) In particular, if =0, then (r,)52,,, converges superlinearly.

(c) If @ =1, then (r})52,, converges subllnearly

(d) The case o > 1 is impossible.

Proof.

— min
‘f 2,9,z Convergence rates
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. (Note
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Root test
i Theorem

1
Let (r)32,, be a sequence of non-negative numbers converging to zero, and let o := limsup, , 7} ik (Note

that o > 0.)
a) If 0 < a <1, then ()52, converges linearly with constant .
( ) k) k=m g y
b) In particular, if & = 0, then (7,)52,,, converges superlinearly.
k) k=
(c) If @ =1, then (r})52,, converges subllnearly
(d) The case o > 1 is impossible.

Proof
. let us show that if (r},)32,, converges linearly with constant 0 < 5 < 1, then necessarily o < /3. Indeed,

by the definition of the constant of linear convergence, for any € > 0 satisfying 8+ ¢ < 1, there exists

C > 0 such that r,, < C(B + €)* for all k > m. From this, r,lv/k < C’l/k(ﬁJrs) for all k > m. Passing to
the limit as k — co and using C''/% — 1, we obtain a < §+ €. Given the arbitrariness of ¢, it follows
that o < 3.

B /— min 0 0

Convergence rates
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Root test

i Theorem

Let (r)32,, be a sequence of non-negative numbers converging to zero, and let o := limsup, , 7 l/k. (Note
that o > 0.)

(a)
(b)

If 0 <« <1, then ()72, converges linearly with constant c.
In particular, if o =0, then (r,)32,,, converges superlinearly.

(c) If @ =1, then (r})52,, converges subllnearly
(d) The case o > 1 is impossible.
Proof

‘f — min
2oz

. let us show that if (r})32,. converges linearly with constant 0 < 3 < 1, then necessarily a < /3. Indeed,
by the definition of the constant of linear convergence, for any € > 0 satisfying 8+ ¢ < 1, there exists

C > 0 such that r,, < C(B + €)* for all k > m. From this, r,lv/k < C’l/k(ﬁJrs) for all k > m. Passing to
the limit as k — co and using C''/% — 1, we obtain a < §+ €. Given the arbitrariness of ¢, it follows
that o < .

. Thus, in the case a = 1, the sequence ()72, cannot have linear convergence according to the above

result (proven by contradiction). Since, nevertheless, (1,,)7° ., converges to zero, it must converge
sublinearly.

Convergence rates
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Root test

i Theorem

1.

‘f — min
2oz

Now consider the case 0 < o < 1. Let € > 0 be an arbitrary number such that a + ¢ < 1. According to
the properties of the limsup, there exists N > m such that r,lc/k < a+eforall k> N. Hence,

7e < (a+¢e)* for all k > N. Therefore, (r,,)2, converges linearly with parameter a + ¢ (it does not
matter that the inequality is only valid from the number N). Due to the arbitrariness of ¢, this means that
the constant of linear convergence of (Tk)zim does not exceed «v. Since, as shown above, the constant of
linear convergence cannot be less than «, this means that the constant of linear convergence of ()72, is

exactly a.

Convergence rates
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Root test

Theorem

1. Now consider the case 0 < o < 1. Let € > 0 be an arbitrary number such that oo + & < 1. According to

‘f — min
2oz

the properties of the limsup, there exists N > m such that r,lc/k < a+eforall k> N. Hence,

7e < (a+¢e)* for all k > N. Therefore, (r,,)2, converges linearly with parameter a + ¢ (it does not
matter that the inequality is only valid from the number N). Due to the arbitrariness of ¢, this means that
the constant of linear convergence of (Tk)zim does not exceed «v. Since, as shown above, the constant of
linear convergence cannot be less than «, this means that the constant of linear convergence of ()72, is
exactly a.

Finally, let's show that the case o > 1 is impossible. Indeed, suppose & > 1. Then from the definition of
limsup, it follows that for any N > m, there exists k > N such that rllc/k > 1, and, in particular, 7, > 1.
But this means that 7, has a subsequence that is bounded away from zero. Hence, (7)%°,,, cannot
converge to zero, which contradicts the condition.

Convergence rates P00 O
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Ratio test

Let {r,}%2,, be a sequence of strictly positive numbers converging to zero. Let

® If there exists ¢ and 0 < ¢ < 1, then {r,}2°  has linear convergence with constant g.

— min
‘f 2,9,z Convergence rates
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Ratio test

Let {r,}%2,, be a sequence of strictly positive numbers converging to zero. Let

® If there exists ¢ and 0 < ¢ < 1, then {r,}2°  has linear convergence with constant g.

® In particular, if ¢ =0, then {r;}2, . has superlinear convergence.

— min
‘f 2,9,z Convergence rates
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Ratio test

Let {r,}%2,, be a sequence of strictly positive numbers converging to zero. Let

® If there exists ¢ and 0 < ¢ < 1, then {r,}2°  has linear convergence with constant g.
® In particular, if ¢ =0, then {r;}2, . has superlinear convergence.

. . r . .
® |f ¢ does not exist, but ¢ = khm sup,, —E+L 1, then {ri}32,, has linear convergence with a constant not
— 00 T

exceeding q.

‘f - fnﬂ Convergence rates @ 0
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Ratio test

Let {r,}%2,, be a sequence of strictly positive numbers converging to zero. Let

If there exists ¢ and 0 < ¢ < 1, then {7}, has linear convergence with constant gq.
In particular, if ¢ =0, then {r,}7°  has superlinear convergence.

. . r . .
If ¢ does not exist, but ¢ = khm sup,, —E+L 1, then {ri}32,, has linear convergence with a constant not
— 00 T

exceeding q.

L r .
If lim inf, =L =1, then {r,}?°  has sublinear convergence.
Px k kS k=m
—00 Tk

‘f - fnﬂ Convergence rates @ 0
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Ratio test

Let {r,}%2,, be a sequence of strictly positive numbers converging to zero. Let

If there exists ¢ and 0 < ¢ < 1, then {7}, has linear convergence with constant gq.

In particular, if ¢ =0, then {r,}7°  has superlinear convergence.

. . r . .
If ¢ does not exist, but ¢ = khm sup,, —E+L 1, then {ri}32,, has linear convergence with a constant not
— 00 T

exceeding q.
L r .
If lim inf, ~*L =1, then {r;}?°,  has sublinear convergence.
k—o0 T B

r
The case lim inf, =4 > 1 is impossible.
k—o00

Tk

‘f - fnﬂ Convergence rates @ 0
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Ratio test

Let {r,}%2,, be a sequence of strictly positive numbers converging to zero. Let

® If there exists ¢ and 0 < ¢ < 1, then {r,}2°  has linear convergence with constant g.
® In particular, if ¢ =0, then {r;}2, . has superlinear convergence.

Tk

® |f ¢ does not exist, but ¢ = klim sup,, L <1, then {ri}32,, has linear convergence with a constant not
— 00 T

exceeding q.
L r .
e If lim inf, =L =1, then {r,}$°, has sublinear convergence.
k—o0 T B

® The case lim infy Thil S s impossible.
k— o0 Tk
® In all other cases (i.e., when klim inf, Tkt <1< hm sup,, ) we cannot claim anything concrete about
—00 Tk Tk

the convergence rate {r,}72,..

‘f% fn.}‘; Convergence rates P00 O 32


https://fmin.xyz
https://hse25.fmin.xyz
https://github.com/MerkulovDaniil/hse25
https://t.me/fminxyz

Ratio test lemma

i Theorem
Let (T&)zozm be a sequence of strictly positiye numbers. (The strict positivity is necessary to ensure that the
ratios ﬁ—: which appear below, are well-defined.) Then
T
< lim infr,lv/k < lim sup r,i/k < lim sup ktl
k—oo k—o0 ’ k—oo Tk

. ... T
lim inf —£+L
k—oo Tr

Proof.
1. The middle inequality follows from the fact that the liminf of any sequence is always less than or equal to
its limsup. Let’s prove the last inequality; the first one is proved analogously.
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Ratio test lemma

i Theorem

Let (r,)2,, be a sequence of strictly positive numbers. (The strict positivity is necessary to ensure that the
ratios T?’i—: which appear below, are well-defined.) Then

Tk+1

-
liminf £+ < lim 1nfr L/k < limsup 7y, Lk < lim sup
k—oo Tk: k— k—o00 k—00 Tk

Proof.
1. The middle inequality follows from the fact that the liminf of any sequence is always less than or equal to
its limsup. Let’s prove the last inequality; the first one is proved analogously.
2. Denote L := limsup,_, T’;‘“. If L = 400, then the inequality is obviously true, so let's assume L is
k

finite. Note that L > 0, since the ratio T’;—;l is positive for all k > m. Let € > 0 be an arbitrary number.
According to the properties of limsup, there exists N > m such that T’“—“ < L-+c¢eforall k> N. From
here, 7 < (L +¢e)ry, for all k > N. Applying induction, we get r;, < (L—i—s)k Npy forall k> N. Let
C:=(L+¢e) Nry. Then r, < C(L +¢)* for all k > N, from which r,lc/k < CY*(L +¢). Taking the
limsup as k — oo and using C/* — 1, we get limsup,_, rllc/k < L + €. Given the arbitrariness of ¢, it
follows that limsup, , 7, ri/k < L.
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‘f — min
Tz

Summary
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Summary

Onpegenetns

1.

Ok 0N

©ooNo

10.
11.
12.
13.
14.

15.

‘f — min
2oz

[NonoxutensHo onpefenérHHas mMaTpuua.
Esknugosa Hopma BekTOpa.
HepaBeHCTBO TpeyrosbHuKa At HOPMBbI.

. p-HOpMa BeKTopa.

Kak BbIrsgnT eAMHUYHBIA Wap B p - HOPME Ha
nnockoctn ana p = 1,2, c0?

Hopma @pobernyca gist matpuubl.
CnekTpasibHasi HOpMa MaTpULbI.

CkansipHoe npon3BeAeHne 4BYX BEKTOPOB.
CkansipHoe nponssegeHne 4ByX MaTpuL,
cornacoeaHHoe ¢ Hopmoii Ppoberuyca.

CobcTaeHHble 3HaveHns MaTpuubl. CnekTp mMaTpuubl.

CBs13b CnekTpa MaTpulbl 1 €€ OnpeneseHHOCTN.
CnekTpasibHOe passioXeHne MaTpuLbl.

CuHrynsipHoe passioXeHue MaTpuubl.

Cesizb onpegennTenst u cobCTBEHHbIX Yncen s
KBaZpaTHON MaTpuLbl.

Cesizb cniefia U COBCTBEHHBIX YUCEN A5t KBafpaTHOI
MaTpuLibl.

Summary

16.
17.
18.
19.
20.

21.

JlnHeliHas cxoaMMOCTb NOCNEeA0BaTENLHOCTN.
CybnuHeiiHash cxogUMMOCTb NOCIef0BaTENLHOCTN.
Ceepx/inHeliHas CXOAMMOCTb NOCAEA0BaTENbHOCTU.
KeagpaTnyHas cxoguMocTb NocneaoBaTeNbHOCTH.
TecT KopHeli Ans onpefeneHns CKOPOCTU CXOAUMOCTH
nocnesoBaTeNbHOCTH.

TecT oTHOLEHW ANA onNpefeneHns CKOPOCTy
CXOAMMOCTUN NOCNEA0BaATENBHOCTN.

Teopembl

1.

Kputepnii nonoxuTtesnbHoii onpegeneHHocTm
MaTpuLbl Yepe3 3HaKN CODCTBEHHbLIX 3HAYEH U
MaTpuLbI.

. TecT kopHeii
. TecT oTHOLWEHNT
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